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Abstract

Motivation: Circularized Chromosome Conformation Capture (4C) is a powerful technique for

studying the spatial interactions of a specific genomic region called the ‘viewpoint’ with the rest of

the genome, both in a single condition or comparing different experimental conditions or cell

types. Observed ligation frequencies typically show a strong, regular dependence on genomic dis-

tance from the viewpoint, on top of which specific interaction peaks are superimposed. Here, we

address the computational task to find these specific peaks and to detect changes between differ-

ent biological conditions.

Results: We model the overall trend of decreasing interaction frequency with genomic distance by

fitting a smooth monotonically decreasing function to suitably transformed count data. Based on

the fit, z-scores are calculated from the residuals, and high z-scores are interpreted as peaks provid-

ing evidence for specific interactions. To compare different conditions, we normalize fragment

counts between samples, and call for differential contact frequencies using the statistical method

DESeq2 adapted from RNA-Seq analysis.

Availability and implementation: A full end-to-end analysis pipeline is implemented in the R pack-

age FourCSeq available at www.bioconductor.org.

Contact: felix.klein@embl.de or whuber@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Circularized Chromosome Conformation Capture (4C) couples the

low-throughput Chromosome Conformation Capture (3C) tech-

nique (Dekker et al., 2002) for studying chromatin–chromatin inter-

actions with high-throughput sequencing (Simonis et al., 2006;

Stadhouders et al., 2013). 4C detects the contacts of a chosen view-

point with, in principle, the entire genome. The 4C protocol consists

of six main steps (Stadhouders et al., 2013). First, the chromatin is

cross-linked with formaldehyde to fix DNA-protein complexes,

thereby capturing DNA sequences that are in close spatial proxim-

ity. In the next step, the cross-linked chromatin is digested with a re-

striction enzyme. In the third step, the fragment ends from the

digestion treatment are ligated under dilute conditions to favor

intra-complex ligation, ligating DNA sequences that have been in

close spatial proximity. After this, the cross-linking is reversed, fol-

lowed by a second round of digestion with a different restriction

enzyme to obtain smaller DNA molecules. These molecules are then

circularized and amplified by polymerase chain reaction (PCR). The

resulting library is sequenced. The possibility to multiplex several

viewpoints in one sequencing library further increases the

throughput.

As result, the distribution of reads from a 4C sequencing library

throughout the genome provides an estimate of the contact frequen-

cies of the viewpoint with the rest of the genome. Overall, the 4C

signal decreases with genomic distance from the viewpoint and

reaches a constant level of noise for large distances. Specific inter-

actions of DNA elements sit on top of this overall trend. One task is

to identify positions that stand out from the general trend.

Moreover, if 4C has been performed on samples with different cell

types, developmental stages or experimental treatments, a second

task is the detection of changes in interaction frequencies between

the sample groups.
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Several analysis approaches for the first task, detection of

interactions, have already been developed for 4C sequencing data.

The approach by Thongjuea et al. (2013) uses a non-parametric

smoothing spline on library-size normalized count data to estimate

the signal decrease with distance to the viewpoint and detects

interactions by calculating z-scores from the residuals of this fit.

Another approach, used by van de Werken et al. (2012) and Splinter

et al. (2012) employs two complementary arms: in the proximity of

the viewpoint, multi-scale visualization of a semi-quantitative

contact map, remote from the viewpoint, an empirically

estimated contact background model of binary contact profiles

combined with a window-based enrichment and permutation

analysis.

Currently, methods are missing that use replicate information as

the basis for data-driven error modeling to detect consistent peaks

and to statistically infer changes in contact frequencies between dif-

ferent conditions.

We address these needs with the following approach. We use a

distance-dependent monotone fit to estimate the signal decay with

increasing distance from the viewpoint, since the unspecific compo-

nent of the signal decreases monotonically. As input to the fit we use

variance-stabilized read count data (Anders and Huber, 2010). To

detect strong interactions, we calculate z-scores from the fit residuals

and associated P-values. For the comparison of different conditions

we use the methods implemented in the DESeq2 package (Love et

al., 2014).

