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Abstract

Radiotherapy is a mainstay of cancer treatment, used in either a curative or palliative manner to 

treat approximately 50% of cancer patients. Normal tissue toxicity limits the doses used in 

standard radiation therapy protocols and impedes improvements in radiotherapy efficacy. Damage 

to surrounding normal tissues can produce reactions ranging from bothersome symptoms that 

negatively affect quality of life to severe life-threatening complications. Improved ways of 

predicting, prior to treatment, the risk for development of normal tissue toxicity may allow for 

more personalized treatment and reduce the incidence and severity of late effects. There is 

increasing recognition that the cause of normal tissue toxicity is multifactorial and includes 

genetic factors in addition to radiation dose and volume of exposure, underlying co-morbidities, 

age, concomitant chemotherapy or hormonal therapy and use of other medications. An 

understanding of the specific genetic risk factors for normal tissue response to radiation has the 

potential to enhance our ability to predict adverse outcomes at the treatment planning stage. 

Therefore, the field of radiogenomics has focused upon the identification of genetic variants 

associated with normal tissue toxicity resulting from radiotherapy. Innovative analytic methods 
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are being applied to the discovery of risk variants and development of integrative predictive 

models that build on traditional normal tissue complication probability models by incorporating 

genetic information. Results from initial studies provide promising evidence that genetic-based 

risk models could play an important role in the implementation of precision medicine for radiation 

oncology through enhancing the ability to predict normal tissue reactions and thereby improve 

cancer treatment.

Introduction

Clinical Need for Radiogenomics Research

Approximately 50% of individuals diagnosed with cancer will receive radiation as part of 

their treatment, resulting in a large number of cancer survivors who are susceptible to 

development of treatment related toxicities1,2. A long-standing goal of research in radiation 

oncology has been to improve our ability to predict normal tissue toxicities to enable 

prevention of acute and late adverse effects without compromising treatment efficacy. In this 

context, it should be noted that despite the technological advances that have been made to 

conform the dose of radiation to the tumor, some amount of normal tissue is always 

irradiated during the course of radiotherapy and this exposure can lead to the development 

of adverse effects. For example, in a recent analysis of 20 publications that reported 

techniques and toxicity outcomes for 11,835 patients treated with radiotherapy for prostate 

cancer, it was estimated that either moderate or severe late gastrointestinal toxicity was 

observed in 15% and 2%, respectively, of these men3. In addition, either moderate or severe 

genitourinary complications developed in 17% and 3%, respectively, of these patients. Thus, 

overall about 25–30% and 4–5% of prostate cancer patients who received radiotherapy 

develop either moderate or severe, respectively, GI and GU complications. In addition, 

sexual functioning is affected for a substantial number of men who are treated with radiation 

for prostate cancer, and it has been estimated that approximately half of prostate cancer 

patients who receive radiotherapy develop erectile dysfunction4. Thus, the adverse effects 

resulting from radiotherapy have a large impact upon the quality of life for these patients, 

which is particularly important since the 10-year relative survival rate (which adjusts for the 

expected mortality from other causes of death) for all stages of prostate cancer combined 

approaches 100%5. Therefore, it is critical to consider the morbidity that may result from 

radiotherapy and steps that could be taken to prevent these complications, or exclude 

patients at the highest risk for their development.

Normal tissue complication probability (NTCP) models aim to estimate the risk of normal 

tissue toxicity based on dosimetric parameters6, but existing models are limited and could be 

improved, for example, by incorporation of patient-specific factors, such as age, gender, 

race, and genetics. The field of radiogenomics has emerged with the objective of identifying 

genetic variants, primarily single nucleotide polymorphisms (SNPs), associated with risk for 

the development of various normal tissue toxicities following treatment with standard 

radiotherapy protocols. In addition to understanding the biological underpinnings of 

radiosensitivity, one of the primary goals of radiogenomics is to develop an assay capable of 

predicting with a high level of sensitivity and specificity the likelihood that a particular 

cancer patient will develop complications from treatment with radiotherapy. The field 
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envisions incorporating SNP information into predictive models along with dosimetric 

parameters, clinical risk factors, co-morbidities, and other patient-specific factors to 

significantly improve the predictive accuracy of such models.

