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The activity of a neural network is defined by patterns of spiking
and silence from the individual neurons. Because spikes are
(relatively) sparse, patterns of activity with increasing numbers
of spikes are less probable, but, with more spikes, the number of
possible patterns increases. This tradeoff between probability and
numerosity is mathematically equivalent to the relationship be-
tween entropy and energy in statistical physics. We construct this
relationship for populations of up to N = 160 neurons in a small
patch of the vertebrate retina, using a combination of direct and
model-based analyses of experiments on the response of this net-
work to naturalistic movies. We see signs of a thermodynamic limit,
where the entropy per neuron approaches a smooth function of the
energy per neuron as N increases. The form of this function corre-
sponds to the distribution of activity being poised near an unusual
kind of critical point. We suggest further tests of criticality, and give
a brief discussion of its functional significance.
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Our perception of the world seems a coherent whole, yet it is
built out of the activities of thousands or even millions of

neurons, and the same is true for our memories, thoughts, and
actions. It is difficult to understand the emergence of behav-
ioral and phenomenal coherence unless the underlying neural
activity also is coherent. Put simply, the activity of a brain—or
even a small region of a brain devoted to a particular task—cannot
be just the summed activity of many independent neurons. How
do we describe this collective activity?
Statistical mechanics provides a language for connecting the

interactions among microscopic degrees of freedom to the
macroscopic behavior of matter. It provides a quantitative theory
of how a rigid solid emerges from the interactions between atoms,
how a magnet emerges from the interactions between electron
spins, and so on (1, 2). These are all collective phenomena: There
is no sense in which a small cluster of molecules is solid or liquid;
rather, solid and liquid are statements about the joint behaviors of
many, many molecules.
At the core of equilibrium statistical mechanics is the Boltzmann

distribution, which describes the probability of finding a system in
any one of its possible microscopic states. As we consider systems
with larger and larger numbers of degrees of freedom, this proba-
bilistic description converges onto a deterministic, thermodynamic
description. In the emergence of thermodynamics from statistical
mechanics, many microscopic details are lost, and many systems
that differ in their microscopic constituents nonetheless exhibit
quantitatively similar thermodynamic behavior. Perhaps the oldest
example of this idea is the “law of corresponding states” (3).
The power of statistical mechanics to describe collective, emer-

gent phenomena in the inanimate world led many people to hope
that it might also provide a natural language for describing net-
works of neurons (4–6). However, if one takes the language of
statistical mechanics seriously, then as we consider networks with

larger and larger numbers of neurons, we should see the emer-
gence of something like thermodynamics.

Theory
At first sight, the notion of a thermodynamics for neural net-
works seems hopeless. Thermodynamics is about temperature
and heat, both of which are irrelevant to the dynamics of these
complex, nonequilibrium systems. However, all of the ther-
modynamic variables that we can measure in an equilibrium
system can be calculated from the Boltzmann distribution, and
hence statements about thermodynamics are equivalent to
statements about this underlying probability distribution. It is
then only a small jump to realize that all probability distribu-
tions over N variables can have an associated thermodynamics
in the N→∞ limit. This link between probability and thermo-
dynamics is well-studied by mathematical physicists (7), and has
been a useful guide to the analysis of experiments on dynamical
systems (8, 9).
To be concrete, consider a system with N elements; each el-

ement is described by a state σi, and the state of the entire
system is σ ≡ fσ1,   σ2,  ⋯,   σNg. We are interested in the proba-
bility PðσÞ that we will find the system in any one of its possible
states. It is natural to think not about the probability itself but
about its logarithm,

EðσÞ=−lnPðσÞ. [1]