2 Materials and methods

2.1 Data preprocessing
The data processing pipeline (Fig. 1) starts from the reads of the

4C library. If several 4C libraries were multiplexed, the view-

point primer sequences and, if present, additional barcodes, are

used to demultiplex the sample and trim of the primer sequences.

For the demultiplexing and trimming of primer sequences a

Python script is included in the package. The remaining se-

quences are aligned to the full reference genome using a standard

alignment tool.

The analysis pipeline of our R package starts with the binary

alignment/map (BAM) files output from the alignment. The follow-

ing steps are now described in more detail.

2.1.1 Cutting the reference genome

The input to the statistical analysis is a count table, with one row

for each restriction fragment, and one column for each sample, with

the table entries indicating how many reads have been assigned to

each restriction fragment in each sample. By restriction fragment,

we mean the sequences between the cutting sites of the first restric-

tion enzyme, because this first digestion defines the resolution at

which interactions can be seen in 4C. To define fragments, we cut

the reference genome in silico using the recognition sequence of the

first cutter. Fragments are delimited by adjacent cutting sites of the

first restriction enzyme. The second restriction enzyme is used to re-

duce the size of the fragments for efficient circularization and PCR

amplification. Correspondingly, fragment ends are defined as the

genomic region between the start/end position of the fragment and

the closest cutting site of the second enzyme (Fig. 2a).

Because mainly fragments that contain a site for the second cut-

ter are efficiently amplified, a fragment is considered valid if it con-

tains at least one cutting site of the second enzyme and has long

enough fragments ends. By default, we use a threshold of 20 nt.

2.1.2 Mapping of primer sequences

The primer sequence of the viewpoint is mapped to the reference

genome to find the fragment that contains the viewpoint. This frag-

ment is used to calculate the genomic distance to fragments on the

same chromosome. More precisely, we use the genomic distance be-

tween the middle of the viewpoint fragment and the middle of the

other fragment.

2.1.3 Mapping reads to fragment ends

To filter out non-informative reads, we use the following criteria,

motivated by the 4C protocol. Only reads that fulfill the criteria are

mapped to a fragment end. A first condition is that reads should

start directly at a restriction enzyme cutting site. Additionally, the

Fig. 1. Overall workflow of steps described in this paper

Fig. 2. (a) Schematic of the rules to define valid fragments, i.e. fragments that

are used subsequently in the analysis. The pink fragment end is smaller than

the defined threshold, but since the other fragment end is valid, the fragment

is kept for analysis. The red fragment is invalid because it does not contain a

cutting site of the second restriction enzyme, and it is removed from the ana-

lysis. (b) If the sequencing primer starts at the first restriction enzyme cutting

site, reads (green arrows) that start at the fragment ends and are oriented to-

ward the fragment middle are kept for analysis. If the sequencing primer

starts at the second restriction enzyme cutting site, reads (green arrows) that

start right next to the cutting site of the second restriction enzyme and are dir-

ected toward the ends of the fragment are kept for analysis
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orientation of the read at the fragment end is important and defined

by the protocol (Fig. 2b). If the sequencing library was prepared

with a primer starting next to a cutting site of the first cutting en-

zyme, reads should be directed toward the middle of the fragment. If

instead the primer starts next to a cutting site of the second cutter,

reads should be directed toward the fragment ends. The reads

mapped to both fragment ends are combined for subsequent ana-

lysis. To check for consistency between replicates, we visualize scat-

ter plots of count values (Fig. 3).

2.2 Detecting interactions
2.2.1 Variance-stabilizing transformation

The count values usually span several orders of magnitude. If a

logarithmic transformation were used for the count values, low

abundance fragments would tend to show large standard deviations

across samples. On the other hand, if untransformed data were

used, the standard deviations across samples would be large for high

abundance fragments. Such heteroscedasticity would skew the

analysis toward either the fragments far from or close to the

viewpoint. Therefore, we use the variance-stabilizing transformation

v as introduced by Anders and Huber (2010) and implemented in

the DESeq2 package (Love et al., 2014) to transform the count kij of

fragment i in sample j to vðkijÞ. After transformation the standard

deviations show less dependence on the fragment abundance

(Fig. 4).