The availability of a predictive assay may be of great help to medical providers, patients and 

their families if it allows an improved treatment decision to be reached for each individual. 

Information from such an assay, incorporated into a predictive model, could serve as a 

decision-making tool for patients by offering a genetically tailored approach for the 

prevention of radiation toxicity in the realm of precision medicine. In this paper, we provide 

both theoretical and empirical examples of predictive models. For patients predicted to be at 

high risk for the development of complications resulting from treatment with radiation, then 

alternative treatments with surgery and/or chemotherapy would be appropriate if they would 

provide similar efficacy. This decision making process would, of course, have to account for 

the risk of developing other adverse effects from these non-radiation treatment modalities. 

Alternatively, radiation dose parameters could be modified for the stratum of individuals at 

highest risk for toxicity. As increasingly targeted therapies emerge, along with associated 

increased cost, risk stratification based on genetic predisposition could help identify 

individuals who might be most appropriate candidates. It is also important to recognize that 

for those patients predicted to be at low risk for developing tissue injury from radiation, then 

possibly a more aggressive radiotherapy protocol using a higher dose could be considered, 

which may improve the chance for cure of their cancer. Such dose escalation would need to 

be carefully investigated through clinical trials to determine the safest possible maximum 

dose even for those at decreased risk of toxicity under current protocols.

Recent Progress in Radiogenomics Research

Researchers in the field of radiogenomics have made substantial progress in recent years 

towards the identification and validation in multiple cohorts of SNPs associated with the 

development of normal tissue toxicities resulting from radiotherapy. This is the first step 

towards achieving the goal of creating a predictive assay ready for implementation in the 

clinical setting. Much of the success of this field of research is due to the establishment of 

the Radiogenomics Consortium (RGC) in 2009 7,8, which is a National Cancer Institute/

NIH-supported Cancer Epidemiology Consortium (http://epi.grants.cancer.gov/Consortia/

single/rgc.html) consisting of 188 investigators at 110 institutions in 26 countries. The 

purpose of the RGC is to bring together collaborators to pool samples and data for increased 

statistical power of radiogenomic studies. Through the RGC, the number of radiogenomics 

cohorts has increased substantially, and it is now possible to perform large-scale studies that 

possess the statistical power needed to enable the discovery and validation of genetic 

markers that can be used to predict risk of adverse effects resulting from radiotherapy. The 

success of this effort is now being realized. Over the past 15 years, using approaches of 

candidate gene studies and, more recently, genome-wide association studies (GWAS), 

radiogenomics studies have so far identified seven SNPs that have been confirmed in 

replication studies as associated with one or more late effects of radiotherapy (Table 1): 

rs2868371 (esophagitis and pneumonitis following radiotherapy for lung cancer); rs1800469 

(esophagitis following radiotherapy for lung cancer); rs1800629 (overall skin toxicity 

following radiotherapy for breast cancer); rs1139793 (fibrosis following radiotherapy for 
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breast cancer); rs7120482 (rectal bleeding following radiotherapy for prostate cancer); 

rs264663 (overall toxicity following radiotherapy for prostate cancer); and rs1801516 

(overall toxicity following radiotherapy for prostate or breast cancer) (9–16, reviewed in 17). 

There are many other candidates that have been reported and remain to be validated, and a 

recent GWAS provided evidence that many more common SNPs are associated with toxicity 

than have been so far discovered18. These SNPs can be identified definitively via larger, 

more statistically powerful studies that are currently underway.

Here, we first describe some basic considerations for SNP discovery and model building. 

Next, the use of simulation data is explored to estimate the potential impact that SNPs could 

have on the ability to predict treatment toxicity. We then review various modeling efforts 

that are in progress to incorporate SNPs along with other risk factors. These methods draw 

on approaches developed for traditional NTCP modeling as well as ‘big data’ and machine 

learning approaches and highlight some of the exciting new directions in which the field is 

progressing.

