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Collagen gels are widely used in experiments on cell mechanics
because they mimic the extracellular matrix in physiological
conditions. Collagen gels are often characterized by their bulk
rheology; however, variations in the collagen fiber microstructure
and cell adhesion forces cause the mechanical properties to be
inhomogeneous at the cellular scale. We study the mechanics of
type I collagen on the scale of tens to hundreds of microns by
using holographic optical tweezers to apply pN forces to micro-
particles embedded in the collagen fiber network. We find that in
response to optical forces, particle displacements are inhomoge-
neous, anisotropic, and asymmetric. Gels prepared at 21 °C and
37 °C show qualitative difference in their micromechanical charac-
teristics. We also demonstrate that contracting cells remodel the
micromechanics of their surrounding extracellular matrix in a strain-
and distance-dependent manner. To further understand the micro-
mechanics of cellularized extracellular matrix, we have constructed
a computational model which reproduces the main experiment
findings.
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The mechanical properties of the extracellular matrix (ECM)
play a central role in developmental biology (1), tissue ho-

meostasis, and remodeling (2). Alteration of the ECM elasticity
is a signature of many diseases such as pulmonary and atrial fi-
brosis, Ehlers–Danlos syndrome, and infantile cortical hyperos-
tosis (3). The mechanical cues from the ECM also strongly
correlate with the clinical prognosis of various types of cancers (4).
In recent years, many studies have shown that to mimic the

physiological conditions in vitro, mechanical cues from a truly
3D ECM are necessary (5). Type I collagen gel has gained pop-
ularity as arguably the most used in vitro model of a 3D ECM
(2). As the most abundant protein in animal tissue and ac-
counting for 25% of the human whole-body protein content (6),
type I collagen is the major component of the ECM in skin,
tendon, and organs. Despite its lack of biochemical complexity
compared with live tissue, reconstituted type I collagen gel has
been successfully used to provide mechanistic insights into pro-
cesses such as morphogenesis (7), wound repair (8), and cell
migration (9). In particular, the rheology and especially the ri-
gidity of collagen gel have been shown to tune the growth and
migratory phenotypes of cancer cells in vitro (10, 11).
Structurally, collagen gels are formed by fibrous networks and

typically have pore sizes of a few to tens of microns (12–14). The
typical size of these structural discontinuities is comparable to
the size of cells and is much larger than cell–ECM adhesion
complexes (15, 16). It is therefore expected that a cell senses the
micromechanical properties of its surrounding matrix, rather
than the macroscopic rheology of the ECM (16, 17). Although
many studies have focused on the (nonlinear) bulk rheology
of empty and cellularized collagen ECM (18–22), the micro-
mechanics of the porous biopolymer network is largely un-
explored, presumably due to the lack of direct experimental
measurements.
In this paper, we report direct experimental measurements

and computational models on the mechanical response of empty
and cellularized type I collagen gel of different architectures.
Previously, we have demonstrated that as the gelation temper-
ature increases, the resulting collagen gel experiences a phase

transition from highly heterogeneous long fiber clusters to homo-
geneously distributed short fiber mesh (23). As we demonstrate, the
microscopic architecture strongly affects the micromechanics of the
collagen gel. Furthermore, we study the effects of embedded
fibroblast cells and breast cancer cells on the micromechanics of
collagen fiber networks. These experimental measurements have
led us to develop a computational model of realistic biopolymer
networks. Our results provide a largely overlooked perspective
on the studies of 3D cell–ECM mechanical interactions.

Results
To measure the micromechanical response of the collagen gel,
we apply optical forces to 3-μm-diameter polystyrene beads
embedded in the gel and record the resulting motion with ho-
lographic video microscopy. We use a computer-controlled spatial
light modulator to manipulate the laser beam (1,064-nm wave-
length) and displace the optical trap away from the equilibrium
position of the embedded particle. We turn the optical trap on and
off using an external shutter while recording video microscopy of
the bead’s motion. The beads are illuminated with a partially co-
herent light source at 625 nm, which generates concentric dif-
fraction patterns that allow us to track the particle trajectories at
high resolution (24, 25).
Fig. 1A shows a confocal reflection microscopy (CRM) (23,