2.2.2 Trend fitting

The 4C signal decays with genomic distance from the viewpoint and

converges toward a constant level of background. This decay trend

fjðdiÞ is fitted using the transformed count values vðkijÞ as a function

of the logarithm of the genomic distance di from each fragment i to

the viewpoint.

The FourCSeq package offers two choices for the distance de-

pendence fit. Using the smooth monotone fit function of the fda

package (Ramsay et al., 2014), we may choose to assume that the

trend is symmetric around the viewpoint and fit a symmetric

monotone curve on the combined data from both sides.

Alternatively, we perform a monotone fit separately for each side of

the viewpoint.

The second option can be useful if one is interested in finding

asymmetries in the interaction profiles of a viewpoint, which might

be of particular interest at boundaries of topological domains

(Dixon et al., 2012). For both methods, we provide standard param-

eters that work for a wide range of data and which can be adjusted

by the user if necessary.

An example of a symmetric monotone fit is shown in Figure 5.
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Fig. 3. Correlation between two biological replicates of the apterous CRM

viewpoint for whole embryo tissue at 6–8 h after fertilization. In the plot, the

pairwise distribution of count values per fragment is shown. The x- and y-

axes (drawn in logarithm-like scale, with zero) correspond to the counts for

the fragments in two biological replicate libraries for the same viewpoint and

biological condition. The replicates show good concordance for higher count

values. Fragments with 0 counts for both replicates are not shown
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Fig. 4. Variance-stabilizing transformation. For each fragment, the mean and

standard deviation of its count data were computed across all samples for the

apterous CRM viewpoint. The plots visualize the distributions of these values

for all fragments. Fragments close to the viewpoint are on the right side with

higher count values. When the untransformed count data are considered

(upper panel), the standard deviations are very large for high abundance frag-

ments (close to the viewpoint). When the count data are considered on the

logarithmic scale (middle panel), the standard deviations are large for low

abundance fragments (far from the viewpoint). Both effects would make the

analysis overly susceptible to noise either close to or far from the viewpoint.

When a variance stabilizing transformation is applied, the standard devi-

ations show less dependence on the fragment abundance, facilitating a more

consistent statistical treatment across the whole dynamic range of the data
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2.2.3 z-scores of residuals

To find specific interactions, i.e. fragments that show interaction fre-

quencies higher than expected at a given distance from the view-

point, we calculate z-scores from the residuals of the fit:

zij ¼
vðkijÞ � fjðdiÞ

rj
; (1)

where rj ¼ madiðvðkijÞ � fjðdiÞÞ is the median absolute deviation (a

robust estimator of scale), i runs over all fragments and j over all

samples. In principle, users can call specific interactions by looking

for large, positive values of the z-score. To select the threshold, they

can use known positive and likely negative control regions. A poten-

tial disadvantage of this approach is that no type I error control in

the face of multiple testing is provided. Therefore, by default

FourCSeq performs the following additional steps. The z-scores are

converted into one-sided P-values using the standard Normal cumu-

lative distribution function, and these are adjusted for multiple test-

ing using the method of Benjamini and Hochberg (1995). In this

way, control of the false discovery rate (FDR) is provided. Specific

interactions are then found by looking for fragments with small ad-

justed P-values; a large enough value of the effect size, z may be an

additional requirement (Section 3.2). For the P-values to be well-

calibrated in this approach, the z-scores should follow a standard

Normal distribution under the null hypothesis, corresponding to

fragments that are not affected by an interaction with the viewpoint.

In the data that we examined (Ghavi-Helm et al., 2014), this as-

sumption appeared reasonable; for their own data, users are advised

to inspect quantile–quantile plots of z against N(0, 1), and histo-

grams of the unadjusted P-values to asses the calibration. Example

visualizations are provided in the package vignette.

2.3 Differences between conditions
We have observed the distance dependence of the signal to be vari-

able between samples, and this needs to be taken into account for

comparisons. Therefore, we calculate a matrix of normalization fac-

tors nij, such that the scaled read counts nijkij for fragment i become

comparable across the samples j. Moreover, we need the normaliza-

tion factors to represent the fitted distance dependence on the scale

of the raw counts. Hence, we back-transform the fitted values fij to

the scale of raw counts and scale them to have unit geometric mean

across samples to obtain the normalization factors:

nij ¼
v�1ðfjðdiÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YJ

j¼1

v�1ðfjðdiÞÞ
J

vuut ;

(2)

where nij is the normalization factor and v�1ðfjðdiÞÞ is the back

transformed fitted value at the genomic distance di. The index i runs

over all fragments and j over all samples.

