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Abstract
Integration of multiple profiling data and construction of functional gene networks may pro-

vide additional insights into the molecular mechanisms of complex diseases. Osteoporosis

is a worldwide public health problem, but the complex gene-gene interactions, post-tran-

scriptional modifications and regulation of functional networks are still unclear. To gain a

comprehensive understanding of osteoporosis etiology, transcriptome gene expression

microarray, epigenomic miRNA microarray and methylome sequencing were performed

simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD sub-

jects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree)

algorithm were used to perform pathway-enrichment analysis and construct the interaction

networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3

genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed

the consistent association evidence from both gene expression and methylation data; sec-

ondly in network analysis we identified an interaction network module with 12 genes and 11

miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have

been associated with BMD in previous studies. This module revealed the crosstalk among

miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of

gene expression to influence the BMD status. In conclusion, the integration of multiple lay-

ers of omics can yield in-depth results than analysis of individual omics data respectively.

Integrative analysis from transcriptomics and epigenomic data improves our ability to iden-

tify causal genetic factors, and more importantly uncover functional regulation pattern of

multi-omics for osteoporosis etiology.
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Introduction
Osteoporosis is a worldwide public health problem characterized by low bone mineral density
(BMD) and a high risk of osteoporotic fracture [1]. BMD can be reliably and accurately mea-
sured and has high genetic determination with heritability of 0.5–0.9 [2], indicating that genetic
factors play an important role in risk of osteoporosis. Recent advances in high-throughput
technologies enable interrogation of various biological components on a genome wide scale
(i.e., genomics, transcriptomics, epigenomics and proteomics), which have uncovered a num-
ber of risk factors/genes for human complex diseases and osteoporosis [3, 4]. However, these
implicated genes explain no more than 10% of BMD variation in any individual human popu-
lation [5]. The specific functional genomic/epigenomic variants and/or causal genes are largely
unknown, and the molecular mechanisms by which the causal genes/variants function are even
much less elucidated.

Identifying causal genes and characterizing their regulation patterns and functional con-
tributions to osteoporosis risk is challenging because of its nature of complex genetic deter-
mination with a large number of genomic, transcriptomic, epigenomic, proteomic and
environmental risk factors that often interact via biological networks [6]. So far, most of stud-
ies were focused on DNA, RNA, or protein levels individually and respectively, and rarely
integrated evidences from multiple molecule levels to ascertain the importance of certain
gene(s) for bone phenotypes. It is well known that genetic information is transcribed from
DNA to mRNA, and then translated into proteins. Epigenetic factors (Epigenes) and their
interactions (such as those between DNA methylation and miRNA) modulated by environ-
ment, affect gene expression (e.g., GXE interactions) into mRNAs/proteins and mRNA sta-
bility. Defects at any level (DNA, mRNA, epigenes and proteins) may or may not translate
into the next level(s), to ultimately impact disease risk. While individual omics studies
(genome/transcriptome/epigenome/proteome) are useful in identifying association of mole-
cules with disease risk, they fall short of illuminating the underlying functional mechanisms.
Therefore, it is usually not feasible for uni-omics studies to provide a comprehensive view of
the genetic factors and their functions in the form of complex function/regulatory networks
for the etiology of osteoporosis [7]. On the contrary, integrating multi-omics data may yield
most thorough information to most powerfully and comprehensively identify molecular and
genomic factors/mechanisms underlying the pathogenesis of osteoporosis, by identifying and
characterizing those individual molecules as well as their involved complex regulation net-
works embedded in and across multi-level and multi-facet-omics data [8].

PBMs (peripheral blood monocytes) are established and accepted as a well working cell
model for studying gene/protein expression patterns and their modulation mechanisms in rela-
tion to osteoporosis risk in vivo in humans [9, 10]. PBMs may act as precursors of osteoclasts
[11, 12]. PBMs can migrate to bone surface and differentiate into osteoclasts. Blockade of the
migration can relieve bone loss in a murine osteoporosis model by limiting bone homing of
osteoclast precursors and reducing the number of mature osteoclasts attached to the bone sur-
face [13, 14]. Abnormalities in PBMs have been linked to various skeletal disorders/traits [15,
16]. PBMs produce cytokines important for osteoclast differentiation, activation, and apoptosis
[17]. In addition, PBMs are the only relatively most homogeneous known bone-significant
cells that can be isolated fresh in vivo in large quantities for human population level omics
studies [18]. Therefore, we will use PBM for this first integrative multi-omics study in the bone
field.