Building validated models to predict the likelihood of post-therapy 

radiation toxicity using genomic, clinical and dosimetric variables

Pre-processing of SNP data is a critical first step to avoid introducing bias in SNP-toxicity 

association studies that are performed prior to predictive model development. Sources of 

variability and bias can arise due to different genotyping platforms across studies and 

ancestral differences of the populations studied. Neglecting the pre-processing step can 

increase the number of type-I or type-II errors. Several measures can be checked to test the 

quality of a SNP dataset: discordant sex information between genotype and phenotype, high 

rates of missing genotypes or elevated heterozygosity rates, duplicated samples or samples 

showing greater than expected relatedness, and discordant ancestry comparing self-report to 

SNP-based clustering19. The next step involves removing SNPs with high missing genotype 

rates, very low minor allele frequencies (MAF), significant deviation from Hardy-Weinberg 

equilibrium, and different missing genotype rates between cases and controls19. Genotype 

imputation, where missing genotypes are filled in based on haplotype structure in reference 

populations, such as those that are part of the 1000 Genomes project20, is now a standard, 

robust method that allows for harmonization of genetic datasets produced by different 

commercially available platforms.

It should be recognized at the initial model-building step that the interactions of radiation 

with tissue are biologically and temporally complex. Moreover, these interactions are 

affected by co-morbid conditions and adjuvant therapies. Robust multiparametric methods 

that incorporate genomic, clinical, and dosimetric parameters in a comprehensive model are 

more likely to succeed in identifying patients at high risk for radiation toxicity than 

consideration of single parameters alone. The development of such a model requires 

multivariable approaches to identify SNP-toxicity associations while additionally including 

clinical and dosimetric information. Andreassen et al. provided a recent review on the 

importance of accounting for clinical and dosimetric variables in genetic association 

studies21, and this is an important step if SNPs are to be combined in predictive models 

along with relevant clinical and dosimetric parameters to improve statistical power. The 
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generalized linear regression model22 approach, which can be easily adapted to binary and 

categorical outcomes, is a powerful statistical method that can be used to introduce various 

clinical and dosimetric covariates along with genetic markers, while controlling for 

population stratification. Like any other area of research, combining radiogenomics data 

from different studies may introduce sources of variability and bias related to treatment 

types, dosimetric parameters, and reporting and grading toxicity. Meta-analysis across 

multiple GWAS datasets can address confounding by the so-called center-effect21, and 

identify SNPs that show consistent association with toxicity among differing treatment, 

clinical and patient-specific factors. Tests of heterogeneity can be helpful for deciding on 

methods for combining datasets and determining whether variability across datasets 

significantly impacts the SNP-toxicity association(s) of interest23,24.

As in any discipline, validation is a critical step in development of a predictive model for 

radiotherapy toxicity. Models developed and tested using a single dataset tend to be over-fit, 

and though they show good performance in the initial patient population from which they 

were derived, often they are not replicated when tested in an independent patient population. 

Standard approaches of internal and external validation can be used to combat this potential 

pitfall25. One internal validation approach is cross-validation, in which a sub-set of the data 

(the training set) is used in the model-building step and the remainder of the data (the test 

set) is used only for testing model performance. The advantage of this approach is the 

simplicity, but the disadvantage is that there is a loss in statistical power because the initial 

sample size is reduced when a portion of the data is removed for the test set. Leave-one-out 

cross-validation (LOOCV) is a special case of k-fold cross validation with k equal to the 

number of samples. A second validation approach uses bootstrapping analysis, sampling 

datapoints randomly with replacement. The advantage of this approach is that it can build 

relatively stable models for a small dataset, but the downside is that it is more 

computationally intensive than the simpler train-test cross validation approach when the size 

of dataset is large. A third approach is to use one or more completely independent external 

validation cohorts. External validation is the most rigorous approach to ensure that the 

model is generalizable outside of the initial study population, but the difficulty lies in having 

access to additional studies, particularly ones that were designed similarly to the first. Indeed 

this has been a challenge in radiogenomics, although successful validation studies have been 

accomplished in which SNPs associated with specific forms of toxicity have been identified, 

as outlined above. In addition, the Radiogenomics Consortium has worked towards bringing 

investigators together in the planning stages of studies so that, going forward, radiogenomics 

studies are conducted in a more uniform manner, allowing for easier external validation of 

predictive models.

