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Human brains flexibly combine the meanings of words to compose
structured thoughts. For example, by combining the meanings of
“bite,” “dog,” and “man,” we can think about a dog biting a man,
or a man biting a dog. Here, in two functional magnetic resonance
imaging (fMRI) experiments using multivoxel pattern analysis (MVPA),
we identify a region of left mid-superior temporal cortex (lmSTC)
that flexibly encodes “who did what to whom” in visually presented
sentences. We find that lmSTC represents the current values of ab-
stract semantic variables (“Who did it?” and “To whomwas it done?”)
in distinct subregions. Experiment 1 first identifies a broad region
of lmSTC whose activity patterns (i) facilitate decoding of structure-
dependent sentence meaning (“Who did what to whom?”) and
(ii) predict affect-related amygdala responses that depend on this
information (e.g., “the baby kicked the grandfather” vs. “the grand-
father kicked the baby”). Experiment 2 then identifies distinct, but
neighboring, subregions of lmSTC whose activity patterns carry in-
formation about the identity of the current “agent” (“Who did it?”)
and the current “patient” (“To whom was it done?”). These neigh-
boring subregions lie along the upper bank of the superior temporal
sulcus and the lateral bank of the superior temporal gyrus, respec-
tively. At a high level, these regions may function like topographi-
cally defined data registers, encoding the fluctuating values of
abstract semantic variables. This functional architecture, which in
key respects resembles that of a classical computer, may play a crit-
ical role in enabling humans to flexibly generate complex thoughts.
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Yesterday, the world’s tallest woman was serenaded by 30
pink elephants. The previous sentence is false, but perfectly

comprehensible, despite the improbability of the situation it
describes. It is comprehensible because the human mind can flex-
ibly combine the meanings of individual words (“woman,” “sere-
nade,” “elephants,” etc.) to compose structured thoughts, such as
the meaning of the aforementioned sentence (1, 2). How the brain
accomplishes this remarkable feat remains a central, but unan-
swered, question in cognitive science.
Given the vast number of sentences we can understand and

produce, it would be implausible for the brain to allocate individual
neurons to represent each possible sentence meaning. Instead, it is
likely that the brain employs a system for flexibly combining rep-
resentations of simpler meanings to compose more complex
meanings. By “flexibly,” we mean that the same meanings can be
combined in many different ways to produce many distinct complex
meanings. How the brain flexibly composes complex, structured
meanings out of simpler ones is a matter of long-standing debate
(3–10).
At the cognitive level, theorists have held that the mind encodes

sentence-level meaning by explicitly representing and updating the
values of abstract semantic variables (3, 5) in a manner analogous
to that of a classical computer. Such semantic variables correspond
to basic, recurring questions of meaning such as “Who did it?” and
“To whom was it done?” On such a view, the meaning of a simple
sentence is partly represented by filling in these variables with
representations of the appropriate semantic components. For ex-
ample, “the dog bit the man” would be built out of the same

semantic components as “the man bit the dog,” but with a reversal
in the values of the “agent” variable (“Who did it?”) and the
“patient” variable (“To whom was it done?”). Whether and how
the human brain does this remains unknown.
Previous research has implicated a network of cortical regions in

high-level semantic processing. Many of these regions surround the
left sylvian fissure (11–19), including regions of the inferior frontal
cortex (13, 14), inferior parietal lobe (12, 20), much of the superior
temporal sulcus and gyrus (12, 15, 21), and the anterior temporal
lobes (17, 20, 22). Here, we describe two functional magnetic res-
onance imaging (fMRI) experiments aimed at understanding how
the brain (in these regions or elsewhere) flexibly encodes the
meanings of sentences involving an agent (“Who did it?”), an action
(“What was done?”), and a patient (“To whom was it done?”).
First, experiment 1 aims to identify regions that encode struc-

ture-dependent meaning. Here, we search for regions that differ-
entiate between pairs of visually presented sentences, where these
sentences convey different meanings using the same words (as in
“man bites dog” and “dog bites man”). Experiment 1 identifies a
region of left mid-superior temporal cortex (lmSTC) encoding
structure-dependent meaning. Experiment 2 then asks how the
lmSTC represents structure-dependent meaning. Specifically, we
test the long-standing hypothesis that the brain represents and
updates the values of abstract semantic variables (3, 5): here, the
agent (“Who did it?”) and the patient (“To whom was it done?”).
We search for distinct neural populations in lmSTC that encode
these variables, analogous to the data registers of a computer (5).

