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Research on the dynamics of reward-based, goal-directed decision
making has largely focused on simple choice, where participants
decide among a set of unitary, mutually exclusive options. Recent
work suggests that the deliberation process underlying simple choice
can be understood in terms of evidence integration: Noisy evidence
in favor of each option accrues over time, until the evidence in favor
of one option is significantly greater than the rest. However, real-life
decisions often involve not one, but several steps of action, requiring
a consideration of cumulative rewards and a sensitivity to recursive
decision structure. We present results from two experiments that
leveraged techniques previously applied to simple choice to shed
light on the deliberation process underlying multistep choice. We
interpret the results from these experiments in terms of a new com-
putational model, which extends the evidence accumulation perspec-
tive to multiple steps of action.

reward-based decision making | drift-diffusion model |
reinforcement learning

magine a customer standing at the counter in an ice cream

shop, deliberating among the available flavors. Such a scenario
exemplifies “simple choice,” a decision situation in which the ob-
jective is to select among a set of individual, immediate outcomes,
each carrying a different reward. Simple choice, in this sense, has
provided a convenient focus for a great deal of work in behavioral
economics and decision neuroscience (1-5). However, it would be
an obvious mistake to treat it as an exhaustive model of reward-
based decision making. The decisions that arise in everyday life are
of course often more complicated. One important difference,
among others, is that everyday decisions tend to involve sequences
of actions and outcomes.

As an illustration, let us return to the ice cream customer,
picturing him at a point slightly earlier in the day, exiting his
home in quest of something sweet. Upon reaching the sidewalk,
he faces a decision between heading left toward the ice cream
shop, or heading right toward a frozen yogurt shop. If he wishes
to fully evaluate the relative appeal of these two options, he must
answer a second set of questions: Which flavor would he choose
in each shop? Furthermore, it may be relevant for him to consider
more immediate consequences of the left-right decision. For exam-
ple, the leftward path might pass by a bank, allowing him to deposit
a check along his way, whereas the rightward path might lead by
the post office, giving him the opportunity to mail a package.

Rather than selecting among individual and immediate out-
comes, the decision maker in this scenario finds himself at the
root of a decision tree (Fig. 14), with nodes corresponding to
value-laden outcomes or states, and edges corresponding to choice-
induced state transitions. Deciding among immediate actions, even
at the first branch point, requires a consideration of all of the paths
that unfold below. Decision making thus assumes the form of re-
ward-based tree search (6-10).

Note that decision making in this setting cannot be reduced to
a collection of independent simple-choice problems. In particu-
lar, deciding between first-stage outcomes (bank vs. post office)
may backfire if one fails to consider the later choices to which they
lead; one must consider total rather than piecewise reward. Fur-
thermore, to choose among immediate actions, one must do more
than merely consider later decisions. One must actually make those
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decisions, because the expected value of immediate behavior de-
pends on plans for subsequent action. For example, the post office
route may be preferable to the bank route if the anticipated food
choices are vanilla ice cream and strawberry yogurt, but this might
reverse if the choices are vanilla ice cream and mango yogurt (Fig.
1A). Thus, unlike simple choice, reward-based tree search entails
both cumulative and recursive structure.

The problem of reward-based tree search has long provided a
central focus for work in control theory, operations research,
artificial intelligence, and machine learning. Only more recently
has it begun to receive due attention in psychology and neuro-
science. In the most salient work along these lines, reward-based
tree search has been conceptualized in terms provided by model-
based reinforcement learning, a computational framework in which
reward-based decisions are based on an explicit model of the choice
problem, a “cognitive map” of the decision tree itself (11). Under
this rubric, recent work has illuminated several aspects of reward-
based tree search, providing an indication of how representations of
decision problems are acquired and updated (12-14), where in the
brain relevant quantities (e.g., cumulative rewards) are represented
(15-17), and how model-based decision making interacts with
simpler, habit-based choice mechanisms (15, 18-22).

