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Abstract

Motivation: RNA sequence design is studied at least as long as the classical folding problem.

Although for the latter the functional fold of an RNA molecule is to be found, inverse folding tries to

identify RNA sequences that fold into a function-specific target structure. In combination with RNA-

based biotechnology and synthetic biology, reliable RNA sequence design becomes a crucial step

to generate novel biochemical components.

Results: In this article, the computational tool antaRNA is presented. It is capable of compiling RNA

sequences for a given structure that comply in addition with an adjustable full range objective GC-

content distribution, specific sequence constraints and additional fuzzy structure constraints.

antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on

a biological datasets.

Availability and implementation: http://www.bioinf.uni-freiburg.de/Software/antaRNA

Contact: backofen@informatik.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Engineered RNA molecules are of growing importance with applica-

tions ranging from biotechnology to medicine and synthetic biology.

In biotechnology, several applications use engineered RNAs as scaf-

folds to optimize reactions or to deliver drugs. For example, RNA

aptamers can serve as protein-docking sites within scaffolds to

organize intracellular reactions (Delebecque et al., 2011, 2012). Or

the bacteriophage phi29 DNA packaging motor can be used to gen-

erate RNA nanoparticles for delivering therapeutic compounds

(Guo, 2010). However, biotechnology applications are not restricted

to scaffold design, but often involve intriguing RNA-based path-

ways. For instance, Penchovsky and Breaker (2005) computationally

designed ribozymes to sense oligonucleotides. Last but not least, the

application of the CRISPR/cas9 system for genetic engineering is

emerging and complementing the well established RNAi technology.

This requires the design of specific RNA-molecules, see the review

of Terns and Terns (2014).

Another important and growing area is RNA synthetic biology,

as reviewed in (Benenson, 2012; Isaacs et al., 2006). Design ex-

amples include RNA-based regulators of translation (Mutalik et al.,

2012), a general, RNA-based framework for microbial engineering

on the level of DNA, protein or mRNA (Qi and Arkin, 2014),

sRNA-based cellular circuits (Rodrigo et al., 2012), the improve-

ment of functional sRNAs by scaffold engineering (Sakai et al.,

2014) or the de novo design of synthetic, transcriptional ribos-

witches (Wachsmuth et al., 2013).

Many of these approaches use rational design, based on a sec-

ondary structure model of the targeted RNA molecule, and an

increasing number of applications use computational methods for

filtering the initial design. In principle, this is an instance of the in-

verse folding problem, which consists of finding a sequence that fits

some secondary structure constraints. RNAinverse (Hofacker et al.,

1994) pursues seed sequence generation with a subsequent optimiza-

tion based on local search. The objective function is either to
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maximize the similarity of the minimum free energy (MFE) structure

to the target, or to maximize the probability of the target structure

in the ensemble. Several other programs follow the idea of

RNAinverse and try to provide better strategies for either finding

seed sequences or the local refinement step. For instance, in

InFoRNA (Busch and Backofen, 2006, 2007) the seeding was im-

proved by generating a sequence that is maximally stable for the tar-

get structure and thus has high probability to fold into that

structure. RNA-SSD (Andronescu et al., 2004) extends this by using

stochastic local search. In more recent approaches, new strategies

have been used in order to find sequence solutions: NUPACK

(Zadeh et al., 2011) is using efficient ensemble defect optimization;

RNAfbinv (Weinbrand et al., 2013) employs simulated annealing

for a fragment-based design; fRNAkenstein (Lyngso et al., 2012)

applies a genetic algorithm approach. Similarly, the approach by

Dromi et al. (2008), MODENA (Taneda, 2011) and ERD (Ali

et al., 2014) also apply evolution inspired principles to solve the in-

verse folding problem.

There are two necessary conditions an up-to-date inverse folding

tool must fulfill. First, the tool must be able to handle sequence con-

straints, in order to capture specific elements like a ligand binding

pocket in riboswitches or RNA aptamers binding a specific protein.

This is provided by most methods available. But second, the tool

has to provide a sequence with a defined guanine-cytosine

(GC)-content since the GC-content has drastic influence on the func-

tion of the designed molecule. For example, it is known that

CRISPR/cas9 elements with too low or too high GC-content do not

function optimally (Wang et al., 2014). Another example is given in

(Isaacs et al., 2004, 2006), where the authors engineered an RNA-

based regulatory activator system for bacterial gene expression.

They report that altering the GC-content and further increasing the

stability of the designed element did result in a 19-fold activation. In

contrast to this biological requirements, most of the first generation

tools have an intrinsic GC-bias (Reinharz et al., 2013) that cannot

be compensated by GC-filtering (see Supplementary Material).

Recently, programs have been developed, which allow to declare a

target GC-value or to constrain the GC-range for solution sequences.

So far, the only known tools providing this functionality are RNA-

SSD (Andronescu et al., 2004), IncaRNAtion (Reinharz et al., 2013),

which is a seed sequence generator for RNAinverse, and RNAiFold

(Garcia-Martin et al., 2013), a constraint programming approach.