Estimating the contribution of SNPs to improve performance of NTCP 

models using simulation data

While SNP discovery is underway in radiogenomics, simulation experiments can provide a 

way to estimate the potential benefit that SNPs could have on predicting normal tissue 

toxicity in the clinic. In a simulation experiment using assumptions relevant to a variety of 

complex diseases, Janssens et al. reported the discriminatory ability of various predictive 
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models that include hypothetical numbers, frequencies, and effect sizes of risk SNPs26. The 

findings offer some guidance as to what can be expected from predictive models for normal 

tissue toxicity that incorporate radiosensitivity SNPs. The simulation experiments asked: 

given the SNPs known to be associated with the disease, how well can predictive models 

discriminate between those individuals who will develop the disease and those who will not? 

In these simulation experiments, discriminatory ability, which is the model’s ability to 

separate those with events from those without events, is measured by the area under the 

receiver-operating characteristic curve (AUC). Random assignment of risks yields an AUC 

of 0.5, whereas perfect separation of events from nonevents yields an AUC of 1. The results 

of these simulation experiments demonstrate that: 1) increasing numbers of SNPs included 

in the risk model improves discrimination accuracy (measured by increased AUC), 2) 

inclusion of SNPs with larger effect sizes or higher risk allele frequency improve accuracy 

of risk models, and 3) relatively high AUCs (> 0.75) can be achieved with ~100 risk SNPs 

that each have an effect size of 1.05–1.5 and are relatively common 26.

Our group used this same approach (the methods of which have been described in 

detail26,27) to perform a set of simulations tailored to the normal tissue outcomes of interest 

in radiation oncology. In these simulations, we assumed that various baseline predictive 

models already exist based on dose-volume parameters, and SNPs are added to these 

models. Three different AUCs for baseline models were selected: 0.70, 0.75 and 0.80, based 

on published NTCP models for a variety of tumor types and normal tissues that are based on 

dose and volume parameters28–30. We assumed two different incidence rates for late effects: 

5% for less common late effects (for example, severe rectal bleeding following prostate 

radiotherapy), and 30% for more common late effects (for example, dysphagia following 

head and neck radiotherapy). Because we don’t yet know all of the SNPs associated with 

normal tissue toxicities, we made educated assumptions about the likely distribution of risk 

SNPs with respect to MAFs and odds ratios (OR). One distribution was selected based on 

the distributions that have been seen for genetically well-characterized phenotypes such as 

cancer, heart disease, and type 2 diabetes in which approximately 100 risk SNPs have been 

identified with each individual SNP conferring a small increase in risk31,32. In this ‘low 

penetrance’ distribution, the majority of SNPs have small effect sizes (ORs, between 1.05 

and 1.4) and are fairly common (risk allele frequencies ≥15%), with very few SNPs that 

have larger effects (OR ≥ 2) and are less common (Figure 1A). These diseases are, of 

course, very different from normal tissue toxicities of importance in the practice of radiation 

oncology. An important advantage in studying the genetics of radiotherapy toxicity is that 

the outcomes of interest occur in response to a defined exposure, the dose of which is 

known. Perhaps the most relevant example that can be used to guide assumptions about 

radiosensitivity SNPs is that of pharmacogenomics. Pharmacogenomics parallels 

radiogenomics with respect to the fact that the outcome of interest occurs in response to a 

specific, well-measured exposure: a drug, in the case of pharmacogenomics, or radiation, in 

the case of radiogenomics. SNPs that have been identified via pharmacogenomic studies 

show larger effect sizes. For example, the HLA-A*3101 variant is associated with adverse 

skin reactions to carbamazepine treatment, a drug commonly prescribed for epilepsy, with 

odds ratio > 5 33,34. Similarly, SNPs within the IL28B gene are associated with response to 

pegylated interferon and ribavirin used in the treatment of hepatitis C infection with odds 
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ratios ranging from 5.6 to 7.3 35–38. In our radiogenomics simulation, we considered a 

second, ‘moderate penetrance’ distribution of SNPs in which a greater proportion of risk 

SNPs has larger effect sizes (Figure 1B).

