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Abstract

AIM: To investigated the effects of the SNPs (rs411021,
rs436045, rs427811, rs385039 and rs809912) on gene
expression and further identify the susceptibility genes of
type 2 diabetes.

METHODS: Ten allele fragments (49 bp each) were
synthesized according to the 5 SNPs mentioned above.
These fragments were cloned into luciferase reporter gene
vector and then transfected into HepG2 cells. The activity
of the luciferase was assayed. Effects of the SNPs on RNA
splicing were analyzed by bioinformatics.

RESULTS: rs427811T allele and rs809912G allele enhanced
the activity of the reporter gene expression. None of the
5 SNPs affected RNA splicing.

CONCLUSION: SNPs in protein kinase Cz (PKCZ) gene
probably play a role in the susceptibility to type 2 diabetes
by affecting the expression level of the relevant genes.

Liu Z, Sun HX, Zhang YW, Li YF, Zuo J, Meng Y, Fang FD.
Effect of SNPs in protein kinase Cz gene on gene expression
in the reporter gene detection system. World J Gastroenterol

2004; 10(16): 2357-2360

http://www.wjgnet.com/1007-9327/10/2357.asp

INTRODUCTION
Type 2 diabetes is a highly heterogeneous chronic disease
characterized by metabolic disorder of blood glucose, its onset
involves a number of susceptibility genes. Since 1996, locating
and cloning the predisposing genes of type 2 diabetes, as well
as the functional investigation, has become one of the hot
spots worldwide in type 2 diabetes research. Based on genomic
screening technology, it was reported firstly among Western
population in succession that type 2 diabetes susceptibility

genes located on different chromosomes[1-23]. The susceptibility
genes were localized on chromosome 9 in Chinese population[24].
According to the case-control analysis in the region of
1p36.33-1p36.23, our research group found that one SNP locus,
rs436045 in protein kinase Cz (PKCZ) gene, was linked to type
2 diabetes in Chinese population, and the haplotype block has
been identified. While analyzing the haplotype which consists of
the 5 SNPs (rs411021, rs436045, rs427811, rs385039, rs809912),
we noticed that, in the case group, the haplotype CGTAG
showed a significantly higher frequency than that in control
group, whereas the frequency of haplotype TAGGA decreased
significantly (P<0.01, OR = 1.625), it implied that the changes of
those haplotypes related to the onset of type 2 diabetes in
Chinese[25]. However, it is still unclear weather haplotypes play
a role during the episode of the disease.
      To determine the biological function of those haplotypes,
we investigated their influence on gene expression by
bioinformatics approach and reporter gene activity determination
system, which would provide a basis for further research.
       In the previous work, we found that the 5 SNPs at the introns
of PKCZ gene located in the same haplotype block in case
group, and the haplotype they formed was clearly associated
with type 2 diabetes mellitus. In order to determine the
susceptibility loci associated with type 2 diabetes, we performed
functional analysis on 5 SNPs.

MATERIALS AND METHODS
Identification of SNPs in the coding region of PKCZ gene
Coding region (from exon 4 to exon 13 or from rs1878745 to
rs262642) of PKCZ gene was investigated for SNPs (cSNP) by
sequencing. Ten unrelated type 2 diabetic patients and 10 control
subjects from Han population in China were enrolled in a
case-control study. Primers were designed by Primer 3.0 program
(http://zeno.well.ox.ac.uk:8080/gitbin/ primer3_www.cgi) and
each PCR product was limited within about 500 base pairs. The
sequencing results from ABI377 sequencer were analyzed
through PhredPhrap/consed program to identify functional
SNPs.

Analysis of the effect of 5 intron SNPs on mRNA splicing
The distance from the SNP to the splicing point in exon was
determined based on the published genome sequence.
According to this information, we preliminarily estimated
whether the SNP site influences gene splicing.

Search of the information on PKC family member
The location and sequence of other PKC family members were
obtained by means of bioinformatics. Then, different
spliceosomes from other family members residing in the
sequence of PKCZ were analyzed.

Analysis of the introns where 5 SNPs located
Each SNP and the intron sequence around the loci were
compared with the data in cDNA database (www.sanbi.ac.za)
to reveal the sequence homology. The open reading frames in
this sequence were analyzed, and then the amino acid was
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blast using the (www.ncbi.nlm.nih.gov) protein database in
search of the sequence homology.