Here we introduce antaRNA, which uses the ant colony

optimization (ACO) meta heuristic to solve the inverse folding prob-

lem of RNA to produce sequences with controlled target GC-

composition. Furthermore, sequence constraints are incorporated.

Accessorily, the introduction and application of implicit structure

constraints allows a design principle that enables the declaration of

RNA structure in a ‘fuzzy’ mode.

Sequences designed by antaRNA show high agreement of their

MFE-structures with the targeted structures independently of the

additional objective GC-content constraints.

2 Methods

antaRNA is based on the ACO heuristic, which was already success-

fully applied to solve a broad collection of classical optimization

problems, such as routing (Gambardella and Dorigo, 2000), sched-

uling (Socha et al., 2002), assignment (Merkle and Middendorf,

2003), subset partitioning/clustering (Blum and Blesa, 2005), con-

straint satisfaction (Solnon, 2000), classification rules (Parpinelli

et al., 2002) and Bayesian networks (de Campos et al., 2002). Also

directly biologically motivated problems such as protein structure

folding (Shmygelska and Hoos, 2005) and docking simulations

(Korb et al., 2006) as well as RNA secondary structure prediction

methods (McMillan, 2006) have been investigated with ACO.

Generally, ACO is a self-adjusting local search strategy, which

automatically adapts to the specific problem instance optimized.

Because RNA structure formation is very sensitive to sequence

changes, ACO should be able to learn the importance of local se-

quence features, which is an essential aspect when solving the RNA

inverse folding problem.

Thus in the following, we present the adaptation of ACO to the

RNA inverse folding problem and describe the necessary basic RNA

notations to subsequently describe the algorithm. The algorithm is

depicted on a conceptual level. Please consult the supplement mater-

ial for more detailed formal definitions.

2.1 Ant colony behavior
Ants, while foraging for food or exploring new terrain, use phero-

mones to indicate the quality of a certain path on their return. They

apply a quality-dependent amount of pheromone to the just exam-

ined path (Pasteels et al., 1987), while the quantity is defined by

many (here abstracted) factors according to the situation: Does the

path yield food? Is the amount of food large/small? What is the qual-

ity of the food? Other ants sense the pheromone on a path and are

influenced in their decision whether to follow the same path or to

continue exploring new paths (Goss et al., 1989). The pheromone it-

self evaporates over time, such that, if no ant follows the indicated

path and renews its pheromone trail, the path becomes ‘silent’ or

‘unknown’ to the colony (Deneubourg et al., 1990).

The general principle of ACO (Dorigo and Stützle, 2004; Dorigo

et al., 2006) simulates an ant colony and its foraging behavior on a

modeled terrain to solve optimization problems. Here, ACO is

incorporated and exerted to the problem of RNA inverse folding to

generate RNA sequences, which are optimized to fold into a tar-

geted structure under additional constraints. In the developed appli-

cation, the ants of a colony walk subsequently over the simulated

terrain and assemble and evaluate RNA solution sequences.

According to the quality of each solution, the solution generating

parts of the terrain are marked with pheromone, such that the infor-

mation of prior solutions contributes to the decisions of subsequent

ants. Each pheromone update also covers ‘environmental’ exposure

of the whole terrain, i.e. globally the pheromone information evap-

orates with a certain rate. Over time, one pheromone trail will dom-

inate the terrain and will indicate the best solution, which is in

accordance with the user defined constraints. The underlaying ACO

principle of antaRNA is depicted within Algorithm 1.
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2.2 RNA input
The aim of the heuristic is to obtain an RNA sequence S that is com-

prised of n nucleotides. Each sequence position S1 . . . Sn derives

from the RNA nucleotide alphabet R ¼ fA;C;G;Ug. A base pair

(i, j) is an interaction, in which hydrogen bonds between two nucleo-

tides at sequence positions Si and Sj within the sequence S were

established. antaRNA considers canonical Watson-Crick and G-U

base pairs. A set of base pairs defines a secondary structure

P ¼ fði; jÞji < jg of S. We consider only nested secondary structures,

i.e. all base pairs fulfill 6 9ði; jÞ; ðk; lÞ 2 P : i < k < j < l. In addition, a

minimal loop size of 3 is enforced, i.e. 8ði; jÞ 2 P : j� i > 3.

The user can define three types of constraints: The structure con-

straint Cstr is used to provide the explicit and implicit secondary

structure constraints, which is encoded in an extended dot-bracket

notation. The explicitly targeted structure parts define the base pairs

and single stranded positions that have to be formed as they are

defined. If the definition of an explicit structure is too rigid for a de-

sign problem, more ‘fuzzy’ implicit structural constraints can be

encoded to restrict base interactions to specific regions. Those re-

gions can be declared by capital letters within the extended dot-

bracket string. One region does not necessarily have to be formed by

consecutive positions, but can also stretch over two or more disjoint

areas (see Fig. 1). All base pairs emerging in the same type of region

(same letter) are implicitly allowed and not penalized during struc-

tural distance evaluation (as discussed later).

The sequence constraint Cseq can restrict certain sequence pos-

itions to specific nucleotides. Furthermore, the GC-content con-

straint CGC 2 ½0; 1� provides the targeted GC-ratio within the

sequence.