In an equilibrium system, this is precisely the energy of each state
(in units of kBT), but we can define this energy for any probability
distribution. As discussed in detail in Supporting Information, all
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of thermodynamics can be derived from the distribution of these
energies. Specifically, what matters is how many states have EðσÞ
close to a particular value E. We can count this number of states,
nðEÞ, or more simply the number of states with energy less
than E, NðEÞ. Then we can define a microcanonical entropy
SðEÞ= ln NðEÞ. If we imagine a family of systems in which the
number of degrees of freedom N varies, then a thermodynamic
limit will exist provided that both the entropy and the energy are
proportional to N at large N. The existence of this limit is by no
means guaranteed.
In most systems, including the networks that we study here,

there are few states with high probability, and many more states
with low probability. At large N, the competition between de-
creasing probability and increasing numerosity picks out a special
value of E=E*, which is the energy of the typical states that we
actually see; E* is the solution to

dSðEÞ
dE

= 1. [2]

For most systems, the energy EðσÞ has only small fluctuations
around E*, hðδEÞ2i=ðE*Þ2 ≈ 1=N, and, in this sense, most of the
states that we see have the same value of log probability per
degree of freedom. However, hidden in the function SðEÞ are
all of the parameters describing the interactions among the N
degrees of freedom in the system. At special values of these
parameters, ½d2SðEÞ=dE2�E=E* → 0, and the variance of E diverges
as N becomes large. This is a critical point, and it is mathematically
equivalent to the divergence of the specific heat in an equilibrium
system (10).
These observations focus our attention on the “density of states”

NðEÞ. Rather than asking how often we see specific combinations
of spiking and silence in the network, we ask how many states there
are with a particular probability.

Experimental Example
The vertebrate retina offers a unique system in which the ac-
tivity of most of the neurons comprising a local circuit can be
monitored simultaneously using multielectrode array recordings.
As described more fully in ref. 11, we stimulated salamander
retina with naturalistic grayscale movies of fish swimming in a
tank (Fig. 1A), while recording from 100 to 200 retinal gan-
glion cells (RGCs); additional experiments used artificial
stimulus ensembles, as described in Supporting Information.
Sorting the raw data (12), we identified spikes from 160 neu-
rons whose activity passed our quality checks and was stable for
the whole ∼ 2 h duration of the experiment; a segment of the
data is shown in Fig. 1B. These experiments monitored a
substantial fraction of the RGCs in the area of the retina from
which we record, capturing the behavior of an almost complete
local population responsible for encoding a small patch of the
visual world. The experiment collected a total of ∼ 2× 106
spikes, and time was discretized in bins of duration Δτ= 20 ms;
all of the results discussed below are substantially the same at
Δτ= 10 ms and Δτ= 40 ms (Fig. S1). For each neuron i, σi = 1 in
a bin denotes that the neuron emitted at least one spike, and
σi = 0 denotes that it was silent.

Counting States
Conceptually, estimating the function NðEÞ and hence the entropy
vs. energy is easy: We count how often each state occurs, thus es-
timating its probability, and then count how many states have (log)
probabilities in a given range. In Fig. 1 C and D, we show the first
steps in this process. We identify the unique patterns of activity—
combinations of spiking and silence across all 160 neurons—that
occur in the experiment, and then count how many times each of
these patterns occurs.

Even without trying to compute SðEÞ, the results of Fig. 1D are
surprising. With N neurons that can either spike or remain silent,
there are 2N possible states. Not all these states can be visited
equally often, because spikes are less common than silences, but
even taking account of this bias, and trying to capture the corre-
lations among neurons, our best estimate of the entropy for the
patterns of activity we observe is s≈ 0.15  bits=neuron (see below).
With N = 160 cells, this means that the patterns of activity are
spread over 2Ns ≈ 1.67× 107 possibilities, 100 times larger than the
number of samples that we collected during our experiment. In-
deed, most of the states that we saw in the full population oc-
curred only once. However, roughly one thousand states occurred
with sufficient frequency that we can make a reasonable estimate
of their probability just by counting across ∼2 h. Thus, the prob-
ability distribution PðσÞ is extremely inhomogeneous.
To probe more deeply into the tail of low-probability events,

we can construct models of the distribution of states, and we
have done this using the maximum entropy method (11, 13): We
take from experiment certain average behaviors of the network,
and then search for models that match these data but otherwise
have as little structure as possible. This works if matching a
relatively small number of features produces a model that pre-
dicts many other aspects of the data.
The maximum entropy approach to networks of neurons has been