The present study represented our pursuant effort to ascertain the significance of the BMD-
associated genes and their functional networks with integrative evidences from three omics
data simultaneous from a same sample set. Therefore, this study is expected to pioneer an
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innovative approach to greatly and most comprehensively enhance our understanding of
molecular genetic mechanism in osteoporosis. In this work, we developed an innovative ana-
lytic method for systemically integrating and analyzing multiple omics datasets and applied
this approach in an integrative trans-omics study for BMD variation, for which we simulta-
neously interrogated transcriptomic and epigenomic profiles in the same set of biological sam-
ples and constructed a global model/pattern of (epi-) genome organization and gene regulation
for BMD-associated genetic factors. Together, these analyses would provide a much more com-
prehensive system-level perspective on BMD than any individual uni-omics data analysis.

Methods and Materials

Subject Recruitment and Data Generation
Subjects. The study was approved by the Research Administration Department of Hunan

Normal University. Five high hip BMD (mean±SD = 1.10±0.08 g/cm2) female subjects and five
low hip BMD (mean±SD = 0.74±0.03 g/cm2) female subjects were recruited from Changsha
City and its vicinity in the Mid-south area of China during 2010–2011. These subjects were
selected from top one hundred and bottom one hundred hip BMD subjects among 1,915
healthy female subjects aged of 20 to 45 years. All subjects signed informed-consent documents
before entering the project. For each subject, we collected information on age, sex, medical his-
tory, family history, menstrual history, smoking history, physical activity, alcohol use, tea and
coffee consumption, diet habits, etc. Female subjects all had regular menses to eliminate the
dramatic aging effects due to menopause on female BMD. Subjects with chronic diseases and
conditions that potentially affect bone mass were excluded from the study. One hundred and
fifty milliliters of peripheral blood were drawn for each selected subject. The characteristics of
the subjects were shown in Table 1.

BMDmeasurement. BMD (g/cm2) at the lumbar spine (L1–4, anteroposterior view) and
the hip, including femoral neck (FN), trochanter and intertrochanteric regions, were measured
using the Hologic QDR 4500 W bone densitometer (Hologic, Waltham, MA, USA). The total
hip BMD was a combined value at the three measured regions. The densitometer was cali-
brated daily, and long-term precision was monitored with the control vertebral phantom. The
coefficient of variation (CV) of measured total hip BMD values was 1.34%.

Monocyte isolation. Amonocyte negative isolation kit (Order No. 130-091-153, Miltenyi
Biotec Inc., Auburn, CA, USA) was used to isolate circulating monocytes from 150mL whole
blood following the procedures recommended by the manufacturer. The kit contains Cocktail
of biotin-conjugated monoclonal antibodies against CD3, CD7, CD16, CD19, CD56, CD123
and Glycophorin A to deplete Non-monocytes, i.e. T cells, NK cells, B cells, dendritic cells
and basophils, leaving monocytes untouched, pure, viable, and free of the surface-bound anti-
body and beads. The purity of the isolated monocyte was monitored by flow cytometry (BD

Table 1. Basic characteristics of study subjects.

Trait Low BMD High BMD

Age(years) 22.20±1.30 21.60±1.82

Height(cm) 160.60±2.51 159.20±5.08

Weight(kg) 55.00±8.97 61.90±5.44

Hip BMD(g/cm2) 0.74±0.03 1.10±0.08

Spine BMD(g/cm2) 0.83±0.07 1.06±0.16

Note: BMD, bone mineral density.

doi:10.1371/journal.pone.0138524.t001
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Biosciences, San Jose, CA, USA) with fluorescence labeled antibodies PE-CD14 and FITC-CD45
(S1 Fig), and determined to be 84.5% in our samples.

DNA and total RNA extraction
Genomic DNA was extracted from the freshly isolated PBMs. The concentration of DNA was
assessed by using Qubit 2.0 Fluorometer (Invitrogen,). Total RNA from monocytes was
extracted using a Qiagen RNeasy Mini Kit (Qiagen, Inc., Valencia, CA, USA). RNA integrity
was assessed by using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA).