Despite such advances, however, comparatively little progress
has so far been made toward characterizing the concrete process by
which model-based decisions are reached, that is, the actual pro-
cedure through which a representation of the decision problem is
translated into a choice (9, 10, 23). This situation contrasts sharply
with what one finds in the literature on simple choice, where a
number of detailed process models have been proposed. Although
important differences exist, current models of simple choice con-
verge on a common evidence-integration paradigm (1-5, 24-26).
Here, each choice option is associated with a specific utility, but
this quantity can only be accessed through a noisy sampling
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Fig. 1. (A) Reward-based tree search entails both cumulative and recursive
structure. Choosing between the first-stage outcomes in isolation (bank vs.
post office) would lead to suboptimal behavior: Although the post office is
more rewarding (2 vs. 1), the optimal path entails going through the bank to
get to the chocolate ice cream (total reward of 6). However, choosing the bank
is optimal only if chocolate ice cream is going to be selected in the ice cream
shop, or vanilla ice cream is going to be selected in the ice cream shop and
mango yogurt in the yogurt shop. If vanilla ice cream and strawberry yogurt
are to be selected, the path through the post office is preferable. (B) Decision
tree used in experiment 1. Each node is a state, and each arrow an action.
Participants start in the state marked by an open circle. States marked by a
closed circle contain reward. (C) Decision tree used in experiment 2.

procedure. This procedure involves collecting a series of samples
for each choice option and integrating across them until the ac-
cumulated evidence in favor of one option is significantly greater
than the rest. This evidence-integration framework, often imple-
mented in the form of a drift-diffusion process, accounts for de-
tailed behavioral data, both at the level of reaction times and
choice probabilities (2-4).

In the present paper, we aim to extend these advances to the
domain of reward-based tree search, by introducing and testing a
process model of multistage decision making. Our specific pro-
posal is that the evidence-integration framework that has been so
successful in explaining simple choice can in fact be directly
extended to reward-based tree search. We begin by sketching an
evidence-integration model for sequential decision making. We
then present results from two behavioral experiments that pro-
vide an empirical foundation for evaluating the proposed com-
putational account. Leveraging the resulting reaction time and
choice proportion data, we compare the proposed model with a
range of variants and alternatives.

Results

Computational Model. As in previous studies of decision dynamics,
we aimed to develop a model that can simultaneously capture the
pattern of choices and reaction times. Although the complexity of
moving from one-stage to multistage choice seems formidable, one
particularly simple solution is to treat the problem as a single-stage
decision between the paths of the corresponding decision tree.
Here, by “path” we mean a single trajectory down from the top of
the tree to a terminal node at the bottom of the tree. Although it is
simple, we will show that this model provides a better description
of the data than a number of appealing alternatives.

More concretely, at the root of a decision tree, each path is
treated as an independent competitor. The evidence for each be-
gins at zero and on each iteration of the deliberation process grows
in proportion to the sum of all of the single-stage rewards that can
be accumulated along the path. As in models of simple choice
(2-4), the reward information retrieved for each individual item is
noisy, and multiple samples have to be collected to make a de-
cision. A decision is made when the evidence in favor of one path is
significantly greater than the evidence for all of the other paths
[“best vs. next” (4, 27)].

Because competition is between paths, the model thus far
makes the prediction that participants make a decision once at the
root of the tree and then play out the entire sequence of chosen
moves. To foreshadow the results, however, the data suggest that
decisions are further revised at subsequent stages. As such, we
amend the model to output each stage of the decision separately,
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with surviving paths continuing to compete at the next stage until a
higher evidence threshold is reached.

A formal description of the model can be found in Supporting
Information. Presently, we describe two experiments that were
designed to test the model.