26) image of a bead embedded in a collagen gel (prepared at
room temperature; Materials and Methods), and the Fig. 1A,
Inset, shows one frame of the transmitted light video microscopy
for the same bead. We analyze each video frame to obtain a time
series of the bead’s mechanical response in two dimensions, as
shown in Fig. 1B. In this case, the particle is manipulated by
displacing the optical trap 0.725 μm in the +x direction relative to
the equilibrium position of the particle. This time series illus-
trates several features of our system and of the collagen me-
chanical response: particle displacements are determined with
sub–10-nm resolution; particle displacement has components
parallel and perpendicular to the direction of the trap displace-
ment; and the residual motion during the displaced (trap on) times
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is smaller than the residual motion during the equilibrium (trap
off) times, indicating that the trap suppresses the particle’s
Brownian motion.
To complete our characterization of the micromechanical re-

sponse of an embedded bead, we repeat the above measure-
ments with the optical trap displaced in the −x, +y, and −y
directions in the image plane. The collected results for the four
directions are shown in Fig. 1C, where each dot represents data
from one video frame. Most frames correspond to either the
displaced case (trap on) or the equilibrium case (trap off), but
some frames do record transition states in between. By fitting the
time series to a pulse function, we reduce the influence of these
transition states with the result that each video yields one data
point representing the mean displacement of the particle from its
equilibrium position. The displacement Δd includes components
both parallel and perpendicular to the trap displacement. The
data for this particle illustrate that the response of the collagen
gel is off-axis, anisotropic, and asymmetric. As shown in Fig. 1D,
these features are not a result of particular choice of measure-
ment axis but indeed represent the complex micromechanical
properties of the collagen network.
We repeat the measurements described in Fig. 1 A–C for ≈ 100

particles in each collagen gel sample. The particles are seeded at
a density of ≈ 2× 105  mm−3, and all measured particles are
within a 200 × 150 × 20 μm3 volume. The particle density is
chosen to minimize particle aggregation and disruption of the
native gel structure, while still offering high resolution of the
spatial variations of the network micromechanics.
To characterize the distribution of micromechanical proper-

ties in each gel sample, we define three quantities that summa-

rize the results. For a given particle and trap location, we define
the compliance Ji as

Ji = 6πa
Δd∥i
F∥
i

, [1]

where i= 1− 4 refers to one of the four trap locations, a=1.5 μm
is the particle radius, Δd∥i is the component of the particle
displacement along the direction of the trap displacement,
F∥
i = ktðdt −Δd∥i Þ is the parallel component of the applied force,

kt ≈22 pN/μm is the harmonic optical trap stiffness, and dt =
0.725 μm is the distance of the trap from the particle’s equilibrium
position (see SI Appendix, section S1, for trap calibration). The
average of the four measurements gives the local compliance:

J =
1
4

X
i

Ji. [2]

For a linear elastic material, this definition reduces to the
standard definition of compliance, which is the inverse of the
shear modulus.
To quantify the anisotropic response, we define the anisotropy

A as the dimensionless quantity

A=
1
4J
�
Max½Ji�−Min½Ji�

�
. [3]

To quantify the off-axis response of the particles to the applied
forces, we define the directional off-axis angle

θi = tan−1
 
Δd⊥i
Δd∥i

!
, [4]

where positive angles are measured counterclockwise from the
trap displacement to the particle displacement. We also define
the off-axis angle for a given particle to be the maximum of its
directional off-axis angles:

θ=Max
�jθij�. [5]

To investigate the effect of network architecture on collagen
gel micromechanics, we examine two types of collagen gels
prepared under different conditions: one with collagen concen-
tration of 1.5 mg/mL and grown at 37 °C and the other with the
same concentration but grown at 21 °C with increased ionic
strength. Fig. 2 shows the representative results for one gel of
each type. Sample to sample variations do not change the quali-
tative behaviors reported below (for more examples, see SI Ap-
pendix, section S2). Consistent with our previous results (23),
different gelation temperatures lead to visible differences in the
microstructure of the collagen fiber network, as seen in Fig. 2A. At
37 °C, the collagen network is composed of short and thin fibers
that form a nearly homogeneous mesh with a typical pore size of
∼ 1  μm. At 21 °C, the collagen gel contains thick fiber clusters, and
the gaps between fiber clusters are on the order of tens of microns.
These structural differences cause the two gels to have sig-

nificantly different micromechanical properties. Fig. 2B shows
normalized histograms (probability distribution) for the local
compliance J of the two gels. The gel formed at 37 °C has a
compliance J that is narrowly distributed around the average
value. The gel formed at 21 °C, in contrast, has a broadly dis-
tributed local compliance.
In addition to the compliance J, the anisotropy of the local

mechanical response also exhibits a systematic dependence on
the collagen network architecture. As shown in Fig. 2C, the
distribution of the anisotropy A peaks at 0.1 for gels formed at
37 °C. For 21 °C gels, the anisotropy peaks around 0.18 and may