Gene Expression Arrays
Affymetrix GeneChip Human Exon 1.0 ST Array (Affymetrix, Santa Clara, CA) was used to
evaluate genome-wide gene expression levels. This exon array contains ~1.4 million probesets
consisting of ~5.4 million probes and profiles over 17,000 well-annotated gene transcripts in
the human genome. The experiment was performed by Capitalbio Cor. (Beijing, China),
according to the protocol provided by the array supplier. Double-stranded cDNA was synthe-
sized by using the Superscript Choice System, followed by an in vitro transcription reaction
with a T-7 (dT24) primer to produce biotinylated cRNA. The full-length cRNAs were frag-
mented to 20 to 200 bp and hybridized to Affymetrix GeneChip Human Exon 1.0 ST Array.
100 ng of total RNA was amplified and labeled using the Affymetrix Whole-Transcript (WT)
Sense Target Labeling Protocol without rRNA reduction. Affymetrix GeneChip Human Exon
1.0 ST arrays were hybridized with 11 μg of labeled sense DNA, washed, stained, and scanned
according to the protocol described in WT Sense Target Labeling Assay Manual (Version 4;
FS450_0007). All the expression data of the 10 samples had been preprocessed using robust
multichip average (RMA) normalization.

miRNAmicroarray
miRNAmicroarray was performed by Capitalbio Cor. (Beijing, China). Briefly, 1 μg of total
RNA from each sample was end-tailed with Poly(A) and ligated to the biotinylated signal mole-
cule (FlashTag™ Biotin RNA Labeling Kit). Hybridization (Affymetrix Genechip Hybridization
Oven 640) was carried out on Affymetrix genechip1 miRNA 2.0, which contains 15,644
mature miRNA probes from miRBase V15 (all 131 organisms), 2,334 snoRNAs and scaRNAs
and 2,202 probe sets unique to pre-miRNA hairpin sequences. The hybridized chips were
washed (Affymetrix Fluidics Station 450), stained with phycoerythrin-streptavidin, and
scanned using an Affymetrix GeneChip1 Scanner 3000 7G. Scanned images were quantified
by GeneChip1 Command Console1 Software. miRNA QC Tool software (www.affymetrix.
com/products_services/arrays/specific/mi_rna.affx#1_4) was used for data summarization,
normalization, and quality control.

MeDIP-seq
MeDIP-seq was performed by BGI Inc (Shenzhen, China). Briefly, genomic DNAs were soni-
cated to ~100-500bp with a Bioruptor1 NGS Sonication (Diagenode). 1.5μg of sonicated DNA
was end-repaired, 3’A added, and ligated to single-end adapters following the standard Illu-
mina genomic DNA protocol. The double-stranded DNA was denatured with 0.1 M NaOH to
generate single-stranded DNA molecules. Methylated DNAs were enriched by immunoprecip-
itation with an anti-5-methylcytosine monoclonal antibody. Q-PCR was used to confirm the
enrichment of methylated region. Precipitated DNA fragments were then purified and
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amplified. The PCR products were separated on 2% agarose gel to select fragments in the
~220-320bp size range. The completed libraries were quantified and checked for quantity with
Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System, and subsequently
sequenced on Illumina HiSeq 2000 (with single-end, 49bp reads). Sequencing reads that passed
through the HiSeq 2000 quality filter were aligned to the human genome reference sequence
(GRCh37/hg19) using SOAP (Version 2.20). DNA methylation profiles were inferred from the
uniquely aligned reads by using the MEDIPS analysis package [19]. In this study we focused on
the methylation profiles in promoter regions of protein coding genes and miRNA gene regions,
and the corresponding genomic locations were obtained from the UCSC Genome Brower.

All the data were submitted to the GEO repository, which can be accessed as the SuperSeries
accession GSE62589 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62589).

Data Analysis
We divided our analysis into two parts as shown in Fig 1: 1) identify BMD-associated protein
coding genes and miRNAs by integrating transcriptomic and epigenomic data; 2) subsequently
discover networks implicated in BMD through network analysis with transcriptomic and epi-
genomic data.

Integration of multi-omics datasets
To synthetize the information obtained from expression and methylation profiles for each pro-
tein coding gene (or miRNA), we developed an algorithm to compute crosstalk scores, which
combine the disease-association evidence from individual uni-omics studies through a meta-
analysis based approach [20].