Using the ‘low penetrance’ SNP distribution where the vast majority of radiosensitivity 

SNPs have small individual effect sizes, we found that relatively few SNPs, 118 for an effect 

with 30% incidence and 98 for an effect with 5% incidence, could achieve an AUC of 0.80, 

which is better than the performance of most of the existing NTCP models based on 

dosimetric parameters (Table 2A). Not surprisingly, however, a very large number of SNPs 

would be needed to achieve excellent discriminatory ability (AUC of 0.95) – 977 SNPs in 

the case of a common late effect and 557 SNPs in the case of a more rare late effect. When 

SNPs are added to an existing NTCP model (Table 2B) fewer SNPs are needed to achieve 

these AUCs. For example, just 78 SNPs would be necessary to improve the AUC of an 

existing NTCP model from 0.70 to 0.80 compared with 118 SNPs needed to achieve an 

AUC of 0.80 in a SNP-only model. Using the ‘moderate penetrance’ SNP distribution, even 

fewer SNPs are needed to achieve good discriminatory ability. For example, for an adverse 

effect with an incidence rate of 30%, 72 SNPs drawn from a moderate-penetrance 

distribution would be required to reach an AUC of 0.80, and for a toxicity with an incidence 

rate of 5%, just 53 SNPs would be needed (Table 3A). If SNPs from this distribution were 

added to an existing NTCP model with an AUC of 0.70, just 47 and 34 SNPs would be 

necessary to improve the model to an AUC of 0.80 for a common and rare late effect 

respectively (Table 3B).

The results of this simulation exercise are encouraging because they suggest that a relatively 

small number of SNPs are required to achieve AUCs that are better than the AUCs of 

existing NTCP models, and they therefore set a benchmark in terms of the number of 

additional SNPs that need to be identified via future radiogenomics studies. As outlined 

earlier in this paper, substantial progress has already been made to identify and validate 

SNPs associated with various forms of toxicity and these simulations demonstrate that the 

number of additional SNPs needed to achieve reasonably good predictive models is within 

the range that we can expect to identify from large-scale, statistically powerful genetic 

association studies. By incorporating such SNPs into existing NTCP models, our ability to 

predict the likelihood that a given patient will develop complications from radiotherapy 

would improve substantially.

This data simulation study provides a theoretical picture of what we can expect to achieve in 

terms of predictive models in radiogenomics. It is important to note that the simulation 

approach used here was simplistic and thus conservative, in that it did not consider potential 

interaction between SNPs and other patient-specific, clinical, or dosimetric parameters, and 

so the improvement upon existing NTCP models could be greater than estimated. In the 

remainder of this review, we describe current efforts using patient data to build SNP-based 

predictive models of radiotherapy toxicity. These studies are yielding promising early results 

and demonstrate the variety of innovative modeling approaches that are being applied in 

radiogenomics.
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Incorporation of SNPs as ‘dose modifying factors’ into NTCP models

A straightforward approach to using SNPs to predict normal tissue toxicity is to include 

them as dose modifying factors in NTCP models that have already been developed through 

years of research on the association between dosimetric parameters and toxicity. Studies 

have emerged in recent years suggesting that NTCP models can be improved by 

incorporating clinical risk factors39–42, so it seems logical that NTCP models could be 

improved further by incorporating SNP information as well. A recent study of radiation 

pneumonitis demonstrates empirically that SNPs can in fact be used to improve the 

performance of NTCP models for predicting toxicity43. In this study, five common SNPs 

within the TGFB1, VEGF, TNF, XRCC1 and APEX1 genes were incorporated as dose-

modifying factors into the Lyman-Kutcher-Burman NTCP model, which was modified to 

account for duration of follow-up. The authors added various dose modifying factors to the 

model in a forward step-wise process and found that inclusion of these five SNPs 

significantly improved the model (based on results of a likelihood ratio test) compared with 

inclusion of mean lung dose alone. Though there was only a single dataset available for the 

modeling, a resampling procedure was used to reduce over-fitting.

The important need for refinement and validation of the model is acknowledged, but it 

serves as a preliminary assessment of the extent to which SNPs can improve prediction of 

toxicity using empirical data. Importantly, it hints at clinically actionable information that 

can be provided by SNP-based predictive models. For example, among patients with at least 

two risk alleles for these five SNPs, the incidence of pneumonitis is 10% at a mean lung 

dose of approximately 10 Gy, whereas a mean lung dose of approximately 25 Gy could be 

given to those with no risk alleles while maintaining the same 10% incidence of 

pneumonitis43. Though preliminary, these data support one of the goals described above, 

which is to enable dose escalation in the subset of the patient population that is at lower risk 

for toxicity. Further development of such a model, and evaluation in clinical trials of dose 

modification, could substantially improve the therapeutic index of radiotherapy in this 

setting.