Effects of SNPs on gene expression by transient transfection
Ten alleles corresponding to the 5 SNPs in PKCZ gene were
cloned into pGL3-promoter vector in the direction from 5’ to 3’
(Table 1). Meanwhile, HepG2 cells were cultured with DMEM
(Gibco, LOS angeles, USA) containing 100 mL/L fetal bovine
serum. Then, the cells (1.5×105-2×105) were transfected with pGL3-
promoter vector (1 uL) or recombinant vector with Lipofectamine
transfection reagent (Promega, madison, USA). The transfection
rate was assayed by using pRL-SV40 DNA (100 ng, Promega,
madison, USA) as an internal control. Forty-eight hours post
transfection, the luciferase activity was determined by the Dual-
Luciferase® Reporter Assay System using pRL-SV40 as an
internal control.

Table 1  Sequence of ten 49-bp fragments containing each al-
lele of 5 SNPs

Fragment name Sequence

rs809912G-forward 5’ ggggtaccccagccatcctccacc c gcccattctccatcc 3’

rs809912G-reverse 3’ gtcggtaggaggtgg g cgggtaagaggtaggttctagaag 5’

rs809912A-forward 5’ ggggtaccccagccatcctccacc t gcccattctccatcc 3’

rs809912A-reverse 3’ ggggtaccccagccatcctccacc a gcccattctccatcc 5’

rs436045A-forward 5’ ggggtacccagcagtgcctgtcag a tttggtccaagcagt 3’

rs436045A-reverse 3’ tcgtcacggacagtc t aaaccaggttcgtcactctagaag 5’

rs436045G-forward 5’ ggggtacccagcagtgcctgtcag g tttggtccaagcagt 3’

rs436045G-reverse 3’ tcgtcacggacagtc c aaaccaggttcgtcactctagaag 5’

rs427811T-forward 5’ ggggtaccgctcagtgtcctcttt t gagaaggtataggtg 3’

rs427811T-reverse 3’ gagtcacaggagaaa a ctcttccatatccacatctagaag 5’

rs427811G-forward 5’ ggggtaccgctcagtgtcctcttt g gagaaggtacaggtg 3’

rs427811G-reverse 3’ gagtcacaggagaaa c ctcttccatgtccacatctagaag 5’

rs385039G-forward 5’ ggggtacctgtttacagaagctac g ttgtaacacctgctc 3’

rs385039G-reverse 3’ caaatgtcttcgatg c aacattgtggacgagatctagaag 5’

rs385039A-forward 5’ ggggtacctgtttacagaagctac a ttgtaacacctgctc 3’

rs385039A-reverse 3’ caaatgtcttcgatg t aacattgtggacgagatctagaag 5’

rs411021C-forward 5’ ggggtaccgggggttgcggtgagc c gagattgtgccactg 3’

rs411021C-reverse 3’ ccccaacgccactcg g ctctaacacggtgacctctagaag 5’

rs411021T-forward 5’ ggggtaccgggggttgcggtgagc t gagattgtgccactg 3’

rs411021T-reverse 3’ ccccaacgccactcg a ctctaacacggtgacctctagaag 5’

RESULTS
SNPs in the coding region of PKCZ gene
While seeking for functional SNPs by sequencing the exons
around the 13 intron SNPs discovered in the previous work, we
found no new ones except for the rs1878745 corresponding to
NCBI database. It suggested that the disease loci probably did
not exist in the coding region.

Influence of positive SNP on the PKCZ gene expression
To locate the disease SNP, we investigated the effect of the
5 positive SNPs (rs411021, rs436045, rs427811, rs385039, and
rs809912) lying in the same haplotype block on PKCZ gene
expression. The influence of the 5 SNPs over RNA splicing
was evaluated since all the 5 SNPs lay in the introns. The
distance of the SNPs from the upstream and downstream of the
splicing site are respectively as the following: rs411021 (3 535 bp,
5 283 bp), rs436045 (4 770 bp, 4 048 bp), rs427811 (8 729 bp,
89 bp), rs385039 (1 629 bp, 57 bp), and rs809912 (>2 kb, 2 057 bp).
Those are comparatively long distant to 5’ splice donor site,
3’ receptor site and the internal vertex, suggesting that they
have little association with pre-mRNA splicing. In addition, we
estimated if differential splicing occurs between PKCZ gene
and other PKC family members. Although there are at least 11 family