Experiment 1. Our strategy in both experiments was to directly
extend methods that have been successfully applied to simple
choice. Participants started by rating a set of 270 items (board games,
electronics, etc.) on a five-point scale (04 in experiment 1 and 1-5 in
experiment 2). This was followed by a series of decision trials in
which participants were asked to choose the items they would most
prefer to receive given the structure of the decision problem. The
structure used in experiment 1 is illustrated schematically in Fig. 1B
and represents what is perhaps the simplest possible extension of
one-stage binary choice to the multistage domain. Participants made
either one or two binary (left/right) decisions on each trial. The first
decision committed them to at least one item on the corresponding
side of the screen. One side had a further left/right decision, allowing
participants to select a second item from among two others. The
other side had a forced left/right “decision” committing participants
to a particular item. An example is shown in Fig. 2. Importantly,
participants had access to the full structure of the problem, in-
cluding reward information at both stages, when making their
first-stage decision. The first-stage decision should thus, in prin-
ciple, reflect the influence of all of this information.

Similar to studies of simple choice, the dependent variables
that are of interest are choice accuracy (or consistency, that is,
how often participants chose the higher rated items) and re-
action time. However, the independent variable must be speci-
fied with care. The first impulse is to use the full structure of the
decision tree (i.e., the conjunction of all item ratings). However,
if one notes that it is possible for five different ratings to appear
in each of the five positions, even when the symmetry of the
branches at both stages is taken into account, this yields very few
trials for each tree configuration. Work on simple binary choice
has focused on using the difference between item ratings as the
independent variable. This represents a measure of decision
difficulty, with larger differences resulting in faster and more
accurate decisions (2, 3). We derive a similar measure for our
two-stage problem by collapsing across time and treating the
problem as a comparison between the three pairs of items, as
assumed in the process model proposed above. The value of each
pair is taken to be the sum of the ratings in that pair. One
measure of difficulty then, following work on multialternative
simple choice (4), is the difference between the maximum value
and the mean of the other two values. The solid lines in Fig. 3 4
and D plot choice accuracy and reaction time for the first-stage
decision as a function of this measure. Accuracy increases and
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Fig. 2. Example of a trial in experiment 1 (compare with Fig. 1B). Partici-
pants start with the screen on the far left and are faced with a left/right
decision. If they select the right side, they would be committing to the mug,
and would then have to input a second decision choosing between the tent
and beach chair. The choice is confirmed on the last screen (in this case, the
participant chose left, committing to the tent). If they choose left at the first
stage, they would be committing to the office chair and would be forced to
input left again to get the umbrella.
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Fig. 3. Results of experiment 1. Empirical data appear in blue with solid lines and the winning model in orange with dashed lines. Bars represent within-
subject confidence intervals (28). In the figure and in the following description, “value” refers to the sum of the ratings along one path of the decision tree.
(A) First-stage choice accuracy as a function of the difference between the maximum value and average of the other two values. A trial is considered correct if
the first-stage choice does not rule out the optimal path. (B) Second-stage choice accuracy as a function of the absolute difference between the ratings of the
items remaining at the second stage. A trial is considered correct if the higher-rated item is selected. Only trials where a second-stage choice had to be made
are included. (C) First-stage reaction time for correct trials. A trial is considered correct if the best overall path was selected. (D) Second-stage reaction time for
correct trials. A trial is considered correct if the best overall path was selected. (E) First-stage reaction time for correct trials, as defined in Cand D, as a function
of the paths that appear together in the tree. For example, “Max and second best” means that the two paths with the two largest values were grouped on
one side (pressing left or pressing right at the first stage, depending on the paths’ location, would leave both of them in play), and the smaller-valued path
was on the other side by itself. (F) Overall choice accuracy, taking both stages into account.

reaction time decreases as decisions get easier, suggesting that the
measure we adopted provides a valid index of decision difficulty.

We can look at choice accuracy and reaction time for the
second-stage decision as a function of the difference in ratings
for the remaining two items. They are plotted in Fig. 3 B and E,
which resemble the pattern of results typically seen in simple
binary choice. Although small, the reaction time effect is sig-
nificant [F(3,87) =8.30, P < 6.44e-5]. Importantly, the reaction
time effect suggests that the second stage involves further de-
liberation and not simply playback of a motor plan prepared at
the first stage. We further test this possibility below by comparing
a number of one-stage deliberation models that can potentially
mimic this effect with our primary model.