Experiment 1
In experiment 1, subjects undergoing fMRI read sentences de-
scribing simple events. Each sentence expressed a meaning, or
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“proposition,” which could be conveyed in either the active or
passive voice (e.g., “the ball hit the truck”/“the truck was hit by
the ball”). Each such sentence could be reversed to yield a mirror
image proposition (e.g., “the truck hit the ball”/“the ball was hit
by the truck”), which was also included in the stimulus set. We
call these “mirror image proposition pairs.”Members of these pairs
contain the same words and have the same syntactic structure, but
the words are differentially assigned to the agent and patient roles
to form different sentence-level meanings.
A region encoding the meanings of these sentences should have

the following two properties. First, patterns of activity in such a
region should differentially encode members of mirror image
propositions pairs. For example, the propositions conveyed by “the
truck hit the ball” and “the ball hit the truck” should elicit distinct
patterns of activity. Second, the instantiation of such patterns
should predict downstream neural responses that depend on un-
derstanding “who did what to whom.” For example, patterns re-
lated to sentence-level meaning should predict differential affective
responses to “the grandfather kicked the baby” and “the baby
kicked the grandfather.” Experiment 1 used two key analyses,
corresponding to these two functional properties. First, we ap-
plied multivoxel pattern analysis (23–25) and a whole-brain
searchlight procedure (26) to identify sets of contiguous voxels
that distinguish between members of mirror image proposition
pairs. Second, we developed a pattern-based effective connec-
tivity (PBEC) analysis to determine whether patterns related to
affectively salient sentences (e.g., “the grandfather kicked the
baby”) mediate the relationship between the sentence presented
and affective responses elsewhere in the brain. Jointly, these
analyses establish candidate regions for encoding structure-
dependent meaning that can be further probed in experiment 2.

Whole-Brain Searchlight Analysis. First, using a linear classifier, we
searched for regions whose patterns of activity distinguished
between members of mirror image proposition pairs: for exam-
ple, between the proposition conveyed by “the truck hit the ball”
(as well as “the ball was hit by the truck”) and the proposition
conveyed by “the ball hit the truck” (as well as “the truck was hit
by the ball”). The use of mirror image propositions ensures that
basic lexico-semantic content, syntactic structure, and summed
word frequency are matched between the propositions to be
discriminated. Active and passive forms of each proposition were
treated as identical in all analyses, allowing us to identify un-
derlying semantic representations, controlling for visual features
of the stimuli and surface syntax. All propositions were pre-
sented separately, and multiple times, to better estimate the
pattern of activity evoked by each proposition. For experiment 1,
classifiers were thus tested on their ability to discriminate be-
tween new tokens of the mirror image propositions on which
they were trained.
For this initial searchlight analysis, we used four mirror image

pairs of propositions, two involving animate entities and two
involving inanimate entities. For each subject (n = 16), we av-
eraged classification accuracies across these four pairwise classifi-
cation problems to yield a map of the mean classification accuracy
by region. Group-level analysis identified a region of lmSTC (k =
123; Talairach center: −59, −25, 6) that reliably distinguished be-
tween mirror image propositions (P < 0.0001, corrected; mean
accuracy, 57%) (see left temporal region in Fig. 1). This result was
not driven by a particular subset of the stimuli (Supporting In-
formation). A second significant cluster was discovered along the
right posterior insula/extreme capsule region (P < 0.001, corrected;
37, −9, 6; mean accuracy, 56.4%). However, this second region
failed to meet additional, minimal functional criteria for encoding
sentence meaning (Supporting Information).

PBEC Analysis. The foregoing searchlight analysis suggests that
lmSTC represents critical aspects of sentence-level meaning. If

this hypothesis is correct, then the particular pattern instantiated
in lmSTC should also predict downstream neural responses when
those responses depend on an understanding of “who did what to
whom.” Our second analysis in experiment 1 attempts to de-
termine whether the patterns of activity in lmSTC predict af-
fective neural responses elsewhere in the brain.
To test this hypothesis, we used, within the same experiment, an

independent set of mirror image proposition pairs in which one
proposition is more affectively salient than its counterpart, as in
“the grandfather kicked the baby” and “the baby kicked the
grandfather.” (Differences in affective salience were verified with
independent behavioral testing. See Supporting Information.) We
predicted that patterns of activity in lmSTC (as delineated by the
independent searchlight analysis) would statistically mediate the
relationship between the sentence presented and the affective
neural response, consistent with a causal relationship (27). This
PBEC analysis proceeded in three steps.
First, we confirmed that patterns of activity in the region of