explored, in several different systems, for nearly a decade (14–23),
and there have been parallel efforts to use this approach in other
biological contexts (24–35). Recently, we have used the maximum
entropy method to build models for the activity of up to N = 120
neurons in the experiments described above (11); see Fig. 2. We take
from experiment the mean probability of each neuron generating a
spike (hσii), the correlations between spiking in pairs of neurons
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Fig. 1. Counting states in the response of RGCs. (A) A single frame from
the naturalistic movie; red ellipse indicates the approximate extent of a
receptive field center for a typical RGC. (B) Responses of N= 160 neurons to
a 19.2-s naturalistic movie clip; dots indicate the times of action potentials
from each neuron. In subsequent analyses, these events are discretized
into binary (spike/silence) variables in time slices of Δτ= 20 ms. (C ) The
1,000 most common binary patterns of activity across N= 160 neurons, in
order of their frequency. (D) Number of occurrences of each pattern
(black, left axis), and the cumulative weight of the patterns in the em-
pirical probability distribution (green, right axis), with labels for the total
number of spikes in each pattern.
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(hσiσji), and the probability that K out of the N neurons spike in the
same small window of time [PðKÞ]. Mathematically, the maximum
entropy models consistent with these data have the form

PðfσigÞ= 1
Z
exp½−EðfσigÞ�, [3]

EðfσigÞ=−
XN
i=1

hiσi −
1
2

XN
i, j=1

Jijσiσj −V ðKÞ, [4]

where K =
PN

i=1σi counts the number of neurons that spike simul-
taneously, and Z is set to ensure normalization. All of the param-
eters fhi,   Jij,   V ðKÞg are determined by the measured averages
fhσii, hσiσji,PðKÞg.
This model accurately predicts the correlations among triplets of

neurons (figure 7 in ref. 11), and how the probability of spiking in
individual neurons depends on activity in the rest of the population
(figure 9 in ref. 11). One can even predict the time-dependent re-
sponse of single cells from the behavior of the population, without
reference to the visual stimulus (figure 15 in ref. 11). Most impor-
tant for our present discussion, the distribution of the energy
EðfσigÞ across the observed patterns of activity agrees with the
distribution predicted by the model, deep into the tail of patterns
that occur only once in the 2-h-long experiment (figure 8 in ref. 11).
This distribution is closely related to the plot of entropy vs. energy
that we would like to construct, and so the agreement with exper-
iment gives us confidence.
The direct counting of states (Fig. 1) and the maximum entropy

models (Fig. 2) give us two complementary ways of estimating the

function NðEÞ and hence the entropy vs. energy in the same data
set. Results are in Fig. 3; see also Supporting Information.
As emphasized above, the plot of entropy vs. energy contains all

of the thermodynamic behavior of a system, and this has a meaning
for any probability distribution, even if we are not considering a
system at thermal equilibrium. Thus, Fig. 3 is as close as we can get
to constructing the thermodynamics of this network. With the di-
rect counting of states, we see less and less of the plot at larger N,
but the part we can see is approaching a limit as N→∞, and this
is confirmed by the results from the maximum entropy models.
This, by itself, is a significant result. If we write down a model like
Eq. 4, then, in a purely theoretical discussion, we can scale the
couplings between neurons Jij with N to guarantee the existence of
a thermodynamic limit (5), but with Jij constructed from real data,
we can’t impose this scaling ourselves—either it emerges from the
data or it doesn’t. We can make the emergence of the thermody-
namic limit more precise by noting that, at a fixed value of S=N, the
value of E=N extrapolates to a well-defined limit in a plot vs. 1=N,
as in Fig. 3A, Inset. The results of this extrapolation are strikingly
simple: The entropy is equal to the energy, within (small) error bars.