First, we determined gene-to-phenotype association scores separately for individual uni-

omics data. For gene g, compute scores SkgðXk; YÞ (k = 1,. . ., D, where D is the number of omics

data), capturing the relationship between different genomic measurements Xk (e.g., RNA tran-

scriptomics and epigenomics) and a phenotype Y. In this study SkgðXk; YÞ was a t-test statistic
that measures the differentiation between high and low BMD groups for k-th omics data. In
each omics data, the most significant probe was chosen to represent the gene if more than one
probe are mapped to the given gene; Second, integrated the gene-to-phenotype association

scores (S1gðX1; YÞ; . . . ; SDg ðXD; YÞ) into a gene-specific score (SgmetaðS1g; S2g; ...; SkgÞ) by a meta-

analysis based approach [20]:

Sg meta
ðS1g ; S2g; ...;SkgÞ ¼

XD

k¼1
jZk

g j ðk 2 ð1; . . . ;DÞÞ ð1Þ

Zk
g ¼ Skg ðXk ; YÞ

sdðSkg Þ
was the standardized score of gene g in the data set k, and sdðSkgÞ was derived by

permutation under the null hypothesis that there is no association between gene g and Y in k-
th omics data. When there is no association between gene g and phenotype Y, jZk

g j follows a
Half-normal distribution. For two omics data, the cumulative density function of Sg_meta is
defined as:

FðsÞ ¼ ∬xþy�s
�1 f ðx; yÞdxdy ¼ 2;

ffiffiffi
2

p

2
s

� �
� 1

� �2

ð2Þ

Finally, a P-value for the combined score was adjusted using false discovery rate (FDR) in
order to correct for multiple hypothesis testing [21].
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Network analysis
To construct biological modules associated with BMD status, we developed a three-step meth-
odology as following:

Step 1. Conducted a Signaling Pathway Impact Analysis (SPIA) to perform pathway-
enrichment analysis [22]. We used the mRNA data of the set of genes with p-value� 0.05 in
above mentioned integration analysis as the seed genes, which incorporated the information
from gene expression data and methylation data for a given gene. In SPIA, two statistical mea-
surements, PNDE (probability of differential expressed genes) and PPERT (probability of pertur-
bation) were calculated. PNDE and PPERT measure the overrepresentation of the differentially
expressed genes in a pathway and the abnormal perturbation of a specific pathway, respec-
tively. PNDE and PPERT are finally combined in one global probability value, PG, which calcu-
lates the significantly enriched pathway according to both the over-representation and
perturbation-based evidence. The pathway information used in the present study was obtained
from the Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/)
database.

Step 2. The procedure of the network reconstruction was as followed:

1. Chose the genes of those significant pathways identified by SPIA. We assigned weights to
both nodes (V) and edges (E). Node weights corresponded to the combined score (S) of pro-
tein coding genes derived from integration analysis and the edge weights corresponded to
the confidence on that interaction between these genes. The edge weights were derived
based on two kinds of evidence: interaction score for each edge from the Search Tool for the
Retrieval of Interacting Genes (STRING) database and correlation (Pearson correlation)
between nodes in mRNA data. Finally we combined them into a single score using a naive
Bayesian approach to measure the interaction evidence among nodes [23].

Fig 1. Sketch of the multi-omics data analysis workflow in this study.

doi:10.1371/journal.pone.0138524.g001
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2. Used PCST (Prize Collecting Steiner Tree) algorithm to construct the interaction networks
for the chosen protein coding genes. Given a G = (V, E), PCST is to find a connected sub-
network G0 = (V, E) that minimizes the following function:

G ¼ min E 0 � E;V 0 �V
ðE0 ;V 0Þconnected

X
e2E0 ce � l

X
i2V0 bi

� �
ð3Þ

The node prize bi was computed by bi = −log pi, where pi was the p-value of node i in inte-

gration analysis. And the costs of edges ce was ce ¼ 1�Qk
j Rj with Rj for the string score for

the edge’s interaction evidence. The parameter λ regulates the trade-off between the cost of
new edges and the prize gained by bringing in a new gene, and its value indirectly controls the
size of the final sub-networks G0. In this analysis, all results presented here were obtained with
λ = 0.62. In order to choose λ, we solved the PCST problem, varying λ between 0.01–1.00 in
increments of 0.01, and choose the value of λ at which 70% of the essential nodes of simulated
network of similar size were recovered.

