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Hierarchically designed structures with architectural features that
span across multiple length scales are found in numerous hard
biomaterials, like bone, wood, and glass sponge skeletons, as well
as manmade structures, like the Eiffel Tower. It has been hypoth-
esized that their mechanical robustness and damage tolerance
stem from sophisticated ordering within the constituents, but
the specific role of hierarchy remains to be fully described and
understood. We apply the principles of hierarchical design to
create structural metamaterials from three material systems:
(i) polymer, (ii) hollow ceramic, and (iii) ceramic–polymer compos-
ites that are patterned into self-similar unit cells in a fractal-like
geometry. In situ nanomechanical experiments revealed (i) a
nearly theoretical scaling of structural strength and stiffness with
relative density, which outperforms existing nonhierarchical nano-
lattices; (ii) recoverability, with hollow alumina samples recover-
ing up to 98% of their original height after compression to ≥50%
strain; (iii) suppression of brittle failure and structural instabilities
in hollow ceramic hierarchical nanolattices; and (iv) a range of de-
formation mechanisms that can be tuned by changing the slender-
ness ratios of the beams. Additional levels of hierarchy beyond a
second order did not increase the strength or stiffness, which sug-
gests the existence of an optimal degree of hierarchy to amplify
resilience. We developed a computational model that captures
local stress distributions within the nanolattices under compres-
sion and explains some of the underlying deformation mecha-
nisms as well as validates the measured effective stiffness to be
interpreted as a metamaterial property.
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Hierarchy is ubiquitous in the natural world; characterizing it,
understanding its origins, and discovering its role in enhanc-

ing material properties are essential to designing new advanced
materials (1–4). Natural structural materials, like Euplectella
sponges, radiolarians, and bone, are exceptionally resilient against
extreme mechanical environments and seem to draw their ro-
bustness from intricate mechanical networks that contain mul-
tiple levels of hierarchy (3–7). Hierarchical engineered structures
are used in modern architecture, with notable examples being
the Eiffel tower and the Garabit viaduct (8); today, hierarchy is
seen commonly in construction cranes and building scaffolding.
Both natural and engineered structures use the concept of hi-
erarchical design to minimize material use while optimizing
structural integrity.
The hierarchical scale of a material is defined by its order,

which represents the number of distinct structural length scales
(2). Design principles and theories describing hierarchical struc-
tural materials exist (2, 9), and macroscopic second- and third-
order 2D cellular solids, like honeycombs (10, 11) and corrugated
core sandwich panels (12–14), have been designed and tested
experimentally. Theories that describe the design and optimiza-
tion of 3D hierarchical trusses have been proposed (15–18); until
recently, their fabrication presented a challenge. Modern fabrica-
tion breakthroughs have enabled the creation of 3D architected
materials. These techniques include self-propagating photo-
polymer waveguides used to create Ni-based ultralight micro-
lattices (19), microstereolithography capable of fabricating
simultaneously strong and ultralight metal- and ceramic-based

microlattices (20), and two-photon lithography direct laser writing,
which enabled the creation of nanolattices with features sufficiently
in the nanometer regime to capitalize on size-affected material
properties in addition to structural effects (21–23).
We report the fabrication, mechanical characterization, and

computational analysis of hierarchical nanolattices made out of
three different materials: (i) solid polymer IP-Dip (Nanoscribe
GmbH), (ii) a core-shell composite with a polymer core and a
20-nm-thick Al2O3 coating, and (iii) hollow 20-nm-thick Al2O3.
In situ nanomechanical deformation experiments were per-
formed on a number of different geometries and showed that
hierarchically designed nanolattices exhibit enhanced recover-
ability over simple periodic ones (22) and have a close to linear
scaling of yield strength and stiffness with relative density. These
findings were confirmed by computational predictions, and they
are consistent with theoretical predictions for stretching-domi-
nated solids (24). Simulations were performed to further eluci-
date the local stress distributions within the nanolattices, which
confirm the effective experimental nanolattice response and help
shed light on the distribution of loadbearing components that are
responsible for the overall observed nanolattice performance.
Various sample geometries were tested to quantify the effect