Fig. 3C provides a different look at first-stage reaction times,
plotting them as a function of the internal organization of the
decision tree. We distinguish between three configurations:
(#) The most valuable path appears by itself on one side of the
tree; (i7) the most valuable and the second most valuable paths
appear on the same side of the tree, sharing the same first-stage
choice; and (jii) the most valuable and least valuable paths appear
on the same side. The differences in reaction times across these
cases reflect differences in the distribution of decision difficulties
for these three groupings of the data (Fig. S1). However, there may
be an additional contributing factor: When most of the “mass” is
on one side of the tree (e.g., when the most valuable and second
most valuable paths lie on the same side), participants may com-
plete their decision at the first stage before deciding what to do at
the second stage. This window into the data serves as an additional
constraint for model evaluation, as discussed below.

Finally, Fig. 3F plots overall choice accuracy, taking both
stages of action into account.

Experiment 2. The second experiment was similar to the first, ex-
cept that both sides of the decision tree had a second-stage de-
cision (Fig. 1C). The goal was to replicate the first set of findings
and modeling results with a new set of participants, while also
testing the model’s ability to account for an additional path in the
tree. The data are shown in Fig. 4, with results closely paralleling
those shown in Fig. 3 for experiment 1. The second-stage reaction
time effect is again significant [F(3,87) =30.77,P < 1.19e-13].
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Model Evaluation. A straightforward implementation of the pro-
posed model provides tight fits to the data for both experiments
(Figs. 3 and 4). It should be noted that although the figures display
summary statistics, the model is simulating 1,304 different condi-
tions (tree configurations) in experiment 1 and 2,043 different
conditions in experiment 2. Best fitting model parameters are
displayed in Table S1.

We used Bayesian model comparison to test the model against
a number of alternatives and variants, which we briefly describe
next. Details can be found in Supporting Information. Each model
was fit separately to each experiment, with the resulting BIC (29)
(Bayesian information criterion) values displayed in Table S2.

Forward Greedy Search. The presence of a reaction time effect at
both stages leaves open the possibility that participants make de-
cisions one stage at a time, rather than in parallel. Decisions seem
informed in the aggregate because values and single-stage rewards
are correlated (values are summed single-stage rewards). Although
this seems unlikely given the very fast reaction times at stage two,
we formally test this possibility. In particular, the first model as-
sumes that decisions are made in a greedy fashion: Participants
decide only between the top-level items during the first stage and
then decide between the remaining two items during the second
stage. The search is “greedy” in that the best decision is made at
each stage without looking ahead.

Backward Search. Forward search is an example of a typical search
strategy in classic artificial intelligence formulations of planning
(30). Another strategy is backward search, which reasons backward
from potential goal states to the current state. Unlike forward
greedy search, this approach is optimal because it takes into ac-
count information at all levels: It starts by asking what is best at the
end, and then reasons about the best way to get there.

Neither forward nor backward search provides a better fit than
the primary model (Table S2).

One-Stage Parallel Integration with Vigor. Both response (31, 32)
and movement (33, 34) vigor (the speeds at which participants
initiate and carry out an action) are thought to be modulated by
reward. The next set of models test the possibility that the sec-
ond-stage reaction time effect can be explained based on these
principles alone, without the need for continued deliberation.

Solway and Botvinick
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Fig. 4. Results of experiment 2. (A-F) The panels parallel those of Fig. 3 for experiment 1.

The first model is similar to the primary model during the first
stage, with parallel deliberation between decision paths. How-
ever, no further processing takes place during the second stage.
Reaction time at both stages is negatively modulated by the re-
ward associated with the chosen item, with larger rewards re-
sulting in faster decisions. We tested versions of the model with
the slope of the vigor effect constrained to be the same between
the two stages, and with the slope allowed to vary.