Step 3. Generated miRNA-mRNA correlation networks. One major function of miRNAs
is the cleavage of transcripts of its target genes at the post-transcriptional level. Thus, we were
most interested in a negative correlation between miRNA and gene expression. Thus we built
the miRNA-mRNA network via the following three steps: First, the Pearson’s correlation was
used to detect correlations between the expression profiles of miRNAs (p-value less than 0.05
in integration analysis) and protein coding genes within the network identified in step 2. The
cut-off for the correlation coefficient was set as -0.55. Second, screened the miRNA-mRNA
pairs identified above by Exiqon miRSearch, TargetScan and microRNA.org, and identified the
miRNA-mRNA pairs with miRNA–target relationships. Third, constructed miRNA-mRNA
networks based on their correlations and miRNA–target relationships.

Results

Identification of BMD-associated genetic factors by integration analyses
We integrated transcriptomic and epigenomic data to identify the miRNAs and protein coding
genes associated with BMD status. Table 2 demonstrated the protein coding genes and miR-
NAs that showed significant associations with BMD status. At false discovery rate (FDR)�
0.05, 9 genes were identified. To validate the biological importance of 9 genes, the large GWAS
meta-analyses of GEFOS2 (Genetic Factors for Osteoporosis Consortium) was used to perform
in silico validation association. GEFOS-2 is the largest meta-analysis to date in the bone field,
including 17 GWASs and 32,961 individuals of European and East Asian ancestry [24] (http://
www.gefos.org/?q = content/data-release). It was shown that rs3747486 and rs3812999 in
RNF40 were associated with FN BMD in GEFOS2. Gene ALDOA also was found to be associ-
ated with FN BMD in GEFOS2, with P = 2.0E-2.

We also screened each uni-omics data using t-test and there was no gene that showed signif-
icant association with BMD at FDR� 0.05. Most gene captured by integration analysis showed
stronger evidences of differential expression and methylation levels between high and low
BMD groups. For example, the significance level of FAM50A was 6.18E-3 and 2.15E-3 in gene
expression data and DNAmethylation data, respectively. Integration analysis with gene expres-
sion and DNA methylation data generated a p-value of 7.55E-7, which was still significant after
multiple-testing correction (FDR = 5.46E-3). Pearson correlation coefficient between expres-
sion and methylation of gene FAM50A showed -0.85 implying that promoter’s hypomethyla-
tion were associated with increased expression of genes. Similarly, in integration analysis genes
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TMEM55B and ZNF473 (P = 1.03E-5 and 6.75E-7 respectively) showed significant consistent
association with BMD at both gene expression level and methylation levels with negative corre-
lations between gene expression and promoters methylation (ρ = -0.73 and -0.85 respectively).

Additionally, we performed the integration analysis of miRNAs expression and methylation
data. In our data, there are 168 miRNAs with both expression and methylation data. After the
multiple-testing correction, two miRNAs (hsa-mir-4291 and hsa-mir-1253) were identified to
be significantly associated with BMD status with FDR� 0.05.

Network analysis identified one BMD-related module
In the first step, 139 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were avail-
able for the gene set enrichment analysis and the most significant pathways ranked by SPIA
(Signaling Pathway Impact Analysis) were shown in Table 3. When considering both over-
representation evidence and perturbation evidence with FDR� 0.20, we identified one signifi-
cant pathway, acute myeloid leukemia, with FDR = 6.25E-2. It can be observed that the signifi-
cant evidence of this pathway was mainly due to the strong evidence of over-representation
(PNDE (P value of over-representation evidence) = 1.40E-3). Only considering the over-repre-
sentation evidence, we identified another two significant pathways with FDR�0.20, Insulin sig-
naling pathway and mTOR (mammalian target of rapamycin) signaling pathway, which has
been reported to be associated with osteoporosis [25–27]. In this study no pathways with sig-
nificant perturbation evidence was identified with FDR�0.20.

Table 2. 9 protein coding genes and 2miRNAs identified in integration analysis.