of geometry and relative density on mechanical behavior (Ma-
terials and Methods and SI Appendix, Tables S1–S3). Samples
were designed using a recursive method, where a unit cell is
patterned along the length of the beams of a self-similar unit cell,
resulting in a fractal-like geometry (Fig. 1A and SI Appendix, Fig.
S1). This design concept can be extended to create hierarchical
metamaterials of any order with previously unobserved combi-
nations of properties across multiple length scales—for example,
high strength to weight ratios, tunable mass density, near-infinite
bulk to shear modulus ratios (25, 26), and negative Poisson’s
ratios (27, 28). The versatility of this fabrication method is shown
in Fig. 1 and SI Appendix, Fig. S2, which show examples of
designed and fabricated hierarchical nanolattice geometries.

Significance

Fractal-like architectures exist in natural materials, like shells
and bone, and have drawn considerable interest because of
their mechanical robustness and damage tolerance. Developing
hierarchically designed metamaterials remains a highly sought
after task impaired mainly by limitations in fabrication tech-
niques. We created 3D hierarchical nanolattices with individual
beams comprised of multiple self-similar unit cells spanning
length scales over four orders of magnitude in fractal-like ge-
ometries. We show, through a combination of experiments and
computations, that introducing hierarchy into the architecture of
3D structural metamaterials enables the attainment of a unique
combination of properties: ultralightweight, recoverability, and
a near-linear scaling of stiffness and strength with density.
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Results
Strength and Stiffness. All fabricated samples were compressed
uniaxially in an in situ nanoindenter (InSEM; Nanomechanics
Inc.) to 50% strain before unloading. The load displacement
data for each of the samples showed an initial linear region from
which the effective loading stiffness was determined followed by
an inelastic region with behavior that varied depending on the
constituent material (Figs. 2 and 3). Failure strength and mod-
ulus were calculated as defined in Materials and Methods. Linear
elastic finite element simulations were performed on represen-
tative nanolattices to predict stiffness and local stress distributions.
Second-order half-cell samples of varying material composi-

tions were tested with densities spanning over two orders of
magnitude from ρ= 0.30    kg m−3 to ρ= 33.2    kg m−3. Individual
material systems had relative densities that spanned more than
one order of magnitude. Strength and modulus in architected
materials scale with relative density as

E=BEsρ
β [1]

and

σy =Cσysργ , [2]

where Es and σys are the constituent material’s Young’s modulus
and yield strength, respectively; B and C are geometry-dependent
proportionality constants, and β and γ are scaling constants (24).
We found the experimentally measured stiffness in the hollow
second-order half-cells to scale nearly linearly, with relative den-
sity as E= 0.015  Ehρ  1.04 and strength as σy = 0.026  σyhρ  1.17. We
found similar scaling relations for polymer and composite second-
order half-cell samples. Table 1 provides a full list of the constit-
uent material properties used and the observed scaling para-
meters; polymer and composite properties can be found in SI
Appendix, SI Materials, and Al2O3 properties were taken from
refs. 29–33.
The definition of stiffness in experiments on structural meta-

materials has been ambiguous because of various competing
deformation mechanisms at each level of hierarchy ranging from
elastic deformation to hinge-like phenomena to elastic–plastic
buckling. We performed simulations on the elastic response of
all tested second-order hierarchical nanolattices to calculate the
stiffness of polymer, composite, and hollow ceramic nanolattices
using an efficient finite element substructuring technique (Fig. 4
and SI Appendix, SI Materials) with the constituent properties
listed in Table 1. Computed scaling exponents are included in
Table 1 and show good agreement with experiments, differing by
only 6.1%, 3.3%, and 3.9% for polymer, composite and hollow

trusses, respectively. The absolute computed stiffnesses were, on
average, 10.7% lower for polymer, 30.2% higher for composite,
and 68.5% higher for hollow samples compared with experi-
mental data (Fig. 5), which hints that geometric and/or material
imperfections contribute significantly to a reduction in the ef-
fective stiffness.
We found that the strength and stiffness of the equivalently

dense hollow third-order half-cell samples were approximately a
factor of two lower than those of second-order half-cells; under
the same metric, polymer and composite samples had equivalent
strength and stiffness for second- and third-order samples. Ex-
perimental and computational results for all second- and third-
order half-cells are summarized in Fig. 5. Experiments on full
second-order nanolattices revealed that the strength and stiffness
align with second-order half-cell experiments (SI Appendix,
SI Materials).