2.3 ACO of inverse-folded RNA—antaRNA
During the optimization a large set of sequences S is assembled. The

best solution sequence Ssol is returned, if a termination criterion is

reached.

In order to obtain a sequence S, the ants search sequentially in

the simulated terrain represented as a directed graph T ¼ ðV; EÞ.
Each ant investigates one terrain path, which corresponds to a se-

quence assembly based on the visited vertices. The set of vertices V
contains a non-emitting start vertex v� and nucleotide (s 2 R)

emitting vertices vis for each sequence position Si. These are con-

nected by the set of directed edges E � V � V, where each edge

eðis;jsÞ ¼ ðvis; vjs0 Þ 2 E resembles an available path within the terrain.

The vertices v1s are accessible from the start vertex v� while vertices

vis (1 < i � n) can be reached from all preceding nucleotide emitting

vertices vði�1Þs. Each edge holds pheromonic (s) and heuristic (g) in-

formation. The resulting terrain graph contains jVj ¼ 1þ jRjn verti-

ces and jEj ¼ jRj þ jRj2ðn� 1Þ edges when optimizing a sequence of

length n. Figure 2 illustrates the composition of the terrain graph T.

2.4 Solution generation
2.4.1 Graph initialization

Because each solution sequences S is assembled by the ants accord-

ing to the information embedded within the terrain, the terrain must

encode the requested constraints. The constraint information is split

into the dynamic pheromonic s and the static heuristic g contribu-

tion of the edges. Herein, we define the pheromonic contingent to be

controlled by the structure and sequence constraints, Cstr and Cseq,

whereas the heuristic part is encoding the targeted GC-content CGC.

The weight of an edge is the sum of both contingents weighted by

two parameter a and b, respectively.

The pheromone s initialization is of binary character. The phero-

mone value of an edge eðis;js0 Þ is set to 0, if the emitted nucleotide s
of the target vertex vjs0 is not in accordance with the sequence con-

straint Cseq
j at position j. Otherwise, we set sðeðis;js0 ÞÞ ¼ 1. Note, we

also encode implicit sequence constraints that arise from the com-

bination of Cstr and Cseq as follows. If a position is constrained by a

specific nucleotide, e.g. Cseq
i ¼ U, and also part of an explicitly re-

quested base pair ði; jÞ 2 Cstr, we derive an implicit complementarity

sequence constraint for the pairing partner, in our example

C
seq
j 2 fA;Gg.

The heuristic information g is defined for all edges with s > 0

by a target GC-content CGC dependent static edge weighting.

Hereby, a differentiation between edges leading to AU-emitting

nodes vjfAUg and edges leading to GC-emitting nodes vjfGCg is

enabled. The heuristic contribution of an edge is defined by the devi-

ation of CGC from a basis GC-value of 50% and depends on the

edge’s target node.

2.4.2 Sequence assembly

Each ant compiles a solution sequence S. This is achieved by

the ant’s walk over the terrain. Starting from vertex v�, n edges are

traversed and n vertices in the graph are visited. An edge eðis;js0 Þ is se-

lected according to it’s probability pðeðis;js0 ÞÞ. The probability of an

edge is the relative weight of its terrain information among all edges

originating in its start vertex vis, as given in Equation (1).

Fig. 2. Terrain T ¼ ðV; EÞ: Starting from vertex v�, an ant selects probability-

dependent an outgoing edge until it reaches a final node vns. Hereby, all vis-

ited vertices vis emit the encoded nucleotide s to the respective sequence

position Si . The assembled solution sequence S is evaluated and the

pheromone information of the corresponding path in the graph is updated ac-

cording to the solution’s quality

Fig. 1. Implicit structure constraint: structure constraint example for a SECIS-

like design of Kossinova et al. (2013) Here, the structurally explicitly

constrained SECIS element (S) is further embedded within implicit structure

constraint regions (labeled A–C). Additional base pairs may occur within

individual regions A, B and C but are not allowed to cross them. This allows a

highly flexible context design to minimize the likelihood of interactions be-

tween the context and the functional hairpin. In the given example, region C

allows for the extension of S, while region A and B ensure this extension to

be limited. The implicit constraint patterns allow a multitude of substructure

combinations. For each region, possible valid substructures are exemplified

in the insets
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pðeðis;js0ÞÞ ¼
a � sðeðis;js0 ÞÞ þ b � gðeðis;js0ÞÞX

s�2R

�
a � sðeðis;js�ÞÞ þ b � gðeðis;js�ÞÞ

� (1)

Each visited vertex vis emits its assigned nucleotide, i.e. the solution

sequence position is updated by Si ¼ s (see Fig. 2).

2.4.3 Sequence evaluation

The actual evaluation of the assembled sequence is done via a com-

bination of different measures: a structural distance dstr, a GC-

content aberration distance dGC and a sequence distance dseq are

transformed into a score, with which the terrain is updated.

The structural distance dstr computation is based on the program

RNAfold of the ViennaRNA-package v2.1.3 (Lorenz et al., 2011).

In a first step RNAfold calculates the MFE-structure Psol of the se-

quence S.

