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ABSTRACT The finite-element method of solid mechanics
is applied to calculation of the three-dimensional structure of
closed circular DNA, modeled as an elastic rod subject to large
motions. The results predict the minimum elastic energy con-
formation of a dosed loop of DNA as a function of relaxed
equilibrium configuration and linking number (Lk). We apply
the method to four different starting states: a straight rod, two
rods containing either one or two 20' bends, and a circular
O-ring. The results, here at low superhelix density, show the
changes in writhe (Wr) and in twist (Tw) as Lk is progsively
lowered. The presence of even a single intrinsic bend reduces
significantly the linking number change at which Wr first
appears, compared to an initially straight, bend-free rod. The
presence of two in-phase bends, situated at opposite ends of a
diameter, leads to the formation of at least two distinct regions
of different but relatively uniform Tw increment. The 0-ring
begins to writhe immediately upon reduction ofLk, and the Tw
increment distribution is sinusoidal along the rod. The me-
chanics calculations, unlike other theoretical approaches, per-
mit us to calculate Tw and Wr independent of the constraint of
constant Lk.

The three-dimensional structure of closed circular DNA has
been much studied, both experimentally and theoretically,
but a coherent picture is only beginning to emerge. From the
theoretical point ofview, the first requirement is specification
of a model to represent the DNA at the desired level of
complexity. It has long been clear that many of the tertiary
structural properties ofDNA in general, and of closed DNA
in particular, may be represented by an elastic isotropic rod
of circular cross section (1), or a wormlike chain (2). The rod
is subject to bending, torsional, and extension distortions and
possessed of the corresponding three structural moduli (3).
This is the model that is commonly used to represent DNA
for didactic purposes, and the object of the present study is
to determine theoretically what are the equilibrium confor-
mations of such a closed circular DNA at various imposed
deformations.
For analytical purposes, it is convenient to divide the

calculations into two regions. At very low linking-number
changes (ALk), the deformations of the DNA are moderate
and distal parts of the molecule remain separated. At mod-
erate to high ALk, however, distant chain segments are
brought into proximity and the problem of forbidden self-
passage arises. We will treat only the first case, that of low
ALk, in the present article; the problems associated with
self-passage will be treated elsewhere. This case is of impor-
tance in its own right, since it allows us to deal with the
looping of segments of a long, linear DNA, in which closed
circular topological domains of low ALk are formed (4, 5).

It is well known that a closed circular DNA has a linking
number, Lk, and that this topological property subdivides
into the two geometric properties (6, 7): twist, Tw (duplex
distortion), and writhe, Wr (axis distortion). We analyze how

a small ALk applied to a closed circular DNA is distributed
between Tw and Wr. Four classes of DNA are considered.
Two are the extreme cases: first, a DNA that is strain-free as
a linear molecule, then bent smoothly to form a strained
circle; second, a DNA that is naturally strain-free in the
circular form. The first case is represented by a straight
elastic rod, and the second by an 0-ring. Representations of
these in their strain-free states are shown in Fig. 1, which also
defines the terminology used to describe the structures. The
0-ring is the limiting case produced by a continuous, in-phase
sequence of identical intrinsic bends. Short DNA molecules
having an 0-ring structure have been synthesized (8). Intrin-
sically bent regions are found in DNA (9, 10), as are bends
induced by protein binding (11), and one of our major objec-
tives is to determine the effect of bends on the structure of
circular DNA. We therefore analyze two cases in which the
DNA contains either one or two intrinsic bends: an elastic rod
with one 200 bend, and an elastic rod with two in-phase 20°
bends. In-phase means that the bends lie in the same plane and
are oriented the same with respect to the interior of the loop.
In order to represent a closed DNA, all models that are initially
open are first closed, producing shapes shown in Fig. 2.
We find that the distribution of ALk between Tw and Wr