Failure, Deformation, and Recoverability. The characteristic failure
and postyield deformation of each sample were observed to
correlate with (i) material system and (ii) architecture. We found
that the material system (i.e., polymer vs. composite vs. hollow
alumina) most strongly influenced the global deformation be-
havior and that the architecture directly affected the localization
of failure within the hierarchical beams and the global recover-
ability of the samples. Examples of all three material systems for
samples with two different orders of hierarchy are provided in
Figs. 2 and 3 (Movies S1–S6).
The postyield deformation behavior of hollow ceramic sam-

ples was ductile-like with continuous serrated flow (Figs. 2 A–C
and 3 A–C). Failure occurred through a combination of localized
elastic beam buckling in the first-order beams, shell buckling in
individual hollow tubes, and microcracking at the nodes. Of all
material systems, the hollow ceramic samples had the highest
average recovery, with samples recovering up to 85–98% of their
original height after compressions exceeding 50% strain. Failure
in the hollow samples initiated and localized primarily in indi-
vidual first-order beams oriented along the axis of second-order
beams, or referred to here as axially oriented beams. Buckling of
these axially oriented first-order beams creates a compliant re-
gion in the higher-order beams that accommodates most of the
ensuing displacement. We observed that first-order beams that
did not buckle at the onset of failure remained completely intact
during compression. On unloading, most of the beams within the
cross-section of the higher-order beams remained intact, allowing
significant global recovery. This effect is present in all hierarchical
nanolattices and does not seem to correlate with hierarchical
order. The recoverability mechanism described above is present
in all material systems to varying degrees and most pronounced in
hollow samples.

Fig. 1. Computer-aided design (CAD) and scanning
electron microscopy (SEM) images of various hier-
archical nanolattices show the versatility of the
nanolattice fabrication technique. (A) CAD images
illustrating the process of making a third-order hi-
erarchical nanolattice. A zeroth-order repeating unit,
an elliptical beam, is arranged into a first-order oc-
tahedron; it becomes the repeating unit for a second-
order octahedron of octahedra, which is then arranged
to create a third-order octahedron of octahedra of
octahedra. (B, Upper, C, Upper, D, Upper, and E, Up-
per) CAD and (B, Lower, C, Lower, D, Lower, and E,
Lower) SEM images of the various second-order sam-
ples. (Scale bars: 20 μm.) (F) SEM image of a second-
order octahedron of octahedra lattice. (Scale bar: 50 μm.)
(G) A zoomed-in image of the second-order octa-
hedron of octahedra lattice showing the first-order
repeating units that make up the structure. (Scale
bar: 10 μm.) (H) SEM image of a third-order octahe-
dron of octahedra of octahedra. (Scale bar: 25 μm.)
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The postyield deformation of polymer samples was ductile and
continuous, with samples recovering to ∼75–90% of their origi-
nal height after unloading (Figs. 2 G–I and 3 G–I). Failure in
polymer samples was governed primarily by buckling in first- and
second-order beams. Most of the composite samples failed
catastrophically by fracture of the second-order beams (Figs. 2
D–F and 3 D–F), except for the most slender samples, which
showed some recoverability (SI Appendix, Fig. S6E).
Simulations reveal the local stress distribution and expose the

load-carrying members of the hierarchical nanolattices. One
prominent feature revealed by computations is that the first-
order axially oriented beams, which comprise ∼8.1% of all of the
beams in an individual sample, carry an average of 91% of the
load, which corroborates the observation of failure initiating in
these beams. Fig. 4C illuminates the regions of high local stress
revealed by computations in second-order samples with varying
degrees of slenderness. Samples with low slenderness have stress
concentrations highly localized to the topmost first-order beams
and are more likely to experience failure there. Samples with
high slenderness have a more even stress distribution throughout

their length and are more likely to have failure initiate away from
the topmost region. This stress localization trend agrees well with
experimental observations (SI Appendix, Fig. S6).
Fig. 3 A–C shows cyclic experiments on a third-order hollow

ceramic half-cell, which revealed, after the initial loading cycle,
that the stiffness dropped from 420 to 39   N=m and that the
applied load at yield decreased from 0.77 to 0.089 mN. In the
first loading cycle, the sample recovered to 96% of the original
height on unloading; all subsequent cycles showed nearly com-
plete 100% recovery to this initial deformed height. The load
displacement data quickly reached a stable hysteretic cycling
behavior, with minimal degradation after the second loading
cycle (Fig. 3 A–C and Movie S6).