Given Psol, next a solution dependent target structure PC is com-

posed, since Cstr allows for explicit and implicit structure con-

straints. Initially, PC contains all explicitly requested base pairs from

C
str. In the following, the handling of lonely base pairs, implicit

structure constraint and sequence constraint contributions are

discussed.

During the evaluation, explicitly requested lonely base pairs are

temporarily removed from PC, since they are usually energetically

unfavorable and thus counteract the MFE-based design principle.

For their ‘soft’ integration into the design, a distance penalty is

added for each lonely base pair that cannot be formed by the current

solution sequence S. Lonely ‘2 base pair stacks’ are handled equiva-

lently for the same reason.

The ‘fuzzy’ implicit structure constraint allows for all base pairs

that are within one of its defined regions (see Fig. 1). Thus, all base

pairs of the current solution structure Psol that are confined to such

blocks of implicit structure are temporarily added to the target struc-

ture PC.

Finally, in some cases, the sequence constraint Cseq induces base

pairs under certain structural folding context. If both positions Si

and Sj of a base pair of the current solution ði; jÞ 2 Psol are con-

strained by Cseq, this base pair is added to the target structure PC.

In a final step, the length-normalized base pair distance dstr be-

tween Psol and the compiled target structure PC is determined.

The GC-aberration dGC between the objective and the actual

GC-content of S is determined by subtracting the actual from the

target GC value. Due to the discrete nature of sequence lengths, it is

often not possible to precisely reach the objective GC-content CGC.

Thus, sequence length dependent correction terms are added to the

actual GC value for dGC computation.

The sequence constraint distance dseq encodes the violation of

the sequence constraint Cseq given the current solution sequence S.

It reflects the ratio of sequence positions that do not respect Cseq.

The overall quality score Q of the sequence’s features is the

weighted sum of the inverted distance measures. Thus, lower dis-

tances result in higher quality estimates.

2.4.4 Pheromone update

Given the quality Q of a solution S, the pheromone information of

the solution-associated edges in the terrain graph is increased by Q.

Hereby, only those edges are rewarded that correspond to positions

where the structure information is identical between the resulting so-

lution Psol and the target structure PC. In order to limit the memor-

ization and influence of previous solutions, a global evaporation of

pheromone is applied. According to the evaporation rate q, the

pheromone information of all edges is reduced. The pheromone

information encodes the compliance of paths in the terrain with all

constraints. This way, the solution sequence assembly of subsequent

ants is tuned towards correct sequence designs, since the local deci-

sions are based on the combination of pheromone and heuristic in-

formation (see earlier).

2.4.5 Termination

Although the ants walk over the terrain, edges, which have been

involved in good solutions get promoted over those, which have not

contributed to good solutions. This solidifying behavior results in

convergence towards optimal or suboptimal quality in respect to the

given constraints. antaRNA uses three termination criteria to stop

the ACO: maximal number of generated solutions, a termination

potential and a reset potential.

The termination potential is initialized and increased every time

subsequent solutions show a structural distance of zero. As soon as

a termination threshold is exceeded, the algorithm is stopped and

the best solution according to Q is returned.

Another possibility to terminate is based on a maximal number

of internal terrain resets. The terrain and all initial values are reset,

if the reset potential exceeds the reset threshold. The reset potential

is increased, if the structural distance of a current solution is not

zero but the GC quality is within a margin of the momentarily best

solution, i.e. dGC � 1:5 � dbestSoFar
GC .

3 Datasets

The underlaying dataset of this study is an extract from the Rfam

database v11.0 (Burge et al., 2013). A training subset has been used

to evaluate and adjust antaRNA’s parameters. A distinct and larger

test set was used to benchmark and compare antaRNA with other

tools. We evaluated the behavior of the algorithms concerning dif-

ferent complexities of structure and sequence constraints and their

influence and impact on the solution sequences and their

characteristics.

For each selected Rfam family, structure and sequence informa-

tion of conserved positions within the respective Rfam family’s seed

alignment were extracted to define Cstr and Cseq. We applied the fol-

lowing protocol to derive the dataset.

For each Rfam seed-alignment with at least 20 entries, the short-

est ungapped sequence was selected. Subsequently, the alignment’s

consensus structure was mapped to that sequence. The obtained

structure defines the explicit structure constraint Cstr. No implicit

structural constraints were derived. We further ensured a minimal

structural confinement, i.e. a family was discarded, if the fraction of

base pair forming positions within Cstr was below 20%.

For each position i within such a structure, a sequence constraint

C
seq
i was set depending on a minimal conservation ratio MR. If a nu-

cleotide in the according column of the seed alignment shows a rela-

tive abundance larger than MR, the nucleotide is used as sequence

constraint. Otherwise, the position is unconstrained (Cseq
i ¼ N). A

family-specific MR threshold was used such that the fraction of

C
seq-constrained sequence positions was in the range of 20–30%.

The GC-content of the Cseq-constrained positions was not allowed

to exceed 15%, to ensure enough flexibility within the sequence

constraint to reach the targeted GC-values of the benchmark.