A

C D

B

Fig. 1. A typical micromechanical measurement of collagen gel. (A) Con-
focal reflectance image of a 3-μm-diameter particle embedded in a collagen
matrix. The collagen gel was formed at 21 °C and featured distinct fiber
clusters dispersed in a fluid medium. Inset shows one frame of the video
used to track the particle displacement. (B) Time series showing the particle
displacement in response to a pulsed 22 pN/μm optical trap placed 0.725 μm
away from the particle equilibrium position in the +x direction. (C) Two-
dimensional trajectory map of the particle response to optical traps posi-
tioned 0.725 μm away (from the particle equilibrium position) in the +x
(red), +y (green), −x (blue), and −y (pink) directions. The circles represent the
mean displacements determined by fits of the time series to a pulse function.
(D) Two-dimensional trajectory map of a particle response to optical traps
positioned in 24 evenly distributed orientations. (Inset) Two-dimensional
trajectory map of another particle in the same sample. These measurements
are done in the same way as in C except for more directions probed instead
of only four. Colors of the particle trajectories represent the orientations of
the trap positions. See also SI Appendix, section S1, for more information.
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take extreme values as high as 0.5. For both gels, the directions
of maximum (or minimum) compliance are evenly distributed
among ±x̂, ±ŷ, suggesting that the gels are macroscopically isotropic
random networks. Note that in our definition, an anisotropy of
0.5 means the compliance measured locally along different di-
rections may differ by twice as much as the average. Also note that
because we are measuring displacement in only four directions, A
is a lower bound of the compliance anisotropy. As a result, the
large discrepancies between compliances measured in different
directions further demonstrate the rich micromechanical proper-
ties beyond the expectations for a continuous elastic medium.
When probing an isotropic random biopolymer network at

scales much larger than its structure discontinuity, we expect the
mechanical response to be parallel to the probing force, or θ= 0.
This is no longer true in the case of micromechanics. As shown in
Fig. 2D, for gels formed at 37 °C, the off-axis angles tend to be
smaller, and the distribution peaks around 10° and has a tail
extending to more than 30°. For gels formed at 21 °C, the off-axis
angles tend to be greater. The distribution peaks at 30° and
broadly covers the range from 0 to extreme values as high as 70°.
Unlike θ, the probability distributions of θi are symmetric and
well approximated by normal distributions, as shown in Fig. 2D,
Inset. A surprising observation revealed by Fig. 2D is that there is
a significant fraction of probes with off-axis displacements larger
than on-axis displacements (θ> 45°), suggesting that the ECM
may be locally auxetic. Because many types of cells have mecha-
nosensitive membrane receptors that are sensitive to shear stress
(27), a large off-axis angle means the cellular contraction force in
the normal direction may activate these shear-sensing receptors as
well. To our knowledge this is a new type of mechano-feedback
between cells and their ECM. Further investigation is necessary to
uncover its implications for 3D cellular dynamics. Another ob-
servation from comparing Fig. 2 C and D is that the shapes of the
distribution functions for A and θ are similar. The normalized
correlation coefficients between A and θ are higher than 0.4 for
both types of gels, suggesting that micromechanical anisotropy and
off-axis response in collagen are closely related. On the other

hand, neither A nor θ is strongly correlated with the local com-
pliance J (correlation coefficients < 0.1 for both types of gels).
These results suggest that A and θ are good measures of the
geometric configuration of the ECM network, whereas J is mainly
determined by the elastic modulus of fibers and their cross-links.
To further investigate the spatial fluctuations of the micro-

mechanical properties of collagen gel, we generate spatial maps
of J, A, and θ with a Gaussian kernel. For each gel, we use
particles within a 10-μm range in z direction to generate spatial
maps using Gaussian weighted averages:

Uðx, yÞ=
*
exp

 
−
�
x− xi

�2 + �y− yi
�2

2σ2

!
Ui

+
, [6]

where xi, yi represent the position of probing particle i; Ui rep-
resents one of the micromechanical properties (J, A, or θ) mea-
sured for particle i; and σ =10 μm. Fig. 3 compares the spatial
maps for gels formed at 37 °C and 21 °C. Due to the finite density
of probing particles, these maps are low-pass–filtered represen-
tations of the spatial distributions. Nonetheless, it is evident that
gels formed at lower temperature have greater spatial variations
compared with gels formed at higher temperature. Also note that
the anisotropy A and the off-axis angle θ are spatially correlated.
When the collagen matrix is populated by cells, the cellular

contraction forces may deform the local network microstruc-
tures. Therefore, we expect the micromechanical properties of
a cellularized collagen gel to be remodeled by embedded cells
(28–30). To test this hypothesis, we seed strongly contracting
mesenchymal cells (mouse fibroblast cells NIH 3T3 and human
breast cancer cells MDA-MB-231) in the collagen matrix at low
density and measure the micromechanical response around a
single isolated cell. Fig. 4A shows the actin cytoskeleton of a
MDA-MB-231 cell in a 3D collagen matrix. Unlike in 2D cul-
tures, stress fibers are not apparent, and polymerized actin (as
labeled by phallotoxins) is concentrated at the cell membrane.
The cell exhibits small membrane protrusions that are actin-rich
and presumably stabilized by cell–ECM adhesions (Fig. 4A, ar-
rows). We measure the displacement of probing particles around
each cell when perturbed by holographic optical tweezers as
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described above. To further elucidate the role of the cell con-
traction forces, we measure the mechanical response of each
particle before and after we biochemically disrupt the cell actin
cytoskeleton with cytochalasin D, which suppresses the contraction
forces and restores the collagen network to a stress-free state.
From these measurements, we calculate the local compliance
Jcell and Jfree before and after cytochalasin D treatment, as well as
Acell, Afree, θcell, and θfree. We have repeated the experiment on
seven samples (three NIH 3T3 and four MDA-MB-231) with
more than 100 probing particles in total.
We find that the effect of cells on the local compliance is

spatially dependent. Fig. 4B shows the spatial variation of the
change of local compliance jΔJj

Jfree
ðrÞ, where ΔJ = Jcell − Jfree and r

is the distance between the probing particle and cell mem-
brane as determined from confocal image stacks. The change of
compliance gradually decrease as r increases and remains sig-
nificant (∼ 20%) as far as 80 μm away from the cell. When r is
small (r<10 μm), the change of local compliance is suppressed
by the mechanical property of the cell itself, which is more rigid
than the local collagen matrix. This explains the nonmonotonic
trend shown in Fig. 4B and is also confirmed by numerical
simulations below. We have also obtained statistics of changes
in the local mechanical properties. As shown in Fig. 4B, Inset,
from the cumulative probability of ΔJ

Jfree
(red) and ΔA (blue), we find

that the cells tend to stiffen their local ECM (> 65% probes) and
increase ECM anisotropy (> 62% probes).
To further elucidate the role of cell contraction forces in

remodeling the local mechanics of the ECM, we have measured
the strain field generated by the cells embedded in collagen gels
with 3D particle tracking velocimetry (SI Appendix, section S3).
A typical result is shown in Fig. 4C. Two confocal slices at dif-

ferent depths are plotted with (2D projections) contours of strain
magnitude and arrows of deformation field. To facilitate imaging,
we have fluorescently labeled the cells (Materials and Methods) as
shown in the top slice. The strain field is not symmetric and is
strongly correlated with the cell morphology (31). The magnitude
of the strain field represents the change of microstructure, and we
expect that larger strain correlates with more significant changes
of micromechanical properties. Indeed, as shown in Fig. 4D, the
relative change of compliance jΔJj