Discussion
Strength and Stiffness Scaling. Compression experiments revealed
the strength and stiffness of the second-order hierarchical half-
cells to scale nearly linearly with relative density, which follows
analytical and computational predictions for stretching-dominated

Fig. 3. Compression experiments on third-order
octahedron of octahedra of octahedra half-cells
with N = 5 and L = 8. (A) Image of the hollow 20-nm
walled Al2O3 sample before compression. (B) Load-
displacement data that show cyclic compression to
50% strain. Insets correspond to 50% strain at vari-
ous loading cycles. (C) Postcompression image of the
hollow sample. (D) Image of the composite polymer
and 20-nm Al2O3 sample before compression. (E) Load-
displacement data that show compression to 65%
strain. Inset corresponds to the sample after the oc-
currence of a strain burst. (F) Postdeformation image
of the composite sample. (G) Image of the polymer
sample before compression. (H) Load displacement
data that show compression to 50% strain. Inset cor-
responds to 50% strain. (I) Postdeformation image of
the polymer sample. (Scale bars: 50 μm.)

Fig. 2. Compression experiments on second-order
octahedron of octet half-cells with N = 15 and L = 8.
(A) Image of the hollow 20-nm walled Al2O3 sample
before compression. (B) Load displacement data
that show compression to 50% strain. Inset corre-
sponds to 50% strain. (C) Postdeformation image of
the hollow sample. (D) Image of the composite
polymer and 20-nm Al2O3 sample before compres-
sion. (E) Load displacement data that show compression
to 65% strain. Inset corresponds to the sample after the
occurrence of a strain burst. (F) Postdeformation image
of the composite sample. (G) Image of the polymer
sample before compression. (H) Load displacement data
that show compression to 50% strain. Inset corresponds
to 50% strain. (I) Postdeformation image of the polymer
sample. (Scale bars: 20 μm.)
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cellular solids (24). These results show a factor of 1.5 improve-
ment in the scaling relationship for strength and a factor of 1.6
improvement for modulus over nonhierarchical hollow Al2O3
nanolattices, and they are brought about by increasing the hier-
archy from first to second order (22) (Fig. 5). Simulations reveal
that the load in hierarchical nanolattices is carried primarily
through axially oriented first-order beams in uniaxial compres-
sion, with little contribution to the deflection from bending.
Analytical models for architected materials predict a linear
scaling of strength and stiffness with density for structures with
members that are primarily in uniaxial compression and tension
(34). This linear scaling behavior has not been previously ob-
served in hollow tube stretching-dominated nanolattices (22).
We postulate that the near-linear strength and stiffness scaling
observed in hierarchical nanolattices in this work arises from the
combination of axially loaded first-order beams and the reduced
effects of bending on global compliance. One key observation
that arises from the nearly linear scaling of strength and stiffness
is that the density of the samples can be varied indefinitely with
only minor changes in the stiffness to weight and strength to
weight ratios.
Simulations show that axially oriented beams, which comprise

8.1% of the macroscopic sample mass, carry 91% of the axial load
(Fig. 4C). This low percentage of load carrying beams suggests that
the remaining beams within the structure are underused. The un-
derutilization of nonaxially oriented beams is likely a major factor
in the observed reduction of the proportionality constants B and C
(Eqs. 1 and 2) from what is predicted analytically for an ideal
stretching-dominated solid, which have B=C≈ 0.3 (24) (Table 1).
The negative impact of underused beams could be improved
through better optimization of the hierarchical geometries.