lmSTC identified by the searchlight analysis can discriminate
between these new mirror image propositions [t(15) = 3.2; P =
0.005; mean accuracy, 58.3%], thus replicating the above findings
with new stimuli. Second, we identified brain regions that re-
spond more strongly to affectively salient propositions (e.g., “the
grandfather kicked the baby” > “the baby kicked the grandfa-
ther”). This univariate contrast yielded effects in two brain re-
gions, the left amygdala (−28, −7, −18) and superior parietal
lobe (−38, −67, 47), (P < 0.001, corrected). Given its well-known
role in affective processing (28), we interpreted this amygdala
response as an affective signal and focused on this region in our
subsequent mediation analysis. Third, and most critically, we
examined the relationship between patterns of activity in lmSTC
and the magnitude of the amygdala’s response. The first of the
above analyses shows that “the grandfather kicked the baby”
produces a different pattern in lmSTC than “the baby kicked the
grandfather” (etc.). If these patterns actually reflect structure-
dependent meaning, then these patterns should mediate the
relationship between the sentence presented and the amygdala’s
response on a trial-by-trial basis.
To quantify the pattern of activity in lmSTC on each trial, we

used the signed distance of each test pattern from the classifier’s
decision boundary (Supporting Information). This signed distance
variable reflects the content of the classifier’s decision regarding
the sentence (the sign), as well as what one may think of as its
“confidence” in that decision (the distance). According to our
hypothesis, trials in which the pattern is confidently classified as
“the grandfather kicked the baby” (etc.), rather than “the baby
kicked the grandfather” (etc.), should be trials in which the
amygdala’s response is robust. Here, we are supposing that the
classifier’s “confidence” will reflect the robustness of the se-
mantic representation, which in turn may influence downstream
affective responses in the amygdala.
As predicted, the pattern of activity instantiated in lmSTC pre-

dicted the amygdala’s response [t(15) = 3.96, P = 0.0013], over and
above both the mean signal in lmSTC and the content of the
stimulus. The pattern of activity in the lmSTC explains unique
variance in the amygdala’s response, consistent with a causal model
whereby information flows from the sentence on the screen, to a
pattern of activity in the lmSTC, to the amygdala [P < 0.01, by
Monte Carlo simulation (29, 30); Sobel test (27), z = 2.47, P =
0.013] (Fig. 1). The alternative model reversing the direction of
causation between the lmSTC and amygdala was not significant
(Monte Carlo, P > 0.10; Sobel, z = 1.43, P = 0.15), further sup-
porting the proposed model.
There are several possible sources of trial-to-trial variability in

lmSTC’s responses (see Supporting Information for more dis-
cussion). For example, a participant’s inattention might disrupt
the semantic representation in lmSTC, making the trial more
difficult to classify and, at the same time, making the amygdala
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response weaker than otherwise expected. Regardless of the
source of the variation in these patterns, the present data provide
evidence that neural representations of structure-dependent mean-
ings in lmSTC predict downstream affective responses, consistent
with our causal model.
Thus, experiment 1 shows that a region of lmSTC meets our two

initial functional criteria for a region encoding structure-dependent
sentence meaning. First, its patterns of activity differentiate be-
tween mirror image propositions containing the same words and
syntactic structure. Second, these patterns statistically mediate the
relationship between the sentence presented and affective neural
responses that depend on understanding “who did what to whom.”
Experiment 1 does not, however, explain how this region encodes
such information. Experiment 2 aims to further validate the results
of experiment 1 and to illuminate the mechanism by which this
region encodes these structure-dependent meanings.

Experiment 2
In experiment 2, we test the hypothesis that lmSTC flexibly en-
codes these meanings (at least in part) by explicitly representing
the values of the agent (“Who did it?”) and the patient (“To
whom was it done?”) (5). To evaluate this possibility, we
searched for subregions of lmSTC whose patterns of activity
reflect the current value of these variables. We performed sep-
arate searches for each variable, searching for subregions
encoding “Who did it?” and “To whom it was done?” across verb
contexts. Thus, we aimed to identify regions that are specialized
for representing the agent and patient variables as such.
Experiment 2 (n = 25) used a stimulus set in which four nouns