Jfree
increases monotonically with

strain magnitude. At the same time, larger strain also increases the
micromechanical anisotropy (Fig. 4D, Inset). From these results, it
is evident that cells actively remodel the micromechanics of their
3D ECM. These effects propagate as far as ∼80 μm away from
the cell, mediated by the strain fields generated by cellular
contraction forces.
To provide fundamental understanding of the micromechanical

measurements, we have developed a 2D lattice-based computa-
tional model. Our model is constructed on a triangular lattice. As
described previously (21, 32, 33), triangular lattice models have
successfully reproduced many bulk mechanical features of bio-
polymer networks, such as strain stiffening, the bending–stretching
transition, and shear-induced fiber alignment. However, the utility
of triangular lattice models in understanding ECM micro-
mechanics has not been reported to our knowledge.
The network construction has been described in detail previously

(32, 34). Briefly, on a regular triangular lattice, each bond is of length
a and is present with probability p. Straight lines in this lattice, which
have average length ð1− pÞ−1, are identified as fibers with stretching
stiffness k and bending stiffness κ. The lattice sites are freely rotating
crosslinks. The Hamiltonian of the entire network is

Eelastic =
k
2a

X
hiji

gij
�jRijj− a

�2 + κ

2a

X
hijki

gij gjkΔθ2ijk, [7]

where gij = 1 for bonds that are present and 0 for removed ones.
The first term is the stretching energy; jRijj is the distance be-
tween sites i and j in the deformed state. The second term is
the bending energy; hijki labels three consecutive sites along a
straight line in the reference state, and Δθijk is the change of
angle along the fiber. We vary the value of the relative bending
stiffness κ=ðka2Þ, ranging from 10−4 to 10−2. This is consistent
with what is expected for actual collagen fibers because the ratio
κ=ðka2Þ is of the order of ðd=aÞ2, where d and a are the diameter
and mesh size obtained when modeling the fibers as simple elas-
tic rods (22). Previous studies report an average connectivity
(number of fiber segments meeting at a junction) of z≈ 3.4;
therefore, we set p= 0.55≈ 3.4=6 in our model (19, 35). To simu-
late collagen networks of qualitatively different microstructures,
following the above construction, we apply the Metropolis–Hastings
algorithm (SI Appendix, section S4), which controls network het-
erogeneity through an effective temperature Teff. Consistent with
our previous experimental results (23), at higher effective tem-
perature, the network consists of short and thin fibers. At low
effective temperatures, the network contains thick fiber clusters.
Generally, the heterogeneity of the network monotonically de-
creases as Teff increases.
We model a probing particle as a circular hole in the lattice

network with its boundary connecting to neighboring bonds
(Fig. 5A) and the optical trap as a quadratic potential well:
Etrap = 1

2 kp ·ΔL
2. Thus, the total Hamiltonian becomes Etotal =

Eelastic +Etrap. The equilibrium state of the network is calculated
by applying the conjugate gradient method, which allows us to
extract particle displacements analogous to those measured di-
rectly in the experiments. As shown in Fig. 5 B–D, the distri-
butions of compliance J, anisotropy A, and off-axis angle θ for
networks formed at two different effective temperatures dem-
onstrate the same trends as the experimental results and to
some extent agree quantitatively with Fig. 2 B–D. Moreover, we
find in our simulations that networks formed at lower Teff have

A B

DC

Fig. 4. ECM micromechanical properties are remodeled by cell contraction
forces. (A) Three-dimensional reconstruction of a MDA-MB-231 cell embed-
ded in a collagen matrix based on its F-actin immunofluorescence. Left Inset
and Right Inset show the confocal slices with simultaneous imaging of actin
(red) and collagen fibers (green) of the same cell. (Scale bars: 50 μm.)
(B) Relative change of local compliance ( jΔJjJfree

) as a function of probe-to-cell
distance (r). (Inset) Cumulative probability of ΔJ

Jfree
(red) and ΔA (blue). A

vertical line intersects the two curves at jΔJj
Jfree

= 0 and ΔA= 0. (C) Two confocal
slices of a typical sample. The slices are separated by 12.5 μm along the
optical axis. The top slice shows the fluorescently labeled cell (white on black
background) and the strain magnitude contours. The bottom slice shows the
bright-field (nondescanned channel) image of the same cell (outlined in black
curve) and the deformation field caused by cell contraction forces. The color of
the contours and the arrows are scaled linearly (blue to yellow) with the mag-
nitude of strain field (0–11%) and the deformation field (0–3 μm). (D) Relative
change of the local compliance (jΔJjJfree