Recoverability. The underutilization of nonaxially oriented beams
plays a significant role in the ability of hierarchical nanolattices
to recover. Axially oriented beams undergo failure at the point
of highest stress in a sample; in the absence of a catastrophic fail-
ure event, nonaxially oriented beams are able to remain intact.
Under global compression, the undamaged nonaxially oriented
first-order beams either (i) efficiently distribute strain through
bending or (ii) undergo local elastic buckling to accommodate
large global deformation without failure. A large number of
elastically deformed first-order beams enables the hierarchical
samples to globally recover. In the absence of residual strain in
the buckled beams, such as is the case in hollow nanolattices,
samples show excellent recovery behavior. The residual plastic
strain in the buckled beams of polymer nanolattices impedes
their ability to fully recover. In samples that undergo multiple
loading cycles, most of the first-order beam buckling modes are
activated in the first loading cycle; multiple loading cycles serve
to reactivate the same buckling modes, which leads to near-
perfect recoverability of the initially deformed samples. It may be
possible to remove underused beams through better optimiza-
tion of the hierarchical geometries, but such a reduction in the
nonloadbearing beams may reduce the postyield recoverability
by impeding the recovery mechanism.

Deformation and Failure. Hierarchical nanolattices failed by a
combination of different mechanisms: elastic beam buckling, shell
wall bending, brittle fracture, and viscoplastic yielding. Failure
initiates in beams through the weakest mechanism; equating the
energy necessary to activate each mechanism enables the pre-
diction of the dominant deformation mode. Previous work by
Meza et al. (22) showed enhanced recoverability in hollow Al2O3

Fig. 4. Model flowchart showing truss and refined
model generation. (A) Representative lattice geom-
etry section. (B) Creation of a truss model lattice.
(C) Example compression of truss model half-cell nano-
lattices. Stress is normalized by the maximum compres-
sive stress in the sample, and stresses jσj≤ 15% of the
maximum stress have been grayed out to help illustrate
the beams with high stresses. (D) Refined model crea-
tion process containing geometrically unique super-
nodes (SN) and superbeams (SB). (E) Example refined
model half-cell nanolattice colored by unique geometry
beam or node.

Table 1. Material properties and proportionality and scaling constants for second-order half-
cells as obtained from experiments and simulations

Material type Es (GPa) σys (MPa) BðB*Þ βðβ*Þ C γ

Polymer 2.10 62.7 0.110 (0.071) 1.12 (1.05) 0.316 1.36
Polymer + 20 nm Al2O3 15.8 509 0.050 (0.062) 1.07 (1.04) 0.236 1.32
20 nm Al2O3 165 5,200 0.015 (0.036) 1.04 (1.00) 0.026 1.17

*Stiffness constants in parentheses represent simulation results.
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nanolattices when shell buckling acts as the preferential mecha-
nism over fracture. Calculations performed on the hollow hier-
archical samples in this work show that global (Euler) beam
buckling acts as a dominant mechanism over shell buckling and
that shell buckling acts preferentially over fracture (SI Appendix,
SI Materials). This formulation implies that incipient failure initiates
through beam buckling, and subsequent deformation is accommo-
dated through shell buckling, leading to ductile-like behavior. This
prediction agrees well with experimental observations (Figs. 2 A–C
and 3 A–C). The brittleness of the Al2O3 causes large local strains
to be relieved by either elastic buckling or fracture, and because
shell buckling acts as a dominant mechanism, no residual strains are
generated in the beams after unloading, which enables the samples
to globally recover their original shape after unloading. In polymer
samples, Euler buckling of the first-order beams is the dominant
failure mechanism; the substantial postbuckled deformations gen-
erate nonnegligible residual stress in the beams, which impedes
global recovery (Figs. 2 G–I and 3 G–I). The viscoelasticity of the
polymer likely gives rise to the observed ductile load displacement
behavior. The presence of the polymer–ceramic interface in com-
posite samples suppresses buckling failure of either material and
leads to a brittle fracture of the tube walls that results in the ob-
served catastrophic collapse (Figs. 2 D–F and 3 D–F).
The large number of available failure modes in the hierar-