Gene ID P_exp FDR_exp P_methy FDR_methy P_inte FDR_inte

RNF40 4.75E-4 0.83 0.11 0.65 1.53E-8 3.32E-4

FAM50A 6.18E-3 0.83 2.15E-3 0.65 7.55E-7 5.46E-3

ZNF473 5.97E-3 0.83 2.17E-3 0.65 6.75E-7 5.46E-3

PDXP 6.64E-4 0.83 0.18 0.65 3.79E-6 0.02

CYP2E1 0.44 0.83 1.96E-4 0.65 6.46E-6 0.02

TMSB10 0.77 0.84 4.44E-5 0.65 1.16E-5 0.03

TMEM55B 3.90E-3 0.83 2.86E-2 0.65 1.03E-5 0.03

SH3BP1 6.64E-4 0.83 0.33 0.65 1.19E-5 0.03

ALDOA 0.32 0.83 3.55E-4 0.65 2.27E-5 0.05

miRNA ID

hsa-mir-4291 0.04 0.95 0.01 0.22 5.57E-4 0.05

hsa-mir-1253 0.72 0.98 5.99E-4 0.10 7.06E-4 0.05

Notes: P_exp is P-value of expression data; FDR_exp is FDR-value of expression data; P _methy is P-value of methylation data; FDR_methy is FDR-

value of methylation data; P _inte is P-value of integration analysis; FDR_inte is FDR-value of integration analysis.

doi:10.1371/journal.pone.0138524.t002

Table 3. Top three pathways identified by SPIA.

Pathway PNDE FDRNDE PPERT FDRPERT PG FDRG

Acute myeloid leukemia 1.40E-3 0.11 0.11 1.00 1.54E-3 6.25E-2

Insulin signaling pathway 6.09E-3 0.19 0.79 1.00 3.05E-2 0.55

mTOR signaling pathway 7.11E-3 0.19 0.95 1.00 4.06E-2 0.55

Notes: SPIA: Signaling Pathway Impact Analysis. PNDE is the P value of over-representation evidence, PPERT is the P value of perturbation evidenceand

PG is the P value of combined over-representation evidence and perturbation evidence.

doi:10.1371/journal.pone.0138524.t003
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In the second step, we built a protein coding gene interaction network (G) with PCST (Prize
Collecting Steiner Tree). We used the significant genes with FDR� 0.05 in the integration anal-
ysis and those belonged to those three pathways identified by SPIA and with P-value� 0.05 in
the integration analysis. In total 28 genes were selected for the gene interaction network analy-
sis. We identified one network module with 12 genes as shown in Fig 2. The gene interactions
observed among these 12 genes suggested that there exits the function relevance among these
genes. Some genes in this module have been known to be associated with BMD or be over-
lapped with BMD QTL regions, such as PIK3R5, STAT5A and AKT1 [28–31]. Interestingly,
most of the genes among these 12 genes showed consistent changes in gene expression and
DNAmethylation levels across high and low BMD groups and strong negative correlations
were observed between DNA methylation status and expression of these genes. As an example,
gene PIK3R5 showed consistent association on gene expression level (P = 0.01) and DNA
methylation level (P = 0.09), and a strong negative correlation was observed between DNA
methylation status and expression of STAT5A, FLT3, PDPK1 and TSC1.

In the third step we incorporated the miRNAs to the protein coding gene network to explore
the regulation pattern of gene expression by miRNAs. We divided the miRNAs into two parts:
the miRNAs with both expression and methylation data (miRNAEM) and the miRNAs with
only expression data (miRNAE). We selected the miRNAs with P� 0.05 from both parts
respectively and obtained 38 and 21 miRNAs from miRNAE and miRNAEM respectively. The
pair-wise gene expression correlations between the 59 miRNAs and 12 protein coding genes
were calculated. Finally, we identified 11 miRNAs whose correlations with 12 protein coding
genes were less than -0.55. The results of correlation analysis of miRNAs and protein coding
gene expressions were shown in Fig 2 Among these 11 miRNAs, has-mir-141 and has-mir-675
have both expression and methylation data. It was noted that there were two pairs miRNA- tar-
get gene (hsa-mir-141- PRKAB1, hsa-mir-340-MAP2K1) relationship. It was observed that
there was a negative correlation between expression and methylation data of hsa-mir-141, and
hsa-mir-141 showed consistent change on gene expression level (P = 0.03) and DNAmethyla-
tion level (P = 0.15). This may suggest that the difference of hsa-mir-141 methylation levels
between high and low BMD groups may contribute the change of its expression levels between
two groups. In addition, we found PRKAB1 is a target gene of hsa-mir-141 and only expression
level of PRKAB1 showed the difference between the two BMD groups, while there was no cor-
relation between expression and methylation data of PRKAB1. This result indicated that the
expression change of PRKAB1may be regulated by hsa-mir-141 and not by its methylation
level.