One-Stage Parallel Integration with Vigor and Rating Noise. All of
the models considered so far treat the rating for each item as the
ground truth representation of reward. However, preferences are
likely to be noisy, and this noise may contribute to accuracy effects
at both stages. The next model is equivalent to the above vigor
model with a single slope parameter, but the reward associated
with each item is drawn on each trial from a Gaussian distribution
centered on the item’s rating. This allows for a simultaneous test
of the two likely alternative explanations driving stage-two effects
if no deliberation takes place there.

None of the three one-stage parallel integration models pro-
vided a better fit than our primary model (Table S2). The reason
can be seen in Fig. S2: Because there is no deliberation at stage
two, the models underestimate the level of choice accuracy seen
there in both experiments.

Two Stages with Correlated Paths. We now turn to a series of more
subtle variations of our primary model. The primary model treats
each path as an independent competitor, but this ignores the
structure of the decision tree. Because each item at the top level
appears in two paths, it could be the case that reward for these
items is sampled only once per iteration, with the samples con-
tributing to both of the corresponding paths. This means that noise
is correlated between the paths: Paths that remain after going left
at the first stage share noise from sampling the top left item, and
similarly on the right.

This variant also performs worse for both experiments (Table
S2). Because only the bottom-level items drive the resolution
between paths on each side of the tree, these items have to be
relatively disentangled before progressing to the second stage
(with uncorrelated noise, noise at the top level can also push the
evidence for a path above threshold). Furthermore, the amount of
noise affecting competition between paths on each side of the tree
is half that affecting competition between paths on opposite sides.
These features of the model predict higher-than-expected second-
stage choice accuracy even without additional deliberation (Fig. S3
A and B), and this in turn predicts a flat second-stage reaction
time curve (Fig. S3 C and D).

Solway and Botvinick

Two Stages with Pruning. Both the uncorrelated and correlated
noise versions of the primary model posses another potential
inefficiency: For some trials, it is possible to make a first-stage
decision and prune away part of the decision tree before the
second-stage decision is complete. This is especially easy to
imagine when paths corresponding to the maximum and second-
best values appear together on the same side. Participants may
decide they will select one of these paths before deciding which
one, allowing them to prune away the other side of the tree. For
example, consider again the trial shown in Fig. 2. If the umbrella
has a relatively low rating, the participant may decide after some
time that it is the worst option, and that having the office chair
does not compensate for it. This path could then be discarded
from further consideration, allowing the deliberation process to
concentrate on the difference between the tent and the beach
chair on the right side.

The next two models implement this idea. They are identical to the
independent and correlated noise versions of the primary model
discussed above, but they have a second decision rule for the first
stage. It says that a decision is made when the minimum integrator on
one side of the tree is a threshold amount greater than the maximum
integrator on the other side of the tree. A decision is rendered when
either the new or old rule applies, whichever occurs first.

Both pruning models make a qualitatively different prediction
for experiment 1 compared with what is seen in the data. They
suggest that deliberation is fastest when the best and second-best
paths appear on the same side of the tree (Fig. S4, compare with
Fig. 3C). The reason is intuitive: When the two best paths are on
the same side of the tree, the pruning mechanism is more likely
to end the first-stage deliberation early. In contrast, the pruning
mechanism cannot fire at all on correct trials when the best path
is by itself (“Max alone”).

Two Stages with Single Drift Rate. The primary model presented
first beat out all of the variants considered so far. We attempted
to simplify the model further by having one rather than two
separate drift rates for evidence accumulation. The simplified
version suggests that exactly the same integration process con-
tinues during the second stage, similar to work on simple choice
that shows that evidence can continue to accumulate and affect
decisions after an initial response is initiated (35). However, this
version of the model underestimates choice accuracy at the
second stage (Fig. SS5), where a different and faster rate of ac-
cumulation is necessary to explain the data.