chical samples serves to reduce the yield strength. The activation
of both beam and shell buckling causes the nanolattices to fail at
a lower load than the yield limit, which decreases the global
strength of samples and the proportionality constant C in Eq. 2
when these mechanisms are dominant. Shell wall bending in
hollow samples generates stress concentrations near the nodes
and along the beams. The negative impact of hollow nodes
manifests itself in a twofold reduction in strength and stiffness in

the third-order hollow samples, likely brought on by the higher-
volume fraction of nodes in these samples.
The transition to buckling failure in nanolattices normally

correlates with a significant reduction in the scaling of strength
with relative density caused by the nonlinear dependence of
buckling on slenderness in low-density samples (35). In this work,
the length and aspect ratio of the first-order beams remains
unchanged for different relative density samples; the relative
density is modulated by the number of unit cells in a hierarchical
beam N, which does not negatively affect the strength scaling
with relative density.

Role of Imperfections. The marked overestimation of the absolute
stiffness obtained by the refined model simulations compared
with experiments can be explained by the presence of geometric
imperfections in the fabricated samples. Defects, like misaligned
nodes, prebending of the beams, and variations in the wall
thickness negatively impact the mechanical performance of
nanolattices (21, 22). One dominant imperfection that was ob-
served in all tested samples is sinusoidal waviness of the first-
order beams caused by the external vibrations during the two-
photon writing process. Simulations of the compression of beams
with varying degrees of waviness and material compositions
showed that, for a wave amplitude of 50 nm and a wavelength of
1 μm, the calculated effective stiffness of polymer beams de-
creased by 5%, that of the ceramic–polymer composites de-
creased by 32%, and that of the hollow ceramic beams decreased
by 70%, which serve to illustrate the increased sensitivity to
defects in the composite and hollow beams. The simulations
overpredicted the stiffnesses of composite and hollow ceramic
hierarchical lattices by 30.2% and 68.5%, respectively, which
suggests that waviness-induced defects significantly contribute to
this reduction. Model inaccuracy in underpredicting solid poly-
mer stiffness by 10.7% can likely be attributed to the uncertainty
in the polymer modulus.
We created hierarchical architected metamaterials with ex-

ceptional strength, stiffness, and damage tolerance and have
architectures comparable with those of hard biomaterials, which
derive their resilience from hierarchically arranged constituents.
We show that adding a single level of hierarchy in nanolattices
enhances the mechanical properties over simple periodic lattices,
enables more efficient load transfer, and suppresses global fail-
ure but that the addition of additional levels of hierarchy does
little to improve the mechanical properties and in some cases,
degrades them. This ability to engineer material structure on the
most fundamental length scales opens up a new design space
where material properties—mechanical, thermal, electrical,
photonic, etc.—can be controlled and tuned independently by
properly choosing (i) atomic-level microstructure, (ii) critical
material dimensions, and (iii) architecture.

Materials and Methods
Fabrication. Hierarchical nanolattices were fabricated from solid polymer,
ceramic–polymer core-shell composites, and hollow ceramic tubes. Solid
polymer lattices were written in negative photoresist (IP-Dip 780) using the
Photonic Professional TPL-DLW System (Nanoscribe GmbH). Core-shell com-
posites were created by depositing a conformal coating of 20 nm Al2O3 onto
the polymer nanolattices using atomic layer deposition in a Cambridge
Nanotech S200 ALD System with H2O and trimethylaluminum (TMA) pre-
cursors. Hollow structures were made by removing the edges of the coated
nanolattices using focused ion beam milling with the FEI Nova 200 Nanolab
and then etching out the internal polymer structure with oxygen plasma
using the Zepto Plasma Etcher (Diener GmbH), resulting in the hollow
ceramic nanolattice. More details on this process can be found in ref. 22
(SI Appendix, SI Materials).