(“man,” “girl,” “dog,” and “cat”) were assigned to the agent and
patient roles for each of five verbs (“chased,” “scratched,” etc.),
in both active and passive forms (Fig. 2A). Thus, subjects un-
dergoing fMRI read sentences such as “the dog chased the man”
and “the girl was scratched by the cat,” exhausting all meaningful
combinations, excluding combinations assigning the same noun
to both roles (e.g., “the man chased the man”).
We acquired partial-volume, high-resolution (1.5-mm3 iso-

tropic voxels) functional images covering the lmSTC. We used
separate searchlight analyses within each subject to identify
subregions of lmSTC encoding information about the identity of

the agent or patient (Fig. 2 B and C). For our principal search-
light analyses, four-way classifiers were trained to identify the
agent or patient using data generated by four out of five verbs.
The classifiers were then tested on data from sentences con-
taining the withheld verb. For example, the classifiers were
tested using patterns generated by “the dog chased the man,”
having never previously encountered patterns generated by
sentences involving “chased,” but having been trained to identify
“dog” as the agent and “man” as the patient in other verb con-
texts. This procedure was repeated holding each verb’s data out
of the training set, and the results were averaged across cross-
validation iterations. Thus, this analysis targets regions that in-
stantiate consistent patterns of activity for (for example) “dog as
agent” across verb contexts, discriminable from “man as agent”
(and likewise for other nouns). A region that carries this in-
formation therefore encodes “Who did it?” across the nouns and
verb contexts tested. This same procedure was repeated to de-
code the identity of the patient.
These searchlight analyses revealed distinct subregions of lmSTC

that reliably carry information about the identity of the agent and
the patient (Fig. 3A). Within the anterior portion of lmSTC, a
medial subregion located on the upper bank of the superior tem-
poral sulcus (STS) encoded information about the identity of the
agent (P < 0.01, corrected; −46, −18, 1). A spatially distinct lateral
subregion, encompassing part of the upper bank of the STS, as well
as the lateral superior temporal gyrus (STG) carried patient in-
formation (P < 0.0001, corrected; −57, −10, 2) across subjects.
These anterior agent and patient clusters are adjacent, but non-
overlapping in this analysis. A follow-up analysis using independent
data to define each participant’s agent and patient clusters found
that these subregions are significantly dissociable by their in-
formational content [FRegion×Content(1,24) = 12.99, Pperm = 0.001]
(Fig. 3). This searchlight analysis also revealed a second agent
cluster, posterior and superior to the clusters described above, lo-
cated primarily within the posterior STS (P < 0.02, corrected; −57,
−37, 7). Post hoc analyses found the classification accuracies driving
these results to be only modestly above chance levels of 25%, but
statistically reliable across our set of 25 subjects (mean accuracies
across subjects: anterior agent, 27.1%; posterior agent, 28.1%;
patient, 26.6%).

A B

C

Fig. 1. Model of information flow from stimulus to
lmSTC to amygdala in experiment 1. (A) A pattern
classifier determines which of two propositions was
presented using activity in lmSTC. Distance from the
classification boundary indicates the extent to which
a learned pattern was instantiated. The red region
corresponds to the emotionally evocative proposi-
tion (e.g., “the grandfather kicked baby”), whereas
blue corresponds to the less evocative proposition
(“the baby kicked grandfather”). (B) For each trial,
the classifier’s signed distance from the classification
boundary was transformed by a sigmoidal function
and used to predict the mean level of activity in the
left amygdala. (C) Patterns in lmSTC mediate the
relationship between the proposition on the screen
and the amygdala’s response, consistent with a
model according to which the lmSTC encodes the
structured representations necessary to generate an
emotional response.
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As in experiment 1, post hoc analyses ruled out the possibility
that these results were driven by a subset of items, as these regions
were relatively consistent in their ability to discriminate between
particular pairs of nouns and to generalize across the five verb
contexts. (See Supporting Information for detailed procedures and
results for these post hoc analyses.) These results thus suggest that
the regions identified by the experiment 2 searchlight analyses are
generally involved in encoding noun–role bindings across the nouns
and verbs used. No regions of lmSTC carried information about
the surface subject and surface object of the sentence. For example,
no lmSTC region encoded “the dog chased the man” and “the dog
was chased by the man” as similar to each other, but different from
“the man chased the dog” and “the man was chased by the dog.”
Within lmSTC, the encoding appears, instead, to be based on
deeper semantics, encoding the underlying agent and patient of the
sentence, independent of which noun serves as the sentence’s
surface subject or object, consistent with experiment 1.
These findings provide preliminary evidence that these sub-

regions of lmSTC encode the values of the agent and patient
variables. However, it remains open whether and to what extent
these subregions are specialized for representing agent and pa-
tient information—that is, whether they tend to represent one
kind of information and not the other. To address this question,
we conducted planned post hoc analyses that separately defined
agent and patient regions within each subject using data from the
remaining subjects. We assessed the significance of these effects
using both conventional parametric statistics and permutation