) as a function of local strain magnitude.
(Inset) ΔA as a function of local strain magnitude. Error bars in B and D are SDs.
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greater spatial variations in their micromechanical properties
(SI Appendix, section S4), which is consistent with the experimental
measurements.
To simulate a cellularized collagen network, we model a con-

tracting cell as an ellipse (aspect ratio 5:1 as obtained from
typical cell morphology in experiments) embedded in the net-
work and shorten the bond lengths isotropically of any bonds
inside the ellipse (36, 37) (Fig. 6A). Similar to our experimental
measurements, we have compared the micromechanical com-
pliance with (Jcell) and without cell contraction (Jfree). As shown in
Fig. 6B, the relative change of compliance jΔJj

Jfree
measured at varying

distances from the cell agrees well with the experimental results. As
detailed in SI Appendix, section S5, this nonmonotonic behavior
can be explained by the intrinsic rigidity of the cell, which exists
even in the absence of contractive forces. Using our computational
model, we have further examined the directional dependence of
jΔJj
Jfree

. As shown in Fig. 6 C and D, similar trends are observed along
both the long and short axes. However, the magnitudes differ by as
much as 50%. This difference explains the relatively large error bar
in Fig. 6B.
The above results demonstrate that triangular lattice models

and their extensions capture the main features of the micro-
mechanics of cellularized collagen gel. The rich micromechanical
properties are intrinsically tied to the microstructure of the fiber
network, as well as the stress states determined by the dynamic
cell–ECM interactions.

Discussion
We have reported on the experimental and computational studies
to elucidate the micromechanics of cellularized collagen networks.
We have demonstrated that when probing scales smaller than the
structure discreteness, rich mechanical properties are observed
beyond the predictions of micro or bulk rheology. Although these
properties are microscopic measurables, they are determined by
the network configuration on a larger scale (∼ 20 times the

mesh size determined from simulation). Therefore, the ECM
microstructure has a significant effect on ECM micromechanical
characteristics, as we have confirmed both experimentally and by
simulation. In particular, the sharply distributed micromechanical
compliance J for collagen gels grown at 37 °C agrees with the value
measured from bulk rheology (such as in ref. 35). In these cases, gel
pore sizes are typically smaller than the probing particles, and we
expect the continuous medium assumption together with Eq. 1 to
be a good approximation. However, for collagen gels which have
large spatial heterogeneities and pore sizes, the bulk rheology
becomes a poor predictor of micromechanics. Indeed, although gels
grown at 21 °C typically have a smaller bulk compliance compared
with 37 °C gels (18, 35), the average of micromechanical compli-
ance shows the opposite. The breakdown of continuum assumption
is evident from the broad distribution of J shown in Fig. 2. In this
case, we expect that bulk rheology and micromechanics probe dif-
ferent physical properties of the collagen network.
We have shown that a relatively simple model of collagen gels

can capture many features of the experimental data. The model
is based on a 2D lattice and is not meant to be a precise match
to the 3D sample. Instead, it serves as a way to make sense of
the general properties of fiber-based bending-dominated elastic
systems. These systems have well-understood macroscopic proper-
ties such as strain stiffening and nonlinear differential Poisson ratios
that emerge from this model class, and we show here for the first
time to our knowledge that the micromechanical properties can
also be successfully modeled, both with and without embedded
cells. Of particular interest is the difference between high- and low-
temperature gels, seen both in the data and in our simulations;
there is a pronounced increase in local mechanical variability for
the gels that are created at low temperature, connected to their
increased structural variability. We should note that the model
underpredicts the extent of this variability for the compliance data.
This may be due to the fact that in our model the bonds have a
fixed elastic response independent of temperature, which results in
a temperature-independent average compliance, as opposed to the
net change in mean compliance seen in the data. Our focus here is
on the variance for which the model does reflect the correct physics
resulting from the differing network heterogeneity.
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Fig. 5. Simulation results of the micromechanics of biopolymer networks.
(A) The micromechanical response of the network. Whole simulation net-
work is 150 × 150 bound length. A probing particle (centered at the pink
dot) embedded in a stress-free network (gray dashed lines) moves to a new
equilibrium position (black dot and blue circle) and deforms its surrounding
matrix (red lines) in response to the force of an optical trap (centered at
green star). (B) Normalized histogram of compliance J for lattice network
grown at high effective temperature (Teff = 50; Upper) and at low effective
temperature (Teff = 10; Lower). (C) Normalized histogram of anisotropy A
for a lattice network grown at Teff =50 (Upper) and Teff = 10 (Lower).
(D) Normalized histogram of off-axis angles θ for a lattice network grown at
Teff = 50 (Upper) and Teff = 10 (Lower).
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D