To detect differences between conditions, we apply the methods

implemented in the DESeq2 package to the counts kij together with

the normalization factors nij (Love et al., 2014). DESeq2 is a statis-

tical method for differential analysis of count data. Originally estab-

lished for RNA-Seq (Anders and Huber, 2010), it has in the

meanwhile also been shown to be useful for other sequencing-based

assays, including ChIP-Seq (Ross-Innes et al., 2012), CLIP-Seq

(König et al., 2011) and Hi-C (Pekowska et al., 2014). DESeq2

allows analysis-of-variance (ANOVA) type analyses—including the

simple pairwise comparison between two conditions—with an error

model adapted to the technical and biological variability of the data.

Technically, it does this via generalized linear models (GLMs) of the

Negative Binomial (NB) family. To facilitate the application of NB-

GLMs to experiments with small numbers of replicates, DESeq2

uses an Empirical Bayes method to shrink (and stabilize) its esti-

mates of dispersion and effect size parameters.

For each fragment, a significant interaction change is called

when the observed change between conditions is significantly stron-

ger than what is expected from the size of the changes seen between

replicates.

3 Results

To illustrate our approach, we use a 4C dataset of developing

Drosophila melanogaster embryos (Ghavi-Helm et al., 2014). In this

dataset, 103 viewpoints were selected throughout the D. mela-

nogaster genome, with a focus on cis-regulatory modules (CRMs).

Samples were taken from embryos at 2–4 h and 6–8 h after fertiliza-

tion either using whole embryos or mesoderm-specific cells (Ghavi-

Helm et al., 2014).

3.1 Preprocessing
Starting from FASTQ, files we used a Python program included in

the FourCSeq package to demultiplex the libraries and trim off bar

codes and adapters. Next, we aligned the reads to the dm3 reference

genome with Novoalign (http://www.novocraft.com).

For short restriction fragments, we observed the problem that

reads contained the whole fragment and then continued through the

cutting site of the second restriction enzyme into the ligated frag-

ments (in most cases the viewpoint fragment). This often resulted in

two possible alignments causing the reads to be reported as not

uniquely mapping. To address this problem and rescue some of the

shorter fragments we checked whether the restriction enzyme cut-

ting site was found within unaligned reads. In such a case the end of

the read was trimmed at the restriction enzyme cutting site and

alignment was attempted again.

We then generated a fragment reference and mapped the aligned

reads to these fragments as described in Sections 2.1.1 and 2.1.3.

For quality control, the percentage of reads mapping to valid

fragments from all aligned reads was calculated. For our data this

value was around 70–95% in most cases. A value in that range

should be obtained for a 4C library. If the percentage is much

smaller, the first region that should be investigated is the region

around the viewpoint, where a single fragment can pile up a high

percentage of the reads. Other possible reasons for low mapping

percentages might be reads that map either to invalid fragments,

which have been removed from analysis, or to new fragments, cre-

ated by mutations relative to the reference genome.

To check whether technical and biological replicates gave a simi-

lar signal, scatter plots of the replicates were generated. For our

dataset, these plots showed good agreement for higher count values

in most cases. However, at lower count values, the replicates

showed higher relative variation, as is expected from Poisson noise.

An example is shown in Figure 3.

3.2 Detecting interactions
First, to reduce noise in the data, we removed fragments that had

less than a median of 40 counts across all samples for one viewpoint.

Second, we set aside fragments that were too close to the viewpoint,

because the high ligation frequencies seen for these fragments tend

to obscure any specific signal. The package used a heuristic to iden-

tify the boundaries of this masked out region around the viewpoint

as those fragments where the observed signal for the first time
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increased between successive fragments. The parameters of the vari-

ance-stabilizing transformation were fitted on the count values of

the remaining fragments (Fig. 4). Next, the decay trend was fitted

on the transformed scale using a monotone symmetric fit. The fit is

shown in Figure 5. z-scores and associated P-values were calculated

from the fit residuals. Interactions were found by looking for

fragments with z-scores larger than 3 in both replicates and an ad-

justed P-values smaller than 0.01 in at least one replicate. Figure 7

shows the results for one of the viewpoints in our dataset, which

is located in a CRM close to the apterous (ap) gene. The

fragments that showed an interaction are highlighted by red or

orange dots.