tests (Supporting Information). Within subjects’ independently
localized patient regions, patient identification accuracy was
significantly greater than agent identification accuracy across
subjects [lateral lmSTC: t(24) = 2.96, P = 0.006; permutation test:
0.006]. Within the posterior agent region, agent identification
was significantly above chance [t(24) = 2.38, P = 0.01; permuta-
tion test: P = 0.008]. Within the anterior agent region, the
classification effect was somewhat weaker [t(24) = 2.04, P = 0.02;
permutation test: P = 0.055]. As expected, patient identification
was at chance in both the anterior agent region [t(24) = 0.86, P =
0.2; permutation test: P = 0.22] and the posterior agent region
[t(24) = −0.29, P = 0.39; permutation test: P = 0.38]. However,
the direct comparison of accuracy levels for agent and patient
identification was not statistically significant in the anterior agent
region (P = 0.27; permutation test: P = 0.26) or the posterior
agent region (P = 0.15; permutation test: P = 0.15). See Fig. 3B.
To further assess the role specificity of these subregions, we

localized a large portion of the anterior lmSTC in a manner that
was unbiased with respect to its role preference, and then
quantified the average preferences of slices of voxels at each X
coordinate (Supporting Information). We found a clear trend in
role preference along the medial-lateral axis, with medial por-
tions preferentially encoding agent information and lateral por-
tions preferentially encoding patient information (Fig. 3C).
From the present data, we cannot determine whether the ob-
served graded shift in role preference exists within individuals, or

A B C
Fig. 2. Experiment 2 design. (A) Subjects read senten-
ces constructed from a menu of five verbs and four
nouns, with one noun in the agent role and another in
the patient role. (B) For each trial, separate pattern
classifiers attempted to identify the agent and the
patient based on activity within subregions of lmSTC.
(C) Classifiers were trained using data from four of five
verbs and tested on data from the withheld verb. This
required the classifiers to identify agents and patients
based on patterns that are reused across contexts.

A C

B
Fig. 3. (A) Searchlight analyses identified adjacent,
but nonoverlapping subregions of anterior lmSTC
that reliably encoded information about agent
identity (medial, blue) and patient identity (lateral,
red). (B) Post hoc analyses find that these adjacent
regions differ significantly in the information they
encode. These analyses define each subject’s agent
and patient subregions using data from other
subjects, and the statistics computed within each
subject’s agent/patient region reflect the average
accuracy of all voxel neighborhoods across that re-
gion. (C) Across subjects, medial portions of ante-
rior lmSTC preferentially encode agent information,
whereas lateral portions of anterior lmSTC prefer-
entially encode patient information.
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simply results from averaging across individuals exhibiting more
abrupt transitions.
A final searchlight analysis within lmSTC identified two addi-

tional subregions supporting identification of the present verb
(Supporting Information). The anterior verb subregion (P < 0.025;
−61, −15, 2) was adjacent to the patient subregion. The posterior
verb subregion (P < 0.0001; −55, −49, 5) in the posterior STS
partially overlapped with the posterior agent region.
The foregoing analyses strongly suggest that a lateral sub-

region of anterior lmSTC selectively encodes information about
the identity of the current patient, and somewhat less strongly,
that a medial portion of anterior lmSTC selectively encodes in-
formation about the identity of the current agent. In addition, we
identified two subregions of lmSTC supporting classification of the
verb present on a given trial (Supporting Information). Together,
these results indicate that distinct subregions of lmSTC separately
and dynamically represent the semantic information sufficient to
compose complex representations involving an agent, a patient,
and an action.
A third experiment replicates the findings of experiment 2.

Once again, we find that a medial region of lmSTC encodes
information about the agent while a neighboring lateral region
encodes information about the patient (Supporting Information).

Discussion
The experiments presented here begin to address an important
unanswered question in cognitive neuroscience (2–6): How does
the brain flexibly compose structured thoughts out of simpler
ideas? We provide preliminary evidence for a long-standing
theoretical conjecture of cognitive science: that the brain, on
some level, functions like a classical computer, representing
structured semantic combinations by explicitly encoding the
values of abstract variables (3, 5). Moreover, we find evidence
that the agent and patient variables are topographically repre-
sented across the upper bank of the left STS and lateral STG,
such that adjacent cortical regions are differentially involved in
encoding the identity of the agent and patient. At a high level,
these regions may be thought of as functioning like the data
registers of a computer, in which time-varying activity patterns
temporarily represent the current values of these variables (5). This
functional architecture could support the compositional encoding
of sentence meaning involving an agent and a patient, as these
representations can be simultaneously instantiated in adjacent re-
gions to form complex representations with explicit, constituent
structure. These structured representations may in turn be read by
other neural systems that enable reasoning, decision making, and
other high-level cognitive functions.
The present results are broadly consistent with previous re-