Interpreting the Entropy vs. Energy Plot
If the plot of entropy vs. energy is a straight line with unit slope,
then Eq. 2 is solved not by one single value of E but by a whole
range. Not only do we have d2S=dE2 = 0, as at an ordinary critical
point, but all higher-order derivatives also are zero. Thus, the
results in Fig. 3 suggest that the joint distribution of activity across
neurons in this network is poised at a very unusual critical point.
We expect that states of lower probability (e.g., those in which

more cells spike) are more numerous (because there are more
ways to arrange K spikes among N cells as K increases from very
low values). However, the usual result is that this trade-off—
which is precisely the trade-off between energy and entropy in
thermodynamics—selects typical states that all have roughly the
same probability. The statement that SðEÞ=E, as suggested in
Fig. 3, is the statement that states which are ten times less prob-
able are exactly 10 times more numerous, and so there is no
typical value of the probability.
The vanishing of d2S=dE2 corresponds, in an equilibrium system,

to the divergence of the specific heat. Although the neurons ob-
viously are not an equilibrium system, the model in Eqs. 3 and 4 is
mathematically identical to the Boltzmann distribution. Thus, we
can take this model seriously as a statistical mechanics problem,
and compute the specific heat in the usual way. Further, we can
change the effective temperature by considering a one-parameter
family of models,

Pðfσig;TÞ= 1
ZðTÞ exp

�
−
1
T
EðfσigÞ

�
, [5]

with EðfσigÞ as before (Eq. 4). Changing T is just a way of
probing one direction in the parameter space of possible models,
and is not a physical temperature; the goal is to see whether there
is anything special about the model (at T = 1) that describes the
real system.
Results for the heat capacity of our model vs. T are shown in

Fig. 4. There is a dramatic peak, and, as we look at larger groups
of neurons, the peak grows and moves closer to T = 1, which is
the model of the actual network. Importantly, the heat capacity
grows even when we normalize by N, so that the specific heat, or
heat capacity per neuron, is growing with N, as expected at a
critical point, and these signatures are clearer in models that pro-
vide a more accurate description of the population activity; for
details, see Supporting Information.
The temperature is only one axis in parameter space, and, along

this direction, there are variations in both the correlations among
neurons and their mean spike rates. As an alternative, we consider
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Fig. 2. Maximum entropy models for retinal activity in response to natural
movies (11). (A) The correlation coefficients between pairs of neurons (red,
positive; blue, negative) for a 120-neuron subnetwork. Inset shows the distri-
bution of the correlation coefficients over the population. (B) The pairwise
coupling matrix of the inferred model, Jij from Eq. 4. Inset shows the distri-
bution of these pairwise couplings across all pairs ij. (C) The average proba-
bility of spiking per time bin for all neurons (sorted). (D) The corresponding
bias terms hi in Eq. 4. (E) The probability PðKÞ that K out of the N neurons spike
in the same time bin. (F) The corresponding global potential VðKÞ in Eq. 4.
Notice that A, C, and E describe the statistical properties observed for these
neurons, whereas B, D, and F describe parameters of the maximum entropy
model that reproduces these data within experimental errors.
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a family of models in which the strength of correlations changes
but spike rates are fixed. To do this, we replace the energy func-
tion in Eq. 4 with

EαðfσigÞ=−
XN
i=1

h′iðαÞσi − α

"
1
2

XN
i, j=1

Jijσiσj +V ðKÞ
#
, [6]

where α controls the strength of correlations, and we adjust all of
the h′iðαÞ to hold mean spike rates to their observed values.
At α= 0, the model describes a population of independent neu-

rons, so that the correlation coefficients are all C= 0 (Fig. 5A, Left).
For α> 1, the distribution of correlations broadens such that at α= 2,
some pairs are very strongly correlated (Fig. 5A, Right). This is
reflected in a distribution of states that cluster around a small
number of prototypical patterns, much as in the Hopfield network
(4, 5). The entropy vs. energy plot, shown in Fig. 5B, singles out the
ensemble at α= 1 (Fig. 5A, Middle): Going toward independence
(smaller α) gives rise to a concave bump at low energies, whereas
α> 1 ensembles deviate away from the equality line more at high
energies. Correspondingly, we see in Fig. 5D that there is a peak in
the specific heat of the model ensemble near α= 1. As we look at
larger and larger networks, this peak rises and moves toward α= 1,
which describes the real system.
The evidence for criticality that we find here is consistent with

extrapolations from the analysis of smaller populations (15, 18).
Those predictions were based on the assumption that spike prob-
abilities and pairwise correlations in the smaller populations are
drawn from the same distribution as in the full system, and that
these distributions are sufficient to determine the thermodynamic
behavior (36). Signs of criticality also are observable in simpler
models, which match only the distribution of summed activity in
the network (22), but less accurate models have weaker signatures
of criticality (Fig. S2).