members besides PKCZ, none of them locate on chromosome 1,
which negates the ‘differential splicing supposition’. The
location of introns where 5 SNPs located was analyzed. As a
first step, we compared the intron sequence around the loci of
each of the 5 SNPs with the data in cDNA database (www.
sanbi.ac.za) in order to reveal the sequence homology. Result
showed that the introns had no coding function because neither
cDNA sequence homology nor protein sequence homology
by ORF analysis was found. But this result needs to be further
confirmed by Northern blotting. And finally, the effects of the
SNPs on gene expression were investigated. Transfected HepG2
cell containing pGL3-promoter reporter gene vector was used
to detect the activity of the reporter gene that could reflect
indirectly whether the fragment inserted affected gene
expression. Statistical analysis showed a significant difference
between the two SNPs of rs4278111 and rs809912. In rs4278111,
the reporter gene activity of T allele was 1.5 times that of the G
allele, while in rs809912, in G allele it was 1.7 times that of A
allele (Table 2). Therefore, these two SNPs will probably affect
the expression level of PKCZ gene.

Table 2  Transcriptional regulatory activity of each construct of
PKCZ in HepG2 cells

Construct                       Relative luciferase activity            P

pGL3-promoter 0.3533±0.040
pGL3-rs411021C 0.5167±0.064

pGL3-rs411021T 0.5100±0.102    0.928

pGL3-rs436045A 0.3433±0.051

pGL3-rs436045G 0.3767±0.023    0.363

pGL3-rs427811T 0.6233±0.064a

pGL3-rs427811G 0.4433±0.068    0.029
pGL3-rs385039A 0.3500±0.044

pGL3-rs385039G 0.3467±0.015    0.907

pGL3-rs809912A 0.1800±0.017a

pGL3-rs809912G 0.3033±0.042    0.009

aP<0.05 in comparison between construct and pGL3-promoter
vector.

DISCUSSION
PKCZ is a member of serine/threonine protein kinase family,
belonging to atypical PKC, and independent of both calcium
and diacylglycerol (DAG)[26]. It is insensitive to PKC inhibitors
and cannot be activated by phorbol ester. PKCZ protein is
thought to function downstream of phosphatidylinositol 3-kinase
(PI 3-kinase) in insulin signaling pathway and plays a role in
promoting the translocation and activation of GluT4 from the
cytosol to membranes which will accelerate the glucose
transport in skeletal muscle and adipocytes[27-30]. In addition,
PKCZ can induce negative feedback to the signaling pathway
through phosphorylating IRS-1[31,32]. Insulin-stimulated glucose
transport is defective in type 2 diabetes mellitus, and this defect
can be ameliorated via correcting PRKC-zeta/lambda activation
defect[33], suggesting that the transport deficiency is at least
partly associated with the activation defect of PKCZ. Our
previous research showed that PKCZ is related to susceptibility
to type 2 diabetes mellitus in Chinese population. If so, whether
genetic polymorphism of PKCZ gene will influence the pathways
associated with blood glucose regulation by affecting its gene
expression, and increase the susceptibility to this disease
ultimately? Based on bioinformatics research and reporter gene
activity determination system, our data provide first evidence
that intron SNP loci in PKCZ gene affect gene expression.
Horikawa[34] has reported that gene expression was under
the influence of the 3 intron SNPs in CAPN10 gene, the



susceptibility gene of type 2 diabetes in Mexican American.
Such kind of result was also reported by other groups, for
example, an SNP in COL1N1 gene can change the binding site
of transcription factor Sp1 thereby influencing the gene
expression, resulting in the decline of bone density as well as
osteoporosis[35].
       In our experiment, we found the two alleles (rs427811T and
rs809912G) that had a relatively high frequency in type 2 diabetic
patients could improve the reporter gene expression, apparently
in conflict with our predicted result. This phenomenon might
be explained by the hypothesis that PKCZ gene was involved
in other signaling pathways and its relation to the disease was
more complicated than we had estimated. Till now, there have
been no reports that PKCZ gene expression is changed in the
tissues of type 2 diabetic patients. But PED/PEA-15, a substrate
of PKC, was reported to increase PKCZ gene expression in the
patient’s tissues[36], which inhibited insulin stimulated glucose
transportation. Thus, the high expression of PED/PEA-15 gene
probably plays a role in insulin resistance of type 2 diabetes.
Our next goals are to determine whether PKCZ interacts with
PED/PEA-15 in insulin signaling pathway, and whether PED/
PEA-15 or its analogue is involved in the inhibition of the insulin
stimulated glucose transport via another signal pathway.
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