search concerning the neural loci of sentence-level semantic
processing while, at the same time, offering new insight into how
such semantic information is represented. With respect to
functional localization, previous research has implicated the
lmSTC in phrase and sentence-level semantic processing using
both functional neuroimaging and lesion data (11–13, 15, 18, 21).
However, lmSTC is by no means the only region consistently
implicated in higher-order semantic processing, as research has
reliably documented the involvement of the anterior regions of the
temporal lobe (20, 22), left inferior parietal lobe (12, 20), and left
inferior frontal cortices (13, 14). The two studies presented here
suggest that lmSTC may be more narrowly involved in encoding
the values of semantic role variables. This narrower claim is con-
sistent with multiple pieces of preexisting experimental evidence.
First, fMRI studies (15, 31) have found increased activation in

a similar region of mid-left STG/STS in response to implausible
noun–verb combinations that violate a verb’s selectional re-
strictions (e.g., “the thunderstorm was ironed”) (but see ref. 32
for conflicting results). More directly, an fMRI study (21) finds
that the repetition of a sentence’s meaning produces adaptation

effects in the lmSTC, even when that meaning is expressed using
different surface syntactic forms, such as the active and passive
voice. These semantic adaptation effects occur in mid-STG and
middorsal MTG/ventral STS when sentences are presented au-
rally, and in middorsal MTG/midventral STS when presented
visually. Finally, and perhaps of most direct relevance, patients
with damage to lmSTC have been found to have specific deficits
in determining “who did what to whom” in response to both
sentences and visual scenes representing actions (11). Here, the
locus of damage that most consistently predicts impaired per-
formance across tasks appears to correspond to the anterior
subregion of lmSTC in which we find the agent and patient
variables to be topographically represented.
The present results build on this literature and extend our un-

derstanding in several key ways. First, experiment 1 uses multivar-
iate methods to demonstrate that lmSTC carries information about
sentence-level meaning. Second, experiment 1 employs a PBEC
analysis to link these patterns of activity to affect-related amygdala
responses, consistent with a model whereby lmSTC enables the
comprehension necessary to produce an appropriate affective re-
sponse to a morally salient sentence. Third, and most critically,
experiment 2 provides insight into how the lmSTC encodes sen-
tence-level meaning, namely by representing the values of the agent
and patient variables in spatially distinct neural populations.
Given that the present results were generated using only lin-

guistic stimuli, the current data are silent as to whether these
representations are part of a general, amodal “language of
thought” (33), or whether they are specifically linguistic. In par-
ticular, it is not known whether results would be similar using al-
ternative modes of presentation, such as pictures. We note that the
aforementioned lesion study of ref. 11 reports deficits in compre-
hension of pictorial stimuli following damage to this region. How-
ever, linguistic deficits could disrupt comprehension of pictures if
pictorial information is normally translated into words. Although
such questions remain open, we emphasize that the representations
examined here are related to the underlying semantic properties of
our stimuli, for reasons explained in detail above. They encode
information that would have to be encoded, in some form, by any
semantic system capable of supporting genuine comprehension.
In evaluating the significance of the present results, we note

that the classification accuracies observed here are rather mod-
est. Thus, we are by no means claiming that it is now possible to
“read” people’s thoughts using patterns of activity in lmSTC. Nor
are we claiming that the lmSTC is the unique locus of complex
thought. On the contrary, we suspect that the lmSTC is merely
part of a distributed neural system responsible for accessing and
combining representations housed elsewhere in the cortex (10).
We regard the observed effects as significant, not because of
their size, but because they provide evidence for a distinctive
theory of high-level semantic representation. We find evidence
for a functional segregation, and corresponding spatial segrega-
tion, based on semantic role, which may enable the composition
of complex semantic representations. Such functional segrega-
tion need not take the form of spatial segregation, but insofar as
it does, it becomes possible to provide evidence for functional
segregation using fMRI, as done here.
A prominent alternative model for the encoding of complex