varies markedly among the four cases. For the initially
straight rod, a considerable change in ALk is required to
introduce Wr. In addition, the change in Tw is seen to be
uniformly distributed along the length of the rod. The pres-
ence of a single intrinsic bend is seen to convert a portion of
Tw immediately into Wr, but the remainingTw is still divided
uniformly. The addition of a second intrinsic bend, in-phase
and diametrically opposite, results in only a small change in
the point at which Tw is converted into Wr. The Tw incre-
ment distribution, however, is strikingly altered: the Tw is no
longer uniform but is discontinuous at the bend locations.
Finally, in the 0-ring case a large portion ofALk is converted
into Wr, and the Tw increment is sinusoidally distributed
along the 0-ring axis. In summary, bent DNA converts Tw
into Wr much more efficiently than unbent DNA, and the
presence of bends causes nonuniformities in the local Tw
increment. Both of these features may well have significant
structural consequences for interpreting the biological effects
of looping and of other phenomena involving the three-
dimensional structure of DNA.

THEORY AND MODELS
We model the DNA as a linearly elastic rod having the
appropriate cross section and material moduli, including the
modulus of elasticity and the shear modulus. The cross
section is taken to be circular of radius 1 nm, for which the
moment of inertia, I, is equal to ir/4 nm4. The modulus of
elasticity, E, is estimated from the persistence length, A, with
the expression E = AkkT/I, where kB is the Boltzmann
constant and T the temperature (298 K). For a DNA persis-
tence length (at moderate ionic strength) of 200 bp (3, 12) the

Abbreviations: Lk, linking number; Tw, twist; Wr, writhe; FEM,
finite-element method.

833

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. Natl. Acad. Sci. USA 90 (1993)

LiL

FIG. 1. Models for classes of strain-free DNA. Four initial
configurations with no internal strain energy are shown: 0-ring,
straight linear, linear with single 200 bend, and linear with two in-phase
20" bends separated by one-half the length of the rod. The length of
each model, L, is 2100 bp in the calculations performed here.

value of E is 3.40 x 109 dyne-cm-2. The shear modulus, G,
is obtained from the torsional rigidity, C, with the expression
G = C/2I. For the value of C = 2.5 x 10-19 erg-cm (13, 14),
the value of G is 1.59 x 109 dyne-cm2. The calculations are
performed for aDNA oflength 630 nm, or 2100 bp, about half
the length of pBR322 DNA (4361 bp).
To apply the elastic rod model to closed circular DNA, we

must specify how to introduce changes in ALk. The three
classes ofDNA that are straight, singly bent, and doubly bent
in their strain-free form must first be closed (Fig. 2). The
0-ring model is already closed in its strain-free state. Each
rod is then cut perpendicular to its axis. The two faces of this
cut are next caused to rotate relative to one another about the
local tangent to the rod axis and then resealed. This process
has the effect of changing ALk fractionally by the amount of
rotation imposed.

In response to the imposed change in boundary conditions,
as represented by a change in ALk, the various rod models
undergo deformation. The problem is to calculate the new
coordinates of each rod-i.e., its new shape. This is accom-
plished by the methods of solid mechanics. Solid-mechanics
principles give rise to nonlinear continuous differential equa-
tions with boundary conditions. Solid mechanics includes the
requirement of mechanical equilibrium (balance offorces), in
addition to the constitutive relationships such as Hooke's
Law. At stable equilibrium, the total potential energy of an
elastic structure is locally minimum. The coordinates that
describe each rod following cut, rotation, and resealing are
obtained from the newly calculated displacement field, which
consists of the vectors joining points on the initial configura-
tion to their corresponding points on the new configuration.
Solution of the equations to obtain the displacement field
requires, due to their complexity, numerical techniques such
as provided by the finite-element method (FEM).

NUMERICAL MODELS AND METHODS
Displacement-based FEM is a powerful and well-established
technique for obtaining solutions to problems in nonlinear

24`.

FIG. 2. Models for classes of closed DNA. The structures shown
here were obtained from the three open forms shown in Fig. 1 by
closing each rod in the x-z plane. Closure was accomplished by
gradually moving one end of the rod relative to the other and
enforcing equilibrium throughout the process. The bend angle in-
creases to 23.5° in the singly bent rod and to 24.0° in the doubly bent
rod.

solid mechanics. Numerous displacement-based finite-
element programs have been written, and many are available
commercially. The initial configurations are modeled, in the
FEM context, as three-dimensional continua. The DNA rod
is divided along its axis into a discrete number of appropri-
ately curved segments, here taken to be 40. Each of these
curved cylindrical segments is further subdivided into four
equal quadratic elements (Fig. 3) in order to capture the
geometry of the initial configuration. The four elements join
at the centroid of the rod, and each element is described by
20 nodal points. This division produces 160 finite elements
and 1221 distinct nodal points. The DNA rod is constituted of
linear elastic material with E, G, and cross-sectional radius as
given above.