Discussion
In the present study, we developed a novel analysis framework to integrate multi-omics data to
comprehensively explore the casual genetic factors and functional networks associated with
BMD using transcriptomic and epigenomic profiling.

In the integrative analysis, we identified 9 protein coding genes and 2 miRNAs that were
associated with BMD. Furthermore, 3 genes identified in our integration analysis were also rep-
licated at DNA level in the two largest GWAS meta-analyses in the field. The replicated find-
ings across different omics data warranted the significance of these genes to hip BMD.
Additionally our pathway analysis using SPIA identified three significant pathways, acute mye-
loid leukemia pathway, Insulin signaling pathway and mTOR signaling pathway, which are
associated with BMD status. The mTOR signaling pathway integrates both intracellular and
extracellular signals and serves as a central regulator of cell metabolism, growth, proliferation
and survival. Previous evidence showed that mTOR signaling contributed to chondrocyte
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differentiation and long bone growth [32] and osteoclasts apoptosis [33]. Insulin and its down-
stream signaling pathway were indispensable for postnatal bone growth and turnover by hav-
ing influence on both osteoblast and osteoclast development [34]. Insulin signaling in
osteoblasts not only modulated bone growth and turnover but was also required for energy
metabolism [35].

One challenge in integration analysis for multi-omics data is the exploration of the interac-
tive connections among different genes/factors. In this study, by a network analysis, we identi-
fied a network module including the miRNAs, mRNAs and DNA methylation associated with
BMD. In this module, four possible gene expression regulation patterns were observed: 1) Reg-
ulation by promoter methylation. One example is PIK3R5, which showed the association sig-
nals from both transcript and methylation levels, and there was a negative correlation between
these two levels as expected. This observation indicated the change of methylation level in
PIK3R5may contribute to its differential expression between high and low BMD groups; 2)
Regulation by miRNAs. In the module, has-mir-141 and PRKAB1 both showed differential
expression, while their expression profiles displayed a strong negative correlation. With the
existent knowledge that PRKAB1 is a target gene of has-mir-141, we can deduce that the differ-
ential expression of PRKAB1 was partially due to the differential expression of hsa-mir-141. 3)
Regulation by transcription factors. Gene AKT1 showed a strong association with BMD status,
but we didn’t detect significant association between its methylation level and BMD status.
Meanwhile, AKT1 isn’t a target gene of any miRNA with significant association with BMD sta-
tus. Among the nodes connected with AKT1, STAT5A showed a strong positive correlation.

Fig 2. The interaction module inferred in network analysis.Genes were represented by squares and
connected each other with solid lines. miRNAs were represented by circles. Node size was proportional to
the absolute value of the combined S score of integration analysis. Node color represented the strength of
negative correlation between gene expression profile and DNAmethylation level. The direct gene
interactions using dot-dash lines between genes based on annotation from STRING database.
Abbreviations: PCST (Prize Collecting Steiner Tree); STRING (Search Tool for the Retrieval of Interacting
Genes).

doi:10.1371/journal.pone.0138524.g002
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Thus we can infer that STAT5Amay involve the regulation of AKT1 expression. In agreement
with our findings, previous studies also proved STAT5A play an important regulation role in
AKT1 [36]; 4) Co-regulation by promoter methylation and miRNAs. PDPK1 was upregulated
and hypermethylated in its promotor in the low BMD group compared to the high BMD
group. Meanwhile, hsa-mir-340, which was downregulated in low BMD group, correlated with
the expression level of its target gene PDPK1 with the Pearson correlation, -0.65. Hence, the
expression of PDPK1 gene may be co-regulated by its promotor methylation and hsa-mir-340.
Gene co-regulation mediated by both miRNA and promoter methylation occur in the human
genome [37].