meanings holds that binding is signaled through the synchroni-
zation (or desynchronization) of the firing phases of neurons
encoding a complex representation’s constituent semantic ele-
ments (6–8). Given the limited temporal resolution of fMRI, the
current design cannot provide direct evidence for or against
temporal synchrony as a binding mechanism. However, the
present data suggest that such temporal correlations may be
unnecessary in this case, because these bindings may instead be
encoded through the instantiation of distributed patterns of ac-
tivity in spatially dissociable patches of cortex devoted to rep-
resenting distinct semantic variables. Nevertheless, it is possible
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that temporal synchrony plays a role in these processes. Another
alternative class of models posits the use of matrix operations to
combine spatially distributed representations into conjunctive
representations (e.g., “man as agent”) (4, 34). Although such
models do not necessarily predict the current results, they could
potentially be augmented to accommodate them, incorporating
separate banks of neurons that encode conjunctive representa-
tions for distinct semantic roles. This anatomical strategy, in which
separate banks of neurons represent different semantic role vari-
ables, is used and expanded in a recent computational model of
variable binding that mimics the capacities and limitations of hu-
man performance (10). This biologically plausible model employs
representations that function like the pointers used in some com-
puter programming languages. It is possible that the patterns of
activity within the agent and patient regions that we identify here
likewise serve as pointers to richer representations housed else-
where in cortex.
Although the present work concerns only one type of structured

semantic representation (simple agent–verb–patient combinations)

and one mode of presentation (visually presented sentences), it
supports an intriguing possibility (5): that the explicit representa-
tion of abstract semantic variables in distinct neural circuits plays a
critical role in enabling human brains to compose complex ideas
out of simpler ones.

Materials and Methods
Data preprocessing and analysis were performed using the Searchmight
Toolbox (35) for Matlab, AFNI functions (36), and custom scripts. Further
methodological details are provided in Supporting Information. There, we
describe scan parameters, participants, stimuli, experimental procedure,
data analyses, and additional results. All participants gave informed consent
in accordance with the guidelines of the Committee on the Use of Human
Subjects at Harvard University.

ACKNOWLEDGMENTS. We thank Fiery Cushman, Steven Pinker, Alfonso
Caramazza, Susan Carey, and Patrick Mair for helpful comments. We thank
Anita Murrell, Sarah Coughlon, Frantisek Butora, and Rebecca Fine for
research assistance. This work was supported by a National Science
Foundation Graduate Research Fellowship (to S.M.F.).

1. Frege G (1976) Logische Untersuchungen (Vandenhoeck und Ruprecht, Göttingen), 2,
Erg. Aufl. Ed.

2. Pinker S (1994) The Language Instinct (Morrow, New York), 1st Ed.
3. Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: A critical

analysis. Cognition 28(1-2):3–71.
4. Smolensky P (1990) Tensor product variable binding and the representation of sym-

bolic structures in connectionist systems. Artif Intell 46(1-2):159–216.
5. Marcus GF (2001) The Algebraic Mind: Integrating Connectionism and Cognitive

Science (MIT, Cambridge, MA).
6. Shastri L, Ajjanagadde V (1993) From simple associations to systematic reasoning—a

connectionist representation of rules, variables and dynamic bindings using temporal
synchrony. Behav Brain Sci 16(3):417–451.

7. von der Malsburg C (1999) The what and why of binding: The modeler’s perspective.
Neuron 24(1):95–104, 111–125.

8. Doumas LA, Hummel JE, Sandhofer CM (2008) A theory of the discovery and predi-
cation of relational concepts. Psychol Rev 115(1):1–43.

9. O’Reilly RC, Busby RS (2002) Generalizable relational binding from coarse coded dis-
tributed representations. Adv Neural Inf Process Syst 1:75–82.

10. Kriete T, Noelle DC, Cohen JD, O’Reilly RC (2013) Indirection and symbol-like processing in
the prefrontal cortex and basal ganglia. Proc Natl Acad Sci USA 110(41):16390–16395.

11. Wu DH, Waller S, Chatterjee A (2007) The functional neuroanatomy of thematic role
and locative relational knowledge. J Cogn Neurosci 19(9):1542–1555.

12. Pallier C, Devauchelle AD, Dehaene S (2011) Cortical representation of the constituent
structure of sentences. Proc Natl Acad Sci USA 108(6):2522–2527.

13. Fedorenko E, Behr MK, Kanwisher N (2011) Functional specificity for high-level lin-
guistic processing in the human brain. Proc Natl Acad Sci USA 108(39):16428–16433.

14. Hagoort P, Hald L, Bastiaansen M, Petersson KM (2004) Integration of word meaning
and world knowledge in language comprehension. Science 304(5669):438–441.

15. Friederici AD, Rüschemeyer SA, Hahne A, Fiebach CJ (2003) The role of left inferior
frontal and superior temporal cortex in sentence comprehension: Localizing syntactic
and semantic processes. Cereb Cortex 13(2):170–177.

16. Vandenberghe R, Nobre AC, Price CJ (2002) The response of left temporal cortex to
sentences. J Cogn Neurosci 14(4):550–560.