Finally, we tested a model in which the average of the second-
stage rewards is accrued at the first stage. For more information,
see Supporting Information and Fig. S6.
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Discussion

In this paper we have provided an initial account of how the class
of evidence-integration models, previously applied to data on
simple choice, can be directly extended to multistage decision
problems. In two experiments involving tree-structured decisions,
we have shown that the dynamics of the deliberation process can
be understood as integrating evidence in parallel, across time, with
competition between the paths of a decision tree. The evidence-
integration perspective links multistage reward-based decision
making to other cognitive domains where the same form of de-
cision process has been implicated, including memory retrieval
(36-38) and perceptual (26, 27, 39) and lexical (40) decision making.
It may also help to guide hypotheses regarding neural mechanisms.
Previous work (41) has begun to address implementation-level
questions by building detailed biophysically plausible models of
evidence integration. Our results suggest that such models may be
directly translatable to the types of problems we study here.

The processes involved in our parallel integration model bear a
striking resemblance to Monte Carlo tree search (42—45) (MCTS),
a set of planning algorithms that work by sampling trajectories and
computing value functions and policies by averaging over the sam-
ples. In our model, the integrators represent the sum of noisy rewards
(i.e., unnormalized mean values). However, the number of samples
in MCTS is usually a free parameter. It would be of significant in-
terest to integrate this body of work with a theory of reaction time.

Understanding this relationship would be especially welcome
in the context of larger state spaces, where MCTS is usually
applied. Many real-world problems are still more complicated
than the ones we study here: They may have larger depth (more
time steps) and breadth (more actions available at each time
step) and may involve probabilistic, rather than deterministic,
transitions. Although pruning proved unnecessary for the two-
stage trees we studied, previous work has shown that human
participants do in fact prune larger trees (9, 10) (however, this
form of pruning is more reflexive than the deliberate style of
pruning studied here; see refs. 9 and 10 for details). MCTS works
by exploiting the sparsity inherent to many problems using a
form of soft pruning: sampling randomly at first, and then slowly
redirecting the effort to the most promising parts of the state
space. This perspective may provide insight into how people
make decisions in large state spaces.

A complementary approach to dealing with large state spaces
is to take advantage of the hierarchy present in many complex
problems. In particular, it would be of interest to integrate ideas
from hierarchical reinforcement learning, which have recently
been applied to human decision making (10, 46-50), with the
evidence accumulation framework.

Another parallel that warrants exploration is the relationship
to Bayesian accounts of decision making. We previously suggested
(23) that the brain may solve the model-based reinforcement
learning problem by treating it as a Bayesian inference problem
(51). The components of the model (i.e., the transition and reward
function) are encoded together with the policies in a joint proba-
bility distribution, and decision making amounts to computing the
posterior over the policy variables conditional on (maximizing) the
reward. We used the framework to explain a number of qualitative
behavioral and neural findings from the literature. The goal of the
present work was to begin a more detailed quantitative study of
these issues, and we opted instead for an approach that more
closely resembles what has previously been done in the context of
simple choice. However, the Bayesian approach is not necessarily
far removed from the model proposed here. As detailed by Solway
and Botvinick (23), the evolving posterior over policy variables can
be understood as integrating reward information over time. Future
work will need to more formally address this potential parallel.

An important aspect our model does not consider is that of
attention. Previous work has shown that visual fixations can bias
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the evidence-integration process in simple choice, promoting the
currently fixated option at the expense of the others (3, 4, 52).
Integrating eye tracking with our model would open the door for
interesting new predictions. For example, fixating on a top-level
item should promote both of the paths in which it participates.
This would lead to neglect of the alternative side of the tree but
provide no advantage for disambiguating the paths in which the
item is embedded. In contrast, fixating on a second-level item
should promote only a single path.