Couldn’t It Just Be…?
In equilibrium thermodynamics, poising a system at a critical point
involves careful adjustment of temperature and other parameters.
Finding that the retina seems to be poised near criticality should
thus be treated with some skepticism. Here we consider some ways

in which we could be misled into thinking that the system is critical
when it is not (see also Supporting Information).
Part of our analysis is based on the use of maximum entropy

models, and one could worry that the inference of these models is
unreliable for finite data sets (37, 38). Expanding on the discussion
of this problem in ref. 11, we find a clear peak in the specific heat
when we learn models forN = 100 neurons from even one-tenth of
our data, and the variance across fractions of the data are only a
few percent (Fig. S3).
Although the inference of maximum entropy models is accurate,

less interesting models might mimic the signatures of criticality. In
particular, it has been suggested that independent neurons with a
broad distribution of spike rates could generate a distribution of
N neuron activity patterns fσig that mimics some aspects of critical
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behavior (39). However, in an independent model built from the
actual spike rates of the neurons, the probability of seeing the same
state twice would be less than one part in a billion, dramatically
inconsistent with the measured Pc ≈ 0.04. Such independent mod-
els also cannot account for the faster than linear growth of the heat
capacity with N (Fig. 4), which is an essential feature of the data
and its support for criticality.
In maximum entropy models, the probability distribution over

patterns of neural activity is described in terms of interactions
between neurons, such as the terms Jij in Eq. 4; an alternative view
is that the correlations result from the response of the neurons to
fluctuating external signals. Testing this idea has a difficulty that
has nothing to do with neurons: In equilibrium statistical me-
chanics, models in which spins (or other degrees of freedom)
interact with one another are mathematically equivalent to a
collection of spins responding independently to fluctuating fields
(see Supporting Information for details). Thus, correlations always
are interpretable as independent responses to unmeasured fluc-
tuations, and, for neurons, there are many possibilities, including
sensory inputs. However, the behavior that we see cannot be
simply inherited from correlations in the visual stimulus, because
we find signatures of criticality in response to movies with very
different correlation structures (Fig. S4). Further, the pattern of
correlations among neurons is not simply explained in terms of
overlaps among receptive fields (Fig. S5), and, at fixed moments in
the stimulus movie, neurons with nonzero spike probabilities have
correlations across stimulus repetitions that can be even stronger
than across the experiment as a whole (Fig. S6).
When we rewrite a model of interacting spins as independent

spins responding to fluctuating fields, criticality usually requires
that the distribution of fluctuations be very special, e.g., with the
variance tuned to a particular value. In this sense, saying that
correlations result from fluctuating inputs doesn’t explain our
observations. Recently, it has been suggested that sufficiently
broad distributions of fluctuations lead generically to critical

phenomenology (40). As explained in Supporting Information,
mean field models have the property that the variance of the
effective fields becomes large at the critical point, but more
general models do not, and the correlations we observe do not
have the form expected from a mean field model. The fact that
quantitative changes in the strength of correlations would drive
the system away from criticality (Fig. 5D) suggests that the
distribution of equivalent fluctuating fields must be tuned, rather
than merely having sufficiently large fluctuations.