17. Bemis DK, Pylkkänen L (2011) Simple composition: A magnetoencephalography in-
vestigation into the comprehension of minimal linguistic phrases. J Neurosci 31(8):
2801–2814.

18. Baron SG, Thompson-Schill SL, Weber M, Osherson D (2010) An early stage of con-
ceptual combination: Superimposition of constituent concepts in left anterolateral
temporal lobe. Cogn Neurosci 1(1):44–51.

19. Baron SG, Osherson D (2011) Evidence for conceptual combination in the left anterior
temporal lobe. Neuroimage 55(4):1847–1852.

20. Humphries C, Binder JR, Medler DA, Liebenthal E (2006) Syntactic and semantic modu-
lation of neural activity during auditory sentence comprehension. J Cogn Neurosci 18(4):
665–679.

21. Devauchelle AD, Oppenheim C, Rizzi L, Dehaene S, Pallier C (2009) Sentence syntax
and content in the human temporal lobe: An fMRI adaptation study in auditory and
visual modalities. J Cogn Neurosci 21(5):1000–1012.

22. Rogalsky C, Hickok G (2009) Selective attention to semantic and syntactic features
modulates sentence processing networks in anterior temporal cortex. Cereb Cortex
19(4):786–796.

23. Haxby JV, et al. (2001) Distributed and overlapping representations of faces and

objects in ventral temporal cortex. Science 293(5539):2425–2430.
24. Mitchell TM, et al. (2008) Predicting human brain activity associated with the

meanings of nouns. Science 320(5880):1191–1195.
25. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: Multi-voxel

pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430.
26. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain

mapping. Proc Natl Acad Sci USA 103(10):3863–3868.
27. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social

psychological research: Conceptual, strategic, and statistical considerations. J Pers Soc

Psychol 51(6):1173–1182.
28. Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing:

From animal models to human behavior. Neuron 48(2):175–187.
29. Mackinnon DP, Lockwood CM, Williams J (2004) Confidence limits for the indirect effect:

Distribution of the product and resampling methods. Multivariate Behav Res 39(1):

99–128.
30. Selig JP, Preacher KJ (2008) Monte Carlo method for assessing mediation: An in-

teractive tool for creating confidence intervals for indirect effects. Available at

quantpsy.org/. Accessed May 24, 2015.
31. Skeide MA, Brauer J, Friederici AD (2014) Syntax gradually segregates from semantics

in the developing brain. Neuroimage 100:106–111.
32. Kuperberg GR, et al. (2000) Common and distinct neural substrates for pragmatic,

semantic, and syntactic processing of spoken sentences: An fMRI study. J Cogn

Neurosci 12(2):321–341.
33. Fodor JA (1975) The Language of Thought (Harvard Univ Press, Cambridge, MA).
34. Plate TA (1995) Holographic reduced representations. IEEE Trans Neural Netw 6(3):

623–641.
35. Pereira F, Botvinick M (2011) Information mapping with pattern classifiers: A com-

parative study. Neuroimage 56(2):476–496.
36. Cox RW (1996) AFNI: Software for analysis and visualization of functional magnetic

resonance neuroimages. Comput Biomed Res 29(3):162–173.
37. Kutas M, Hillyard SA (1980) Reading senseless sentences: Brain potentials reflect se-

mantic incongruity. Science 207(4427):203–205.
38. Friston KJ (2011) Functional and effective connectivity: A review. Brain Connect 1(1):

13–36.
39. Kriegeskorte N, et al. (2008) Matching categorical object representations in inferior

temporal cortex of man and monkey. Neuron 60(6):1126–1141.
40. Chiu YC, Esterman MS, Gmeindl L, Yantis S (2012) Tracking cognitive fluctuations with

multivoxel pattern time course (MVPTC) analysis. Neuropsychologia 50(4):479–486.
41. Coutanche MN, Thompson-Schill SL (2013) Informational connectivity: Identifying

synchronized discriminability of multi-voxel patterns across the brain. Front Hum

Neurosci 7:15.
42. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN (2008) Prefrontal-sub-

cortical pathways mediating successful emotion regulation. Neuron 59(6):1037–1050.
43. Schäfer J, Strimmer K (2005) A shrinkage approach to large-scale covariance matrix

estimation and implications for functional genomics. Stat Appl Genet Mol Biol 4:e32.
44. Duda RO, Hart PE, Stork DG (2001) Pattern Classification (Wiley, New York), 2nd Ed.

Frankland and Greene PNAS | September 15, 2015 | vol. 112 | no. 37 | 11737

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1421236112/-/DCSupplemental/pnas.201421236SI.pdf?targetid=nameddest=STXT
http://quantpsy.org/