Two sets of samples were created: (i) half-unit cells (half-cells) and (ii) full
nanolattices. Three different types of half-cells were fabricated and tested: a
second-order octahedron of octahedra (Fig. 1B), a second-order octahedron
of octets (Fig. 1C), and a third-order octahedron of octahedral of octahedra
(Fig. 1H). For the second-order structures, two different base unit cell sizes
(L) were used (8 and 12 μm), with three numbers of unit cells per fractal
beam (N): 10, 15, and 20. For the third-order samples, two different octahedron

Fig. 5. Comprehensive data plot of all tested hierarchical nanolattices.
(A) Effective Young’s modulus of the hierarchical structures plotted against
their relative density. Data are plotted for experimental (slope values are in
bold) and refined node simulations (slope values are italicized) results.
(B) Experimentally derived effective yield strength of the hierarchical nano-
lattices plotted against their relative density.
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of octahedral of octahedra were fabricated and tested with different geo-
metric configurations: a unit cell with L = 3 μm and N = 10 and one with L =
8 μm and N = 5. Three different second-order octahedron of octahedra full
nanolattices were fabricated and tested: a unit cell with L = 8 and N = 10,
one with L = 6 and N = 15, and one with L = 4 and N = 20. The inherent
limitations of the two-photon lithography fabrication methodology used to
create the nanolattices render it impractical to create materials with more
than three orders of structural hierarchy. A full list of samples and structural
parameters can be found in SI Appendix, Tables S1–S3.

Experimental Methods. In situ nanomechanical experiments were performed
in a Quanta SEM (FEI Co.) using an InSEM Nanomechanical Module (Nano-
mechanics Inc.). All samples were compressed to 50% strain at a strain rate of
10−3 s−1. The structural stiffness was estimated based on the loading slope of
the load displacement curve in the linear regime, and failure strength was
taken to be the peak applied load before failure. We calculated the Young’s
modulus by normalizing the measured loading stiffness by the sample
height divided by the footprint area. Yield strength was determined by di-
viding the measured peak load by the sample footprint area. Scaling re-
lations were obtained using an exponential best fit of the stiffness data; the
scaling is computed as the average of the fits of the two second-order half-
cell geometries: the octahedron of octets and the octahedron of octahedra.

Simulations. Modeling of hierarchical nanolattices ultimately requires simu-
lating thousands or millions of truss members while accurately resolving local
deformation and failure mechanisms at the smallest scales. For elastic loading
and stiffness predictions, simulations were performed based on a two-step
computational strategy (using Abaqus and an in-house variational-based
solid mechanics code). First, the characteristic elastic response of individual
beams and representative lattice junctions was determined by finite element
calculations using linear elastic shell and solid elements and a detailed
representation of the CAD-generated geometry of individual truss members
and junctions as shown in Fig. 4. This procedure was applied to monolithic,
hollow, and composite beams and junctions. To dramatically reduce the
number of degrees of freedom, we assume that the cross-sections of both
ends of a beam deform rigidly through kinematic constraints. Thus, the
deformation of each beam is reduced to depend only on the displacements
and rotations of its end points. Similarly, truss junctions are reduced to

depend only on the orientations of the attached truss members. Second, the
thus-obtained load-displacement relations and stiffness matrices are input
into an efficient simulation of the complete hierarchical structure based on
the reduced degrees of freedom of all beam members and junctions in the
lattice. The response of 12 second-order lattices of varying architecture was
modeled by the aforementioned procedure. Constituent Young moduli
were taken from Table 1. Poisson’s ratios of the polymer and alumina were
chosen as νp = 0.49 and νAl2O3

=0.3, respectively.
To show the importance of the exact deformation mechanisms through

fully resolved geometric models, we alternatively simulated the effective
lattice response using bar elements (for solid beams) or shell elements (for
hollow beams) without the aforementioned multiscale strategy and with the
same base material properties. Calculations of first-order beam utilization in
second-order beams were completed using the bar element model. Per-
centages of the axially aligned force carried in first-order beams relative to
the whole second-order beam were calculated by sampling the middle 40%
length of the second-order lattice beam. Axially aligned beam fractions were
taken by dividing the number of axially oriented beams by the number of
beams in the sample.

CAD Design/Relative Density. CAD Solidworks models were used to determine
the relative density of structures. The model uses measured voxel dimensions
from each structure as design parameters in conjunction with base unit cell
size and fractal number of structures. Each hierarchical repeating unit is
patterned to construct higher-order structures, and similarly, higher-order
unit cells were patterned to compose full nanolattices. The relative densities
were calculated by evaluating the ratio of the volume of the structure by that
of the solid fromwhich the cell walls aremade. A full illustration can be found
in SI Appendix, Fig. S4.
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