Novel machine learning approaches to building multi-SNP predictive 

models of radiosensitivity

Radiogenomics studies are beginning to explore novel approaches to modeling SNP-toxicity 

association, highlighting the potential for use of a large number of SNPs to predict 

individual radiosensitivity. Preliminary studies that are outlined below, present proof-of-

principle results to demonstrate the feasibility of these methods. These approaches aim to 

overcome the multiple-testing challenge of GWAS, which often results in failure of some 

potentially important SNPs to achieve genome-wide significance. Instead, they use machine 

learning–based methods to simultaneously investigate multi-SNP associations and 

predictions using many SNPs that do not individually reach statistical significance. In 

addition, these approaches allow for correlations or interactions among significant SNPs, 

something not often accounted for in single-SNP association tests due to statistical power 

limitations44,45. Several machine learning-based methods have been proposed to design 

predictive multi-SNP models for biological traits, and these can be applied to radiation 
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response. The key point with these approaches is to recognize that only the final prediction 

has to be reliable, whereas inclusion of any particular SNP, among many, does not validate 

its causal importance. Thus, while the results of such models would not be ideal for guiding 

functional studies to discover new biology, they may have the potential to predict which 

patients are at high risk for developing toxicities based on a SNP profile.

Examples of penalized regression methods

Penalized regression methods are one approach to analyzing datasets with a very large 

number of potential predictors, as in genome-wide SNP studies, and these methods can be 

used in the development of predictive models in radiation oncology. Penalized regression 

methods eliminate as many terms as possible while still preserving predictive power, 

effectively performing feature selection and classifier construction (prediction) 

simultaneously. An L1-penalized support vector machine based on a sparse linear model is 

one type of penalized regression method, termed LASSO (for Least Absolute Shrinkage and 

Selection Operator). The Lasso method allows feature selection by constraining many 

features to have exactly zero coefficients and leaving only selective features that have strong 

collective impact on outcome. This type of approach has been used successfully to model 

other diseases and could be applied in radiogenomics studies. For example, this method was 

used to develop a predictive model for celiac disease using genome-wide SNP profiles, 

which led to a conclusion that several hundred SNPs are required to achieve an optimal 

predictive accuracy for this disease46. A novel method for ranking SNPs was proposed in 

which many bootstrap datasets were generated and GWAS p-values were calculated for all 

SNPs in each bootstrap dataset. The final SNP ranking was determined based on the median 

ranking of each SNP from a pool of p-values obtained from all bootstrap datasets47. This 

method increased the stability of SNP rankings across the cross-validation bootstrap 

datasets.

In another example of penalized regression, a two-step feature selection method was 

proposed to predict the risk of inflammatory bowel disease using GWAS data48. In the first 

step, single SNP association tests were performed. Irrelevant SNPs with a relatively liberal 

p-value were removed, which resulted in a computationally manageable group of SNPs. In a 

second step, penalized logistic regression was used with an absolute value (L1) penalty. This 

approach benefits from the ability of the L1-penalized model to choose SNPs with a similar 

effect.

L1 penalized regression to predict late rectal bleeding using genome-wide SNP data

L1 penalized regression was used in a recent radiogenomics study to design and develop a 

robust predictive multi-SNP model to predict late radiation-induced rectal bleeding49 among 

a set of 365 prostate cancer radiotherapy patients who were genotyped as part of a 

previously published GWAS12. Unlike standard modeling techniques, this machine learning 

method attempts to effectively determine a voting method, whereby a large number of SNPs 

‘vote’ to decide if the patient is at risk or not. In this way, individual SNPs do not dominate 

the estimate, although some votes count more than others. The method does not aim to 

determine whether a given SNP is actually biologically causal; this type of modeling is 

focused on a different question, namely, maximizing the predictive accuracy of estimating 
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overall sensitivity for a given patient, using as much relevant genomic information as 

possible. The challenge in this type of analysis is that it is attempting to find data features 

(SNPs) and a resulting model that predicts the outcome (toxicity), in a situation where the 

number of data features (SNPs) is vastly larger than the number of observed outcomes. This 

situation is common in the field of machine learning. Modeling is a balance between 

eliminating unimportant features, yet finding a way to integrate over the inherent uncertainty 

of the modeling process, in order to reduce bias in the final model.