In displacement-based FEM the fundamental variables are
the displacements (15). The continuous displacement vector
field is approximated by a collection of individual element
displacement fields that depend on values ofdisplacements at
the nodal points. In the present work the components of the
individual element displacement fields are given by quadratic
interpolation functions. Displacements are continuous across
interelement boundaries, and no restriction is placed on the
displacement magnitudes. After imposing displacement
boundary conditions, the models have -3500 displacement
degrees of freedom (independent variables). The number of
elements per DNA is varied to pick conditions for which the
results are relatively insensitive to the element size and for
which the choice of quadratic interpolation functions is
adequate for both the geometry and the nodal displacements.

In solving nonlinear problems with FEM, one effective
approach is to apply the boundary conditions incrementally.
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Continuous Rod

C)
tion convergence was assessed by consideration ofchange in
conformation as measured by Wr, a measure in this case of
the out-of-plane motion of the axis of the rod. Three or four
iterations were typically required for suitable convergence;
for situations of substantial motion with applied rotation
increment as many as 12 iterations were required. Typical
increments used 80-90 sec of central-processing-unit time.

0.0(L
Individual Element

FIG. 3. Choice of finite elements for an elastic rod. The case
depicted is that of the straight rod, which is here divided into three
discrete sections. Each section is divided into four equal parts, as
shown. It is these quadrants that form the finite elements. Twenty
nodal points, shown as filled circles on the element sketch, are used
for two purposes: to define individual element geometry and to
determine the quadratic element-displacement field parameters. In
the analysis presented here, each DNA rod is divided into 40
sections, and therefore into 160 finite elements.

The nonlinear equations may then be solved by a sequence of
linear approximations to the governing relations. This is
accomplished by eliminating higher-order terms in the dis-
placement increments. In each increment an iterative proce-
dure is used to correct for the errors introduced by linear-
ization.

Solutions reported here were obtained by using the MARC
computer program (16), a well-known general-purpose dis-
placement-based finite-element code with both linear and
nonlinear capabilities. The updated Lagrangian formulation
was used to treat large displacements. Several benchmark
problems were analyzed to verify program capabilities. The
program was run on an IBM 3090 model J computer. Con-
vergence criteria internal to the MARC program include a
measure of the equilibrium error and the maximum displace-
ment during an iteration. In addition to these criteria, itera-
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RESULTS

Geometry. Each ofthe closed configurations was subjected
to relative rotation (change in Lk) up to the point at which
initially remote segments of the model begin to come into
contact. Fig. 4 shows examples of each of the four cases,
chosen so that Wr -0.03 for all. Three views are depicted
for each, in order to illustrate various geometric properties.
The view along the y axis clearly distinguishes the three
models. The elliptical shape characterizes the initially
straight model and contrasts markedly with the egg shape
introduced by the single bend. In the double-bend model, the
two flattened portions of the curve indicate the locations of
the bends. The flattened region in the O-ring corresponds to
the location ofthe cut. The view along the x axis indicates the
maximum in the projected Wr and best shows the distortion
in each.
Wr. Fig. 5 presents a plot of Wr as a function of total

relative rotation for each model. The initially straight con-
figuration, which forms a circular shape upon closure, is
capable of sustaining a relatively large amount of rotation
prior to the onset of measurable writhe. No Wr is observed
to occur until the relative rotation reaches about -1.80 turns
(Fig. 5B). This is in good agreement with other analyses in
the literature, which predict the onset ofWr at -VJ(E/2G) =

-1.85 turns (17, 18). The O-ring configuration, in contrast,
begins to writhe immediately upon imposition of relative
rotation to change ALk.
The two initially bent configurations behave intermediate

between that of the rod and of the O-ring. The results show
that a change in ALk in either causes deformation by an
amount intermediate between the two extreme models. Even
the singly bent molecule begins to writhe directly upon
application of rotation, a feature more in common with the
O-ring than with the linear rod. The point at which Tw is
rapidly converted to Wr occurs at a significantly lower
applied rotation than for the initially straight model. The
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FIG. 4. Representative closed
Z DNA structures, having similar

Wr, at various applied rotations.
(a) Initially straight, rotation of
2.075 turns. (b) Single bend, 1.625
turns. (c) Double bend, 1.50 turns.