In total, this resulted in 83 derived targets from the Rfam data-

base. The lengths of the obtained constraints range from 34 to 274

nucleotides with varying constraint complexities. The training sub-

set contains constraints with lengths not longer than 200 nucleotides

and length differences of at least five nucleotides to the rest of all
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training set members. The remaining entities define the test set. The

training set contains 20, the test set 63 entities. Further information

about the sets can be found in the (Supplementary Materials).

4 Results and Discussion

In order to identify the best default parameter values and to study

their robustness, we investigated antaRNA performance for various

settings using a grid search on the training data set. Within the grid

search we optimized: the weighting factors a and b of the path

weight computation, the evaporation rate q, the three distance

weighting factors for solution quality Q calculation, and the termin-

ation parameters (see Supplementary Materials for details).

For each parameter setting, we designed for each test set family

10 sequences with and without sequence constraint Cseq targeting

three different objective target GC values CGC of 25, 50 and 75%.

The resulting 1200 sequences (20�10�2�3) were used to calcu-

lated a benchmark score for the parameterization.

The score sums the mean structural distance, the mean GC aber-

ration and a mean of the normalized runtime, i.e. it is in the range

½0;3�. The parameter set with the lowest score (0.219) was chosen as

default parameter set for antaRNA and was used for all following

comparisons. The values are listed in the Supplementary Material.

4.1 Targeting arbitrary GC-content distributions
The parameter optimization revealed for antaRNA a high precision

concerning targeted GC values while it also robustly fulfills struc-

tural and sequence constraints. Thus, we investigated antaRNA’s

potential to produce pools of sequences, whose GC values are

resembling a user defined distribution rather than a single value. A

possible application is the design of sequences that show a GC-

distribution similar to prototype sequences or the organism of

interest.

Here, the application is exemplified and tested for a uniform

(15–40% GC-content) and a normal distribution (l ¼ 60%;

s ¼ 6%) and compared with a fixed value (70%) sampling. For

each given GC-content target distribution, a set of individual target

GC values is sampled from the distribution and antaRNA is run for

each. Figure 3 presents the results. In all three cases, the achieved

distributions agree very well with their respective targets. Only the

single target shows a small bias towards lower GC-content values.

Distribution distortions derive from the limited sample size and the

aforementioned length-dependence of achievable GC value (see GC

distance computation).

4.2 Comparison to existing tools
All recent RNA inverse folding tools are able to design sequences for

a given structure with or without sequence constraints. In contrast

to that, RNA-SSD, IncaRNAtion and RNAiFold are, beside

antaRNA, the only known tools so far that can also constrain the

GC-content at the same time. Here, we compare IncaRNAtion,

RNAiFold and antaRNA and benchmark their design quality for

various target GC values with and without sequence constraints

using our test dataset. RNA-SSD is not included into this compari-

son, since Reinharz et al. (2013) have shown its inferiority compared

with IncaRNAtion.

Please note, the presented RNAiFold data has been kindly com-

puted externally by the maintainers of RNAiFold, since a local in-

stallation and application was not possible. antaRNA and

IncaRNAtion have been run locally on the same computer cluster.

Note further, RNAiFold is based on the ViennaRNA-package

v1.8.5. Hence, we used the same version to compute the MFE-

structures in order to evaluate the structural distance dstr of the

corresponding predictions. Both, antaRNA and IncaRNAtion

employ the ViennaRNA-package v2.1.3 that was applied for dstr

evaluation accordingly. Finally, RNAiFold requires the definition of

an allowed range around the targeted GC value, which was set to

2% to ensure correct designs. Due to these different setups, only lim-

ited comparisons can be made.

For each structural constraint Cstr, three different objective GC-

content target values CGC 2 f25; 50; 75%g have been addressed in

this benchmark, each targeted with and without sequence constraint

C
seq. To illustrate length-dependencies, the test dataset was sepa-

rated into length categories (L1:1–100, L2:101–200 and L3:201–

300 nucleotides) for visualization. Each tool was executed 100 times

per constraint set, to enable statistics. Different time limitations

were used: maximal 1 hour for RNAiFold and 10 min for antaRNA/

IncaRNAtion per single sequence design.

We observe a length dependency for the runtimes of antaRNA

and IncaRNAtion (see Supplementary Materials), i.e. longer se-

quences require more time, which is expected. The current

antaRNA implementation is about one order of magnitude slower

compared with IncaRNAtion. This might result from the different

programming languages used. antaRNA is completely encoded in

Python, while IncaRNAtion uses the C-based RNAinverse for the

time expensive optimization and only generates seed sequences in

Python. A runtime comparison to RNAiFold is not possible due to

the external computations. When investigating the effect of sequence

constraints on runtime, we observe a target GC dependency.

Although predictions with low target GC values (25%) seem to be

slightly faster when sequence constraints are applied, the counter-

effect is observed for high GC target values (75%). For moderate

GC-values no effect is found.