A key challenge to this approach is to construct a model building process that does not over-

fit to the dataset, but which also uses a majority of SNPs with small, actual, yet non-

statistically significant correlations to the endpoint, in this case late rectal bleeding. This is 

precisely the challenge in many large scale predictive data mining/machine learning 

problems. For an unbiased assessment of the resulting model, one of the cross-validation 

approaches described above was used: the dataset was split into two groups: a training 

dataset (2/3 of samples) and a validation dataset (1/3 of samples). The modeling process can 

be briefly summarized as follows: (1) SNPs are ranked with respect to univariate correlation 

with the outcomes, (2) the general inter-patient genetic variation that relates to outcome is 

then modeled, through the PCA-logistic regression step, resulting in a further reduction of 

SNPs, (3) the LASSO method is then used to further filter SNPs by identifying SNPs that 

are important to estimating individual risk. By repeating the LASSO modeling with different 

random representations of the data the results become less sensitive to the noise in the data, 

and (4) SNPs are then ranked by frequency of appearance in the LASSO results. (5) 

Frequently-important SNPs are then used to build a predictive model using all the training 

data. Finally, (6) the resulting model is used to predict the risk in data that were not used in 

the model building process in any way (Figure 2).

The results of the first step, in which single-SNP chi-square tests were performed, show a 

large number of SNPs departing from the expected line on a Quantile-Quantile (Q-Q) plot 

for all SNPs (Figure 3), suggesting they are associated with radiotherapy-related rectal 

bleeding. A large fraction of these SNPs are incorporated into the subsequent model. Using 

the training dataset with the top n SNPs ranked by chi-square test, LASSO models were 

built 50 times with a 10-fold cross-validation approach, producing 500 models. SNPs were 

ranked based on the frequency in which they appeared in LASSO models. To build a final 

predictive model, an additional test was performed, splitting the training dataset into a sub-

training dataset (2/3 of training samples) and a sub-testing dataset (1/3 of training samples). 

When predictive models were tested using an increasing number of SNPs in the ranked list, 

a model that obtained the best performance on the sub-testing dataset was used as a final 

model, and this final LASSO-based polygenic model was tested using the validation dataset. 

Models that used 500–700 SNPs had a similar performance on the validation data. The 

proposed method was iterated, changing the number of principal components used in the 

PCA step. When the first 2 components were used, a model with 484 SNPs reached the best 

performance using the sub-testing dataset. The final model with these SNPs obtained AUC = 

0.63 on the validation dataset. This AUC was not improved further upon inclusion of 

additional principal components, implying that the first two components are enough to build 

a predictive model.
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A logistic regression model was applied to the predicted outputs obtained from the LASSO 

model with two principal components on the validation dataset with 484 SNPs that entered 

the LASSO model. Based on the newly generated predicted outputs from the logistic 

regression, the patients were binned into 6 groups, with 1 being the lowest toxicity group 

and 6 being the highest. A comparison of the predicted incidence of grade 2+ rectal bleeding 

and the actual incidence of grade 2+ rectal bleeding is shown in Figure 4. The ratio above 

each group represents the observed number of patients who experienced grade 2+ rectal 

bleeding and the total number of patients in the group.

One of the major shortcomings of single-SNP models is that some potentially important 

SNPs may be excluded in the process of multiple-testing correction even though the 

predictive power could increase if such SNPs are included in a predictive model. Using an 

alternative approach based on machine learning, this limitation can be avoided, and accurate 

predictive models can be built for radiotherapy toxicity. The results of the approach are 

promising, and further modeling improvements are also possible through fine tuning using 

additional radiogenomics datasets that are now becoming available through the 

Radiogenomics Consortium7,8.