Incorporating internal fluctuations of attention and the dy-
namics of memory retrieval into the model is also an important
long-term goal. This is perhaps even more pertinent in the context
of multistage decision making, where the transition and reward
structure are seldom visible (consider again planning a route).
Recent work has begun to address this issue (13, 53).

Finally, the current work assumes that each node in the de-
cision tree is independent of the rest. This is not true of many
real-world problems, where the same state may appear in mul-
tiple paths, or be visited multiple times within a single path.
Future research will need to resolve how such contingencies
complicate (or simplify) the decision problem.

Materials and Methods

Participants. Thirty different participants completed each experiment in its
entirety. A few participants were dismissed after the item-rating phase. For
more information on participant inclusion criteria, see Supporting Information.
Participants were compensated either 12 dollars per hour or with course credit.
All experimental procedures were approved by the institutional review board
of Princeton University.

Task. Experiments were programmed in MATLAB (MathWorks, Inc.) using the
Psychophysics Toolbox (54). Each experiment consisted of two parts. The first
part was nearly identical for both experiments and involved rating a set of 270
items, including electronics, clothing, books, nonperishable foods, kitchen
items, jewelry, and various novelties. Participants were first shown pictures of
all of the items they would later encounter and were then asked to rate each
item within the context of all of the other items on the list. A scale of 0-4 was
used in experiment 1 and a scale of 1-5 was used in experiment 2.

The second part of each experiment consisted of a series of decision trials.
The structure of the decision problem differed slightly between experiments
(Fig. 1 B and (), but the order of events within each trial remained the same.
Each trial started with a 500-ms fixation cross, followed by a self-paced
decision phase (Fig. 2), and ended with a 750-ms “feedback” phase where
only the selected items remained on the screen. The intertrial interval was
500 ms with a 0- to 250-ms jitter.

Experiment 1 consisted of a two-stage decision. One item appeared on the
top left of the screen, and another appeared on the top right. Below each of
these items, either one or two additional items appeared in a horizontal ori-
entation (Fig. 2). Two items appeared on the bottom left and one on the
bottom right in a random half of the trials, and the other half of the trials had
the reverse orientation. Participants made up to two left/right decisions on
each trial. The first committed them to the top item on the corresponding side,
and to possibly making a second decision between the two bottom items on
that side. If participants chose the side with a single item on the bottom, they
were forced to select it by pressing the corresponding keyboard key. The item
was offset slightly to the left or to the right of the one above it, as if a second
item was next to it. The same two left/right keyboard keys were used as input
for both stages. Experiment 2 was similar to experiment 1 except that both
sides of the screen had a second-stage decision.

Participants did not actually receive any of the items at the end of the
experiment, nor did they receive any kind of performance bonus for selecting
items that were rated higher during the first phase. Instead, they were told to
simply choose the items they would most prefer to receive as if they would
actually get them after each trial.

Trials with first-stage reaction times faster than 500 ms, or first or second-
stage reaction times slower than 10 s, were discarded from analysis both in
the data and in the model.

Model Fitting. Model predictions were obtained through simulation. Models
were fit using differential evolution (55), as implemented in the DEoptim (56)
package in R (57). Each generation consisted of 10 times the number of
members as parameters in the model, and the search procedure was stopped
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when the value of the objective function remained unchanged for 100
generations. Because differential evolution has an element of stochasticity,
each model was fit 10 times, and the best fit was used. Each trial in the data
was simulated once for each parameter set. The objective function consisted of
the residual sum of squares of the group psychometric curves in Figs. 3 A-E and
4 A-E (overall choice accuracy, shown in Figs. 3F and 4F, was not explicitly fit).
First-stage reaction times were divided by 10,000 and second-stage reaction
times by 1,000 to put them on more equal footing with the accuracy data.
BIC values were computed as follows:
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Here, k is the number of parameters, n is the number of data points (29 in
experiment 1 and 45 in experiment 2), and RSS is the residual sum of squares.
This relationship holds if we assume that model errors are normally dis-
tributed with zero mean.
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