We encountered strong differences in the success rate of the dif-

ferent tools, i.e. the rate of successful design attempts that produce a

solution sequence within the given time limits. Both antaRNA and

IncaRNAtion always provide a solution sequence, independent from

time limits, since they are heuristic optimization approaches that

successively improve solutions. RNAiFold, in contrast, is based on

constraint programming techniques, which produce only solutions

that completely comply with all given constraints. Otherwise no so-

lution is produced at all. Furthermore, solution generation in

Fig. 3. antaRNA high-precision GC-content distribution compliance given

antaRNA’s precision, it is possible for the first time to design sequences for

arbitrary targeted GC-content distributions. The figure provides three ex-

amples, each comprises 100 designs for a tRNA-like structure

(Supplementary Materials). The targeted distributions are drawn in gray scale

[left: uniform (within interval 15–40%), middle: gaussian (l ¼ 60%; s ¼ 6%)].

The 75% target value can be found on the right side. The respective achieved

values are given as histograms: uniform distribution (left/1), gaussian distri-

bution (middle/2), and single target GC value (right/3)
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constraint programming frameworks strongly depends on the used

search heuristics, which directly influence the runtime behavior.

Figure 4a depicts the limited success rates for RNAiFold. It becomes

clear that some constraint sets seem to be too confining to enable a

sequence design for RNAiFold within 1 h. Notably, for some catego-

ries the tool fails completely in its design attempts.

To evaluate the tools’ structure and sequence compliances, we

compare the individual distributions of structural distances dstr, GC

aberrations dGC and sequence distances dseq.

Figure 4b summarizes the measured structural distances dstr for

all three tools. If no sequence constraint is applied, all tools show a

very good compliance with the target structure. When sequence con-

straints are applied, the tools show different behaviors. antaRNA

still shows dstr medians of 0 deviation; except for the L3 sequences,

where the median is 2 and the upper quartile is about 4. In compari-

son, the deviations of IncaRNAtion always show a median of 	2%,

but their upper quartiles vary between 2 and 4%. With increasing

target GC values, IncaRNAtion shows increasing variance in its dis-

tributions. RNAiFold also exhibits good structure compliance in the

sequence constrained cases, if solution sequences have been

returned. In the case of CGC ¼ 75% and 50%, RNAiFold fails to re-

turn sequences (Fig. 4d) that fulfill the specified constraints.

Figure 4c presents the observed GC aberrations dGC. The se-

quences designed by antaRNA show a very good target CGC compli-

ance (mean jdGCj ¼ 0:02%). Only for the extreme setting

C
GC¼75% including sequence constraints Cseq, the median dGC

drops to �0.7% and the corresponding lower quartile is at �1.8%.

The results for RNAiFold are all within the allowed 2% variance

around the respective CGC while it slightly deviates in almost all

cases (mean jdGCj ¼ 0:7%).

Almost all IncaRNAtion designs do not fulfill the target CGC

constraint (mean jdGCj ¼ 7:1%). Only one constraint set

(CGC¼50%, no Cseq) shows a dGC median of zero. All sets show

wide distributions (interquartile ranges are about 5–8% dGC) and in

most cases the interquartile range does not even come close the tar-

geted CGC. In extreme cases, the dGC median deviate up to 10%.

The sequence constraints C
seq are completely respected by

antaRNA and RNAiFold. Both only design sequences that totally

comply with the respective Cseq (dseq ¼ 0). The sequences designed

by IncaRNAtion do not always comply with their constraints (mean

dseq ¼ 0:9%; data not shown).

So far, we only studied the constraint compliance of the designed

sequences. In the following, we evaluate the sequence diversity of

the designed sequences. This is an important feature to enable fur-

ther successive filtering of the designs, e.g. for experimental use.

To this end, we computed the mean Shannon-Entropy for each

sequence position over all according sequences. Positions con-

strained by Cseq have been excluded. The resulting mean mononu-

cleotide entropy is presented in Fig. 4d for designs with and without

C
seq. Here, a high entropy implies that for unconstrained positions,

most of the possible sequence combinations have been used. Low en-

tropy implies a sequence bias, which is a undesired feature for a de-

sign tool. antaRNA shows the highest entropy if no sequence

constraint is applied, followed by IncaRNAtion. This is swapped in

the presence of Cseq, but still very high for both tools. antaRNA se-

quences have a mean entropy of 1.95 (of maximally 2) in the se-

quence unconstrained setup and 1.72 among C
seq-constrained

sequences. For IncaRNAtion the respective values are 1.87 and

1.77. Thus, both tools produce very diverse sequences. In contrast,

RNAiFold shows mean entropy of 1.01 in the unconstrained setup

and 0.9 for sequence constrained instances. In general, the respective

entropies decline, if sequence constraints are applied.

A manual inspection of the sequences produced by RNAiFold re-

vealed stretches of common subsequences, which is depicted by di-

nucleotide entropies in Fig. 4d). That is, instead of single positions

the entropy of neighbored position pairs was measured. Again,

IncaRNAtion and antaRNA both show high entropy values (>3 of

maximally 4) with and without sequence constraints revealing the

same relations observed for mononucleotide entropy. That is, both

tools show high diversity also concerning dinucleotides. In contrast,

the dinucleotide entropies of RNAiFold range below 2 bits, indicat-

ing that the respective sequences have a bias towards common sub-

sequences. Furthermore, note that the dinucleotide entropy is in

relation even lower compared with the mononucleotide entropy,

which even highlights the observation. We expect this to be an arti-

fact of the constraint programming framework applied within

RNAiFold.