Discussion
The traditional formulation of the neural coding problem makes
an analogy to a dictionary, asking for the meaning of each neural
response in terms of events in the outside world (41). However,
before we can build a dictionary, we need to know the lexicon,
and, for large populations of neurons, this already is a diffi-
cult problem: With 160 neurons, the number of possible re-
sponses is larger than the number of words in the vocabulary of
a well-educated English speaker, and is more comparable to
the number of possible short phrases or sentences. In the same
way that the distribution of letters in words embodies spelling
rules (28), and the distribution of words in sentences encodes
aspects of grammar (42) and semantic categories (43), we expect
the distribution of activity across neurons to reveal structures of
biological significance.
In the small patch of the retina that we consider, no two cells

have truly identical input/output characteristics (44). None-
theless, if we count how many combinations of spiking and si-
lence have a given probability in groups of N > 20 cells, this
relationship is reproducible from group to group, and simplifies
at larger N. This relationship between probability and nume-
rosity of states is mathematically identical to the relationship
between energy and entropy in statistical physics, and the simpli-
fication with increasing N suggests that we are seeing signs of a
thermodynamic limit.
If we can identify the thermodynamic limit, we can try to place

the network in a phase diagram of possible networks. Critical
surfaces that separate different phases often are associated with a
balance between probability and numerosity: States that are a
factor F times less probable also are a factor F times more nu-
merous. At conventional critical points, this balance occurs only in
a small neighborhood of the typical probability, but, in the net-
work of RGCs, it extends across a wide range of probabilities (Fig.
3). In model networks with slightly stronger or weaker correlations
among pairs of neurons, this balance breaks down (Fig. 5), and
less accurate models have weaker signatures of criticality (Fig. S2).
The strength of correlations depends on the structure of visual

inputs, on the connectivity of the neural circuit, and on the state
of adaptation in the system. The fact that we see signatures of
criticality in response to very different movies, but not in model
networks with stronger or weaker correlations, suggests that
adaptation is tuning the system toward criticality. A sudden
change of visual input statistics should thus drive the network to
a noncritical state, and, during the course of adaptation, the
distribution of activity should relax back to the critical surface.
This can be tested directly.
Is criticality functional? The extreme inhomogeneity of the

probability distribution over states makes it possible to have an
instantaneously readable code for events that have a large dy-
namic range of likelihoods or surprise, and this may be well-
suited to the the natural environment; it is not, however, an ef-
ficient code in the usual sense. Systems near critical points are
maximally responsive to certain external signals, and this sensi-
tivity also may be functionally useful. Most of the systems that
exhibit criticality in the thermodynamic sense also exhibit a wide
range of time scales in their dynamics, so that criticality may
provide a general strategy for neural systems to bridge the gap
between the microscopic time scale of spikes and the macroscopic

A B

C D

Fig. 5. Changing correlations at fixed spike rates. (A) Three maximum en-
tropy (maxent) models for a 120-neuron network, where correlations have
been eliminated (Left, α= 0), left at the strength found in data (Middle,
α= 1), or scaled up (Right, α= 2). (Top) The 10,000 most frequent patterns
(black, spike; white, silence) in each model. (Bottom) The distribution of
pairwise correlation coefficients. (B) Entropy vs. energy for the networks in A.
(C) Entropy per neuron as a function of α, for different subnetwork sizes N.
(D) Heat capacity per neuron exhibits a peak close to α= 1. Error bars are SDs
over 10 subnetworks for each N and α.
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time scales of behavior. Critical states are extremal in all these
different senses, and more; it may be difficult to decide which is
relevant for the organism.
Related signatures of criticality have been detected in en-

sembles of amino acid sequences for protein families (29), in
flocks of birds (33) and swarms of insects (45), and in the net-
work of genes controlling morphogenesis in the early fly embryo
(46); there is also evidence that cell membranes have lipid
compositions tuned to a true thermodynamic critical point (47).
Different, dynamical notions of criticality have been explored in
neural (48, 49) and genetic (50, 51) networks, and in the active
mechanics of the inner ear (52–54); recent work connects dy-
namical and statistical criticality, with the retina as an example
(55). These results hint at a general principle, but there is room

for skepticism. A new generation of experiments should provide
decisive tests of these ideas.

Materials and Methods
Experiments were performed on the larval tiger salamander, Ambystoma
tigrinum tigrinum, in accordance with institutional animal care standards at
Princeton University.
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