Combining Expectation-Maximization with LASSO to predict dysphagia using SNPs and 
clinical factors

In a related approach, an EMLasso model using stochastic expectation–maximization (EM) 

and Lasso 50 algorithms has been used in a radiogenomics study to identify patients at high 

risk for treatment-induced toxicity. The method used in this study aims at reducing the 

dimensionality of the high-dimensional data and then refitting by maximum likelihood (ML) 

estimation to produce accurate parameter estimates. Applying this approach to 

radiogenomics, De Ruyck et al. explored clinicopathological, dosimetric and genetic 

covariates for their ability to predict dysphagia following IMRT for head and neck cancer51. 

Using a dataset of 189 patients, the authors explored 41 potential predictive factors, 

including concurrent chemoradiotherapy, tumor site and stage, pre-treatment weight loss, 

smoking, dose–volume parameters for relevant anatomical structures, and 19 genetic 

polymorphisms selected on the basis of their location in genes involved in DNA damage 

repair. While this was not a high-dimensionality genome wide SNP study, the total number 

of potential predictors was high relative to the number of individuals in the study. They 

found that a model that included a SNP in XRCC1 improved the AUC. This approach was 

also used in a more recent study to develop multivariable predictive models of late 

genitourinary toxicity following high-dose intensity modulated radiotherapy for prostate 

cancer52. This study similarly showed that inclusion of SNPs improved predictive 

performance over inclusion of dosimetric parameters alone.

The results of these studies demonstrate that this modeling approach works well when 

applied to radiotherapy and genetics data, when there are often missing values in the 

predictors. Handling of missing values is a particular advantage of this approach over simply 

using LASSO53. Expansion to a larger, genome-wide SNP study could result in further 

improvement in model performance. Efforts are currently underway by several 

Radiogenomics Consortium members to build large prospective head and neck radiotherapy 
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cohorts, which will serve as an invaluable resource for applying these types of modeling 

approaches for this disease site. Ultimately, this approach should be applicable to other 

disease sites.

Summary and Future Directions

In summary, the models presented in this paper represent the basis for the development of a 

clinically useful instrument to predict patient susceptibility for the development of adverse 

effects resulting from radiotherapy. The creation of a robust assay that is characterized by a 

high level of sensitivity and specificity to predict susceptibility for the development of 

adverse events arising from radiotherapy will serve as a powerful tool for cancer patients 

and their physicians to optimize treatment on an individual basis. This precision medicine 

approach has the potential to lead to reduced treatment-related toxicities and improved 

outcomes for individuals diagnosed with cancer.
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Figure 1. 
Hypothetical distributions of risk SNPs for radiotherapy late effects. A) low penetrance 

distribution, and B) moderate penetrance distribution. In both distributions, SNPs are 

selected in the given proportions from bins defined as follows: OR 1.05–1.2 and RAF 0.3–

0.5, OR 1.2–1.4 and RAF 0.15–0.3, OR 1.4–2.0 and RAF 0.05–0.15, and OR 2.0–3.0 and 

RAF 0.01–0.05. OR, odds ratio; RAF, risk allele frequency.
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Figure 2. 
Diagram of the model building process. The dataset was split into a training dataset with 2/3 

of samples and a validation dataset with 1/3 of samples. The validation dataset was used 

only for model validation. The LASSO model building process was performed 500 times 

using cross-validation datasets. A final LASSO model was built using the SNPs that are 

most frequently important for the cross-validation LASSO models.
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Figure 3. 
Quantile-Quantile (Q-Q) plot for all SNPs. The diagonal straight line indicates the 

distribution under the null hypothesis that there is no association between any of the SNPs 

and rectal bleeding. Strong deviation from the straight line indicates the significant 

association of SNPs with rectal bleeding.
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Figure 4. 
Comparison between the predicted incidence of grade 2+ rectal bleeding and the actual 

incidence of grade 2+ rectal bleeding. The predicted outcomes were produced after applying 

the logistic regression to outputs of the LASSO model using two principal components on 

the validation dataset with 484 SNPs that entered the LASSO. Based on the sorted predicted 

outcomes, the patients were binned into 6 groups, with 1 being the lowest toxicity group and 

6 being the highest. The ratio above each group represents the observed number of patients 

who experienced grade 2+ rectal bleeding and the total number of patients in the group.
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