5 Conclusion

Within this work we present antaRNA, which solves the RNA in-

verse folding problem for given secondary structures under add-

itional side constraints using an ACO approach. Besides the explicit

target structure features, specific target GC-content values, sequence

constraints, and newly developed implicit structural constraints are

incorporated and presented. Target GC-content constraints allow to

request sequences with a desired specific GC-content or from arbi-

trary controlled GC-content distributions, while the latter is unique

to antaRNA. The results show that the tool produces on average

(a)

(b)

(d)

(c)

Fig. 4. Constraint compliance quality summary of the sequences produced by

the programs antaRNA (gray), IncaRNAtion (yellow) and RNAiFold (blue). The

runs have been performed with and without the respective Rfam sequence

constraints Cseq. Different target GC-content value CGC have been tested (top

75%, middle 50%, bottom 25%). For each constraint set, 100 sequences have

been generated targeting the respective GC-content. The datasets have been

split according to sequence length categories (L1:1–100; L2: 101–200; L3:201–

300). (a) Success rates of RNAiFold for each setting. (b) Structural distance of

the sequences’ MFE-structures to the targeted Rfam family derived RNA sec-

ondary structures. (c) GC-aberrations of the sequences. Reference values are

the appointed target GC values.(d) The mean Shannon-Entropy H of uncon-

strained sequence positions indicating design diversity for each program

with and without Cseq
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sequences that exactly show the targeted GC-content, even when

additional sequence constraints are enforced. The MFE-structures of

the designed sequences respect the provided structural constraints

for almost all targets tested. This holds for a broad range of targeted

GC values with and without sequence constraints.

The program was optimized, compared and evaluated on various

sets of constraints derived from the Rfam database. The assessment

revealed the superior quality of antaRNA produced sequences over

IncaRNAtion and RNAiFold. The prime feature of a sequence and

its biological functionality is the structure. Thus, it should be the

central objective for sequence design tools. IncaRNAtion does not

achieve this objective and produced on average high structural dis-

tances in our experiments. Although it was tailored to enable spe-

cific GC-content optimization, it also shows poor performance in

fulfilling the targeted GC values. Only its high-sequence diversity

partially outperforms other compared methods. IncaRNAtion

applies a two stage-optimization approach that first produces GC-

optimized seed sequences that are subsequently optimized towards

the target structure by RNAinverse. Thus, often the GC-unaware

RNAinverse MFE-structure optimization counters the GC-

optimization.

In contrast, the sequences designed by RNAiFold and antaRNA

show both very good structural as well as GC compliance. Although

qualitative comparable on the level of constraint violation, the tools

show significant differences concerning reliability and sequence di-

versity. RNAiFold is not always producing sequence solutions

within the allowed runtime. This might be due to the used constraint

programming techniques and results in missing sequence designs for

many constraint sets. In contrast, antaRNA is based on ACO and

applies a parallel optimization of all constraints. Thus, it always re-

ports a solution sequence with no qualitative loss. Furthermore,

antaRNA produces more diverse sequence sets compared with

RNAiFold, which shows a trend to non-diverse subsequences.

Summarizing, the capability of antaRNA to reliably produce

highly diverse sequences for a given structure, coupled with the pre-

cise GC targeting, will help to explore the sequence space for RNA

design problems.

The introduced implicit structure constraints enable the user to

define parts of the structure in a very vague way. This can be of use

when the structural context of a specific design target is less import-

ant as long as it does not interact with the important and maybe ex-

plicitly defined structure domains. The improvement and

application of the ‘fuzzy’ constraint concept (e.g. details about pos-

ition or constraint type specific weighting) is a focus of our ongoing

work.

In total, the results are promising and encourage further work,

which will include runtime optimization e.g. based on parallelization

approaches. In addition, the implicit structure constraint is of great

use in future work when modeling multi-structure constraints or

pseudo-knot structures. Furthermore, improving and developing new

internal scoring mechanisms and evaluation patterns is subject of on-

going work, such that the tool can also handle more complex input

structures and their constraints in an adequate way. This inevitably re-

sults in potentially new parameter setups for which we have to update

our understanding of their synergistic effects on antaRNA.
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Dorigo,M. and Stützle,T. (2004) Ant Colony Optimization. The MIT press,

One Rogers Street, Cambridge, MA, USA.

Dorigo,M. et al. (2006) Ant colony optimization—artificial ants as a computa-

tional intelligence technique. IEEE Comput. Intell. Mag., 1, 28–39.

Dromi,N. et al. (2008) Reconstruction of natural RNA sequences from RNA

shape, thermodynamic stability, mutational robustness, and linguistic com-

plexity by evolutionary computation. J. Biomol. Struct. Dyn., 26, 147–162.

Gambardella,L.M. and Dorigo,M. (2000) An ant colony system hybridized

with a new local search for the sequential ordering problem. Informs J.

Comput., 12, 237–255.