(d) O-ring (initially circular), 0.375
turn. For each configuration,
three projected views are shown:
proceeding from top to bottom
these are along thex, z, andy axes,
respectively.

(I)
Rod Discretized into Finite Elements
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FIG. 5. Variation of Wr with ALk (applied rotation). In A the
results are shown over the range 0 to -1 in Wr. B, at an -50-fold
magnified scale, shows that both bent molecules begin to writhe
immediately upon even a very small applied rotation. This is in
contrast to the initial straight rod, in which the onset of Wr is
considerably delayed. The behavior of the double-bend curve in the
region between 0.75 and 1.25 turns is possibly caused by the fact that
closure of this structure resulted in a slight relative out-of-plane
motion of the bends. The curves refer to the various models as
follows: o, initially straight rod; O, singly bent rod; a, doubly bent
rod; and o, 0-ring. The vertical dotted line in B represents the linear
elasticity theoretical threshold for the onset of Wr (17, 18).

behavior of the molecule containing two identical bends,
diametrically opposite and in phase, is generally similar to the
singly bent DNA. We expect the conversion of Tw into Wr
to depend upon the magnitude and relative orientation and
location of the bends; this will require further investigation.
The FEM analysis of the continuous model of closed DNA
clearly predicts that even a single intrinsic bend can have a
large effect upon the three-dimensional structure of a looped
DNA.
Tw. An important facet of the present work is the ability to

compute directly ATw from the initial configuration to the
final configuration. Tw is defined to be the twist of a
backbone chain, B, about the central axis, A. The backbone
curve may be thought of as a helical curve winding about the
axis on the surface ofthe elastic rod. If the rod models in Fig.
2 are made to rest on the surface of a plane, we may define
a curve C as the curve of contact of each model with the
plane. Each ofthese is a closed curve that traverses the length
of the rod. The axis of the rod is then the curve of height 1
nm above the curve C. One may show, using the method of

twist difference analysis (19), that the change in Tw of B
about A is the same as that of C about A. For the initial
configuration the Tw ofC about A is clearly zero. Thus, ATw
is given by the Tw of the deformed C about the deformed A.
This can be computed by using the correspondence tech-
niques described by us previously (20). ATw is computed
piecewise by dividing each ofthe 40 curved elements into two
straight segments. Because Tw is an additive function, the
total Tw is given by the sum of these 80 incremental Tw
values.

In addition to the total ATw, the distribution ofATw along
each DNA rod is strongly influenced by the nature of the
initial, strain-free configuration. For the initially straight
model ATw is distributed uniformly along the length of the
DNA (Fig. 6). For the 0-ring, ATw varies sinusoidally along
the rod with maximum and minimum absolute values at
diametrically opposite locations. For the singly bent DNA, as
for the initially straight model, ATw remains uniform. For the
doubly bent model, however, ATw is nonuniform. The ad-
dition of a second bend into the DNA divides the DNA into
two regions of relatively uniform Tw, with each bend causing
a discontinuity in the twist. The ATw distributions in Fig. 6
are plotted with reference to the location of the cut, which is
taken to be the origin. Tw distributions are fixed relative to
the cut location by FEM boundary conditions. Since thermal
fluctuations are not modeled, the results are effectively at 0
K. If the temperature of the initially straight or O-ring DNA
were reversibly increased and the molecules incubated at
(say) room temperature, then reversibly decreased again to 0
K, the shape of the Tw increment distributions would be
unchanged but would be shifted randomly relative to each cut
location.