In mesoderm specific and whole embryo tissue at 6–8 h after fertil-

ization the interaction of the viewpoint with the ap gene promoter on

the right side of the viewpoint was captured. Further interactions were

found as well, but could not be directly attributed to a specific genomic

element. In general, we were able to detect interactions between 10

known enhancer-promoter pairs and many more interactions through-

out the set of 103 viewpoint (Ghavi-Helm et al., 2014).

3.3 Differences between conditions
To detect differences between conditions, we used the method

described in Section 2.3. Figure 6 shows the MA plot comparing

mesoderm tissue and whole embryo for Drosophila embryos 6–8 h

after fertilization, and an along-genome visualization of the results

for the same viewpoint is shown in Figure 7. Fragments that had an

adjusted P-value of less than 0.01 in the Wald test are highlighted by

blue points, or by orange points, if they additionally were called as

an interaction in the depicted sample.

ap
_W

E
_6

8h
_1

8

10

12

C
ou

nt
 (

vs
t)

ap
_W

E
_6

8h
_2

8

10

12

C
ou

nt
 (

vs
t)

ap
_M

E
S

O
_6

8h
_1

8

10

12

14

16

C
ou

nt
 (

vs
t)

ap
_M

E
S

O
_6

8h
_2

6

8

10

12

14

C
ou

nt
 (

vs
t)

−2

0

2

lo
g2

 fo
ld

 c
ha

ng
e

ge
ne

s

1500000 1550000 1600000 1650000
Genomic position

Fig. 7. Detection of interactions and differences: The figure shows the plot generated by the FourCSeq to visualize the results. The upper four wide tracks show

the variance-stabilized counts for two biological replicates of Drosophila embryo mesoderm tissue and whole embryo 6–8 h after fertilization for the apterous

CRM viewpoint. The fit of the distance dependence is shown as solid green line and the dashed blue lines represent the fit 63r. Interactions detected by

z-score>3 in both replicates and p-adjusted<0.01 for at least one replicate are shown as red or orange points. Fragments represented by orange points addition-

ally show a differential interactions (p-adjusted< 0.01, differential Wald test). Differential changes in the contact profile that are not called as interactions are

shown as blue points (p-adjusted<0.01, differential Wald test). The color bar below the 4C profiles shows whether the upper condition (green) or the lower condi-

tion (red) has the higher signal for the detected differences (p-adjusted<0.01). The calculated log2 fold change of the differential testing per fragment are shown

above the track at the bottom, which shows the gene model of the region

50 100 500 2000 10000

−
3

−
2

−
1

0
1

2
3

Mean 4C signal

lo
g2

 fo
ld

 c
ha

ng
e

Fig. 6. MA plot of the apterous CRM viewpoint 4C profile comparison be-

tween Drosophila embryo mesoderm tissue and whole embryo 6–8 h after

fertilization. The y-axis shows the difference between log interaction counts

for a given fragment which is plotted against the average log interaction

counts per fragment on the x-axis. Red dots represent fragments that show

differential interactions (p-adjusted<0.01)

Analysis of 4C sequencing data 3089



In general one can observe that the effect sizes for differential

changes are very small, and the overall pattern of the interaction

profiles remains largely unchanged, as we recently reported (Ghavi-

Helm et al., 2014). Only 6% of identified interactions showed evi-

dence of interaction changes across time and tissue context (Ghavi-

Helm et al., 2014). However, for the strong interaction at the ap

promoter we estimated a fold change of 2.25 between the condi-

tions. Stronger contacts in the mesoderm tissue could be due to the

fact that the ap gene is only expressed in the mesoderm.