Garcia-Martin,J.A. et al. (2013) RNAiFold: A constraint programming algo-

rithm for RNA inverse folding and molecular design. J. Bioinform. Comput.

Biol., 11, 1350001.

Goss,S. et al. (1989) Self-organized shortcuts in the argentine ant.

Naturwissenschaften, 76, 579–581.

Guo,P. (2010) The emerging field of RNA nanotechnology. Nat.

Nanotechnol., 5, 833–842.

Hofacker,I.L. et al. (1994) Fast folding and comparison of RNA secondary

structures. Monatshefte Chemie, 125, 167–188.

Isaacs,F.J. et al. (2004) Engineered riboregulators enable post-transcriptional

control of gene expression. Nat. Biotechnol., 22, 841–847.

Isaacs,F.J. et al. (2006) RNA synthetic biology. Nat. Biotechnol., 24, 545–554.

Korb,O. et al. (2006) Application of ant colony optimization to structure-

based drug design. In: Ant Colony Optimization and Swarm Intelligence,

5th International Workshop, ANTS 2006, vol 4150 of Lecture Notes in

Computer Science, pp. 247–258. Springer Verlag.

Kossinova,O. et al. (2013) A novel insight into the mechanism of mammalian

selenoprotein synthesis. RNA, 19, 1147–1158.

Lorenz,R. et al. (2011) ViennaRNA Package 2.0. Algorithms Mol. Biol., 6, 26.

Lyngso,R. et al. (2012) Frnakenstein: multiple target inverse RNA folding.

BMC Bioinformatics, 13, 260.

McMillan,N. (2006) RNA Secondary Structure Prediction using Ant Colony

Optimization. Master’s thesis, School of Informatics, University of Edinburgh.

Merkle,D. and Middendorf,M. (2003) Ant colony optimization with global phero-

mone evaluation for scheduling a single machine. Appl. Intell., 18, 105–111.

3120 R.Kleinkauf et al.



Mutalik,V.K. et al. (2012) Rationally designed families of orthogonal RNA

regulators of translation. Nat. Chem. Biol., 8, 447–454.

Parpinelli,R. et al. (2002) Data mining with an ant colony optimization algo-

rithm. IEEE Trans. Evolut. Comput., 6, 321–332.

Pasteels,J. et al. (1987) Self-organization mechanisms in ant societies (I):

trail recruitment to newly discovered food sources. Exp. Suppl., 54,

155–175.

Penchovsky,R. and Breaker,R.R. (2005) Computational design and experi-

mental validation of oligonucleotide-sensing allosteric ribozymes. Nat.

Biotechnol., 23, 1424–1433.

Qi,L.S. and Arkin,A.P. (2014) A versatile framework for microbial

engineering using synthetic non-coding RNAs. Nat. Rev. Microbiol., 12,

341–354.

Reinharz,V. et al. (2013) A weighted sampling algorithm for the design of

RNA sequences with targeted secondary structure and nucleotide distribu-

tion. Bioinformatics, 29, i308–i315.

Rodrigo,G. et al. (2012) De novo automated design of small RNA circuits for

engineering synthetic riboregulation in living cells. Proc. Natl. Acad. Sci.

USA, 109, 15271–15276.

Sakai,Y. et al. (2014) Improving the gene-regulation ability of small

RNAs by scaffold engineering in Escherichia coli. ACS Synth. Biol., 3,

152–162.

Shmygelska,A. and Hoos,H. (2005) An ant colony optimisation algorithm for

the 2D and 3D hydrophobic polar protein folding problem. BMC

Bioinformatics, 6, 30.

Socha,K. et al. (2002) A MAX-MIN ant system for the university course

timetabling problem. In: Dorigo,M. et al. (eds) Ant Algorithms, volume

2463 of Lecture Notes in Computer Science, pp. 1–13. Springer, Berlin

Heidelberg.

Solnon,C. (2000) Solving permutation constraint satisfaction problems with artifi-

cial ants. In: Horn,W. (ed.), Proceedings of ECAI’2000 (European Conference

on Artificial Intelligence), pp. 118–122. IOS Press, Amsterdam, Netherlands.

Taneda,A. (2011) MODENA: a multi-objective RNA inverse folding. Adv.

Appl. Bioinform. Chem., 4, 1–12.

Terns,R.M. and Terns,M.P. (2014) CRISPR-based technologies: prokaryotic

defense weapons repurposed. Trends Genet., 30, 111–118.

Wachsmuth,M. et al. (2013) De novo design of a synthetic riboswitch that

regulates transcription termination. Nucleic Acids Res., 41, 2541–251.

Wang,T. et al. (2014) Genetic screens in human cells using the CRISPR-Cas9

system. Science, 343, 80–84.

Weinbrand,L. et al. (2013) RNAfbinv: an interactive Java application for frag-

ment-based design of RNA sequences. Bioinformatics, 29, 2938–2940.

Zadeh,J.N. et al. (2011) Nucleic acid sequence design via efficient ensemble

defect optimization. J. Comb. Chem., 32, 439–452.

antaRNA: ant colony-based RNA sequence design 3121


	btv319-M1