Some genes/miRNAs in the network have been shown as important modulating factors for
bone development or remodeling. For example, STAT3mutant mice exhibit decreased bone
density, bone volume, and increased numbers of TRAP-positive osteoclast [38]. JAK2/STAT3
signaling plays important roles in the receptor activator of nuclear factor-kappaB ligand
(RANKL)-mediated osteoclastogenesis [39, 40]. STAT5A is a member of STAT genes, which
are thought to play a major role in bone growth and biological responses [41]. STAT5A knock-
out mice showed obviously defective bone development [42]. Our result indicated that the
expression of gene STAT5Amay be regulated by their methylation levels, respectively. AKT1
(v-akt murine thymoma viral oncogene homolog 1) is a protein coding gene which regulates
many processes including proliferation, cell survival, growth and angiogenesis. Global defi-
ciency of AKT1 caused a reduction in BMD, femoral cortical thickness and volume and genetic
AKT1 deficiency diminished the rate of proliferation of osteoblast progenitors and impaired
osteoclast differentiation in primary culture [43]. FMS-related tyrosine kinase 3 (FLT3) has
been shown to play a critical role in the osteoclast differentiation and function [44]. FLT3 poly-
morphisms play a role in determination of BMD and subsequent fractures in postmenopausal
women [45]. In addition, miR-141 remarkably modulated the BMP-2-induced pre-osteoblast
differentiation through the translational repression of Dlx5, which is a bone-generating tran-
scription factor expressed in pre-osteoblast differentiation [46]. miR-34a and its target protein
Jagged1 (JAG1), a ligand for Notch 1 play a role in osteoblastic differentiation [47]. In a recent
study, Krzeszinski et al. reported that miR-34a overexpression transgenic mice exhibited lower
bone resorption and higher bone mass; while miR-34a knockout and heterozygous mice exhib-
ited elevated bone resorption and reduced bone mass [48].

Limitations of our study include the facts that: 1) the sample size of 10 subjects may appear
to be a little bit small. However, due to the polygenic architecture of BMD, this trait arises in
each individual from the combined effects of a large number of genetic variants [49]. In most
cases, there is still enough statistical power to identify a part of the causal genetic variants even
with small sample size. As a simple numerical example, one complex trait A is associated with
100 genes. With a sample size, for each gene there is very small power to be identified in an
association analysis with trait A (e.g. 3%). However, we still can have high probity 95.24% to
identify at least one gene (p = 1-(1–0.03)100) in the first screen. From this example, we can find
out that it is due to the polygenic architecture of BMD that we can identify some genes and
genetic factors associated with BMD even with small sample size and reduced power in a pilot
screening study. However, if an independent endeavor is pursued with an aim to replicate the
initial finding, the power would then be only 3%. Additionally, this current study is not a pre-
vailing and traditional uni-omics study. The multi-omics study can provide more comprehen-
sive and thorough information than uni-omics studies. The identified genes and pathways
showed consistent or collectively appreciable effects on BMD variation and data from earlier
studies unambiguously confirmed our results, which attested to the reliability and robustness
of our results and multi-omics approach. Our integrative trans-omics analysis of multi-omics
data thus leaded to a comprehensive identification and cross-validation of individual genes and
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pathways that have consistent, though maybe subtle effects on BMD variation across multiple
individual uni-omics levels;2) we focused on local (cis) effects for methylation data since trans
effects in epigenetic studies were generally more difficult to detect robustly. Therefore, we
chose not to study it in this analysis of relatively small samples [50]; 3) we did not carry on con-
firmation experiments (i.e. bisulfite pyrosequencing, RT-PCR, etc) to provide stronger evi-
dence for our findings in the present, because of the limited fund and precious limited sample
in our lab. In addition, as indicated above, the replication power is usually small for initial
genetic or epigenetic findings for polygenic traits; 4) the subjects are young and they are at
peak bone mass. Both peak bone mass and subsequent bone loss are both important in the
pathophysiology and risk of osteoporosis in the elderly such as postmenopausal women. The
subjects had extremely different BMD and thus differential risk to osteoporosis, as BMD is the
most powerful predictor for osteoporosis risk. It has been well and widely accepted in the field
that peak bone mass is a most powerful predictor of osteoporosis risk later in life (e.g., [51–53].

In summary, through integrating the transcriptomic and epigenomic data, we identified
BMD-related genes, pathways and regulatory networks which provided a much more compre-
hensive view of osteoporosis etiology than can be achieved by examining the individual omics
data on their own, and thus lead to novel insights into the mechanisms of pathogenesis and
may support the development of new therapeutics.
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