4 Discussion

Our approach to detect peaks is broadly similar to that of the

r3Cseq package (Thongjuea et al., 2013). However, while r3Cseq

performs the fit on raw count scale, we use a variance-stabilizing

transformation on the data to reduce biases deriving from the large

dynamic range of the count data. To detect specific interactions, we

fit the decay of the variance-stabilized 4C signal with distance from

the viewpoint and calculate z-scores from the fit residuals. With this

approach, we were able to detect long-range chromatin interactions

that spanned genomic distances>100 kb in the compact Drosophila

genome (Ghavi-Helm et al., 2014). A direct comparison of r3Cseq

and FourCSeq on two mouse datasets from different labs, the Myb

data of Thongjuea et al. (2013) and the Ap2c data of Tsujimura et

al. (2015), is provided in Supplementary File S1. It shows that

r3Cseq is prone to over-calling interactions when the library has

good coverage, while FourCSeq identifies interactions between the

Tfap2c promoter and an annotated DNAseI hypersensitive region

containing a brain enhancer with high specificity. On the other

hand, for data with low agreement of fragment counts between

replicates—possibly due to high rates of PCR duplicates—the statis-

tical model FourCSeq does not call significant interactions, while

r3Cseq reports a large set of peaks.

Instead of only looking at fold changes from single or merged

samples between conditions as in r3Cseq, we make use of the frame-

work for differential expression analysis implemented in the

DESeq2 package to detect differences between groups of samples in

different experimental conditions. With this approach, we take the

variability between replicates of the data for each genomic position

into account for the quantitative comparison of the fragment counts

between conditions. The fold change between conditions is com-

pared with the variability of the data between biological replicates,

and differential interaction are called statistically significant only if

the observed fold change between conditions is significantly higher

than what it is expected based on the noise level in the data.

Our implementation allows the use of any FASTA file as refer-

ence genome. For example, the dm3 genome was used for the data

shown in Section 3. In contrast, the r3Cseq package is currently lim-

ited to the mm9, hg18 and hg19 genomes.

The method of van de Werken et al. (2012) uses a customized

approach for aligning reads to a reference of fragment ends. The re-

sulting coverage profiles can be further normalized and visualized

with the tool that they provide. The results are plots of contact pro-

files and contact domainograms generated by analyzing the data

with different window sizes. However, with this approach, compari-

sons between interaction profiles are only made qualitatively, and

no statistical framework is provided.

To integrate called interactions and differences with other gen-

omic data the results from our package can be used within the

Bioconductor framework of GenomicRanges (Lawrence et al.,

2013). Furthermore, we provide the possibility to export the

interaction profiles as bigWig files for visual inspection in a genome

browser along with other tracks of interest.

Our approach looks for localized, specific interactions and treats

large-scale patterns that decrease with distance from the viewpoint

as background (Section 2.2.3). In particular, changes in the back-

ground between conditions will be absorbed by the normalization

(2). Although these choices are reasonable for analyses such those

reported in Ghavi-Helm et al. (2014), studies that investigate large-

scale reorganization of chromosomal structure will need different

analytical approaches.

Potential for improvement might lie in methods that adjust the

4C signal for the influences of fragment size, GC content and mapp-

ability. Such models exist for Hi-C and ChIA-PET data (Imakaev

et al., 2012; Yaffe and Tanay, 2011). However, due to the much

smaller amount and viewpoint-centric nature of 4C data, the correct

estimation of these biases and deconfounding them from the domin-

ant distance-related effects is difficult. Moreover, in the differential

analysis of interactions, much of the per-fragment biases will cancel

out, as we essentially consider ratios.

Our method has been thoroughly validated in the course of the ana-

lysis of more than 100 viewpoints in the developing Drosophila em-

bryo. Positive controls of enhancer-promoter interactions were

confirmed, and several newly detected long-range interactions were vali-

dated by DNA-FISH (Ghavi-Helm et al., 2014). We calculated the over-

lap between the identified interactions of all viewpoints from this 4C

dataset and regulatory regions identified by DNaseI hypersensitivity

sites (Thomas et al., 2011). This analysis showed significant enrichment

overlap compared with a background set (Ghavi-Helm et al., 2014).

In summary, our package provides the tools to analyze 4C

sequencing data and integrate the results with other genomic fea-

tures. Its use will help to further investigate and understand the role

of chromatin 3D structure in biological processes such as gene regu-

lation and embryogenesis.
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