DISCUSSION
The FEM-based calculations yield the DNA structure of
minimum elastic energy at 0 K. The energy involved is one
of the two components of the Helmholtz free energy (work
function), and at constant DNA length is identical to the
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FIG. 6. Variation of the Tw increment as a function of distance
along the DNA for a particular ALk for representative examples of
the various models. The initially straight and the singly bent rods
exhibit uniform Tw. The doubly bent rod shows regions of relatively
uniform Tw separated by discontinuities. The O-ring shows sinusoi-
dal variation in Tw along its length. The total ATw, Wr, and applied
rotation for each are as follows: straight rod (0), ATw = -2.038, Wr
= -0.037, ALk = -2.075; singly bent rod (C), ATw = -1.695, Wr
= -0.179, ALk = -1.875; doubly bent rod (A), ATw = -0.994, Wr
= -0.004, ALk = -1.000; O-ring (o), ATw = -0.483, Wr = -0.265,
ALk = -0.750.
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enthalpy of superhelix formation. Previous theoretical ex-
aminations of the structure of closed DNA have employed
either small displacement elastic models or stochastic calcu-
lations. In the former studies, linear approximations were
used to estimate the elastic response of small DNAs (21-24).
Stochastic approaches have employed either Monte Carlo
simulations or annealing by molecular dynamics. Monte
Carlo methods have been used to describe the expected
variance in Wr (25, 27) and in the equilibrium configuration
(28). They represent a compromise, in which bending occurs
at finite temperatures but Tw is assumed to be uniform, as
expected for an initially straight rod, excluding thermal
fluctuations. The molecular dynamics calculations attempt to
follow the contortions of a single molecule through time at
finite temperature. They would, in principle, be complete if
applied to a real molecular model of the DNA. Since this is
prohibited by the complexity of the atomic structure, the
procedures of molecular mechanics and dynamics have been
applied to models that are highly simplified in structure.
Examples include three points in connected planes (29) and
discrete points joined by B spline curves (30). In principle,
both the Monte Carlo and the molecular dynamics methods
allow for the calculation of the free energy.

In contrast to the above methods, application of solid
mechanics via the finite-element method avoids the use of
stochastic methods and of small displacement approxima-
tions. FEM predicts conformations for particular prescribed
loadings. Instead of sampling configuration space, the cal-
culations are deterministic. Thus, for example, FEM pro-
vides specific equilibrium conformations as a function ofALk
for closed molecules, whereas the Monte Carlo techniques
yield a large number of conformations at a given ALk. The
various conformations are considered to vary about the
equilibrium shape, with variations attributed to thermal fluc-
tuations. While FEM analysis can be numerically intensive,
the number of calculations is finite for a given level of
accuracy. The stochastic methods, however, must be re-
peated for a sufficiently large number of trial conformations
to obtain a reliable estimate of the average conformation.
Elastic properties are directly incorporated in the FEM
solution, in contrast with rigid-link Monte Carlo methods, for
which restrictions are placed on possible values of discrete
angles between adjoining segments ofthe model. These latter
restrictions are intended to reflect internal energy nminimiza-
tion principles but do not require satisfaction of mechanical
equilibrium for individual conformations.

Previous investigations used models for which Tw is uni-
form along the DNA, although an approximation to Tw was
computed in one study (29). In the Monte Carlo, spline, and
molecular dynamics techniques, this assumption is necessary
because ATw is obtained from the relationship: Tw = Lk -

Wr. In general, the stochastic methods are not well suited to
calculate local ATw within a DNA molecule. The FEM
calculations show, in contrast, that the local Tw can vary
significantly and that this variation is sensitive to the pres-
ence of intrinsic bends.
The closure of DNA rods into circles or loops is increas-

ingly recognized to be an important mechanism in the regu-
lation of certain metabolic pathways (4). In this process the
DNA segment forms a topological domain that may contain

bends, either intrinsic or protein-induced (31). The formation
of a loop generally occurs with only a small amount of net
interstrand rotation (e.g., to permit alignment of protein
faces); hence, the results obtained by us are relevant to
understanding the geometry and energetics of loop forma-
tion. Thus, a DNA loop containing a bend is expected to
writhe, as the ends are rotated, before the same loop without
a bend. The presence of two bends might produce a region of
greater than average strain (as shown by the increased Tw
increments). This might, in turn, influence the binding of
proteins or other aspects of reactivity.
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