Fig. 6. Simulation results of the cellularized collagen network micro-
mechanics. (A) The equilibrium configuration of a cellularized network. The
green ellipse in the center stands for a contractive cell. The blue dashed lines
divide the whole space into four parts. Top and bottom parts are in the short
axis direction, and left and right parts are in the long axis direction.
(B) Relative change of compliance J, jΔJj

Jfree
as a function of distance r (in units of

bound length a) from the cell. (C) jΔJj
Jfree

as a function of distance in the short axis
direction (rs=a). (D)

jΔJj
Jfree

as a function of distance in the long axis direction (rl=a).

Jones et al. PNAS | Published online August 31, 2015 | E5121

PH
YS

IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509663112/-/DCSupplemental/pnas.1509663112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509663112/-/DCSupplemental/pnas.1509663112.sapp.pdf


We have applied a 2D model rather than 3D in this study for
computational complexity consideration. It is worth noting that
continuum elasticity in 2D allows mechanical perturbation to
propagate longer range than its counterpart in 3D. This possibly
suggests an overestimation of the range of the effects shown in
Fig. 6. However, previous studies on the breakdown of contin-
uum elasticity in fiber matrices have shown anomalous, long-
range deviations from continuum elasticity in 2D matrices (38,
39). Therefore, it is natural to expect the fiber nature could also
result in long-range noncontinuum effects in 3D. In this sense,
our 2D model is enlightening to understand micromechanics of
real 3D biopolymer networks.
When collagen gels are populated by contractive cells, the

micromechanical properties are significantly altered locally. For
NIH 3T3 and MDA-MB-231 cells, the effects can be seen as far
as 100 μm away for gels at collagen density of 2 mg/mL This is
consistent with the observation that bulk rheology of collagen
gels is modified at high embedding cell densities (20). The micro-
mechanical remodeling is highly correlated with the strain field
created by the cellular contraction forces, thus further illustrat-
ing the close structure–property relation at microscopic scales.
Reciprocally, micromechanics, more directly than the bulk rhe-
ology of ECM, regulates the morphology, migration, proliferation,
and differentiation of embedded cells (40, 41). Therefore, we ex-
pect that micromechanical heterogeneity is a key factor that con-
tributes to the heterogeneous cellular behaviors observed even
in the same 3D culture environment (42, 43). Our experimental
and computational approaches provide a way of further inves-
tigating these effects.

Materials and Methods
Preparing and Imaging Collagen Gel. Collagen gels are prepared from high-
concentration rat tail collagen I in acetic acid (Corning; 10–11 mg/mL). The
collagen is diluted with dH2 O (for 21 °C gel) or DMEM growth medium (for
37 °C gel), 10× PBS, and 0.1 N NaOH to a final concentration of 1.5 mg/mL
and a pH of 7.4. Confocal reflection microscopy images of the collagen gels
are taken using an inverted laser scanning confocal microscope (Leica TCS
SPE) with either a 20× or 40× oil immersion objective.

Three-Dimensional Cell Culture and Staining. NIH 3T3 mouse fibroblast and
MBA-MB-231 human breast cancer cells are suspended at very low density in
neutralized collagen solutions. The suspension is then immediately transfered
to gridded glass bottom dishes (ibidi μ-dish Grid-50) and incubated in a tissue
culture incubator [37 °C, 5% (vol/vol) CO2] for at least 24 h before staining or
micromechanical measurements. Actin staining is done using Alexa Fluor 488
phalloidin dye (Life Technologies) on fixed samples. For cellularized collagen
gel, micromechanical measurements with active contraction forces are fol-
lowed by staining the cell using CellTracker Green dye (Life Technologies).
We then perform confocal imaging before and after cytochalasin D (Sigma
Aldrich; 10 μg/mL in PBS) treatment for 1–2 h. Micromechanical measure-
ments are then conducted again with the same probing particles.

Holographic Optical Tweezers. See SI Appendix, section S1, for more details.
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