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Parkinson’s disease (PD) is a neurodegenerative disability 
caused by a decrease of dopaminergic neurons in the sub-
stantia nigra (SN). Although the etiology of PD is not clear, oxi-
dative stress is believed to lead to PD. Catalase is antioxidant 
enzyme which plays an active role in cells as a reactive oxy-
gen species (ROS) scavenger. Thus, we investigated whether 
PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium 
(MPP+) induced SH-SY5Y neuronal cell death and in a 1-meth-
yl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD ani-
mal model. PEP-1-Catalase transduced into SH-SY5Y cells sig-
nificantly protecting them against MPP+-induced death by de-
creasing ROS and regulating cellular survival signals including 
Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis 
showed that transduced PEP-1-Catalase markedly protected 
against neuronal cell death in the SN in the PD animal model. 
Our results indicate that PEP-1-Catalase may have potential as 
a therapeutic agent for PD and other oxidative stress related 
diseases. [BMB Reports 2015; 48(7): 395-400]

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disability which 
involves degeneration of substantia nigra (SN) leading to a de-
ficiency of dopamine (1). Symptoms of PD include tremor, ri-
gidity, muscle stiffness, bradykinesia, postural instability which 
may eventually lead to movement disorders (2). The etiologies 
include a lack of dopamine or an excess of acetylcholine in 
the brain. Similar symptoms are known to occur in cases of 
vascular disorders of the brain, neoplasm, and head injury (3). 
Although the mechanism of cellular death is not clearly under-
stood, aging, inflammation, as well as chemical, and genetic 
factors in the development of the disorder appear to be in-
volved with the onset of PD (1, 4-6).

Catalase is known as a major antioxidant enzyme which 
neutralizes the harmful effects of reactive oxygen species 
(ROS) and as such, is considered beneficial in the treatment of 
many disorders. Catalase protects cells through 2 processes: 
prevention of hydroxyl radical generation and by the separa-
tion of hydrogen peroxide into water and oxygen. Removing 
the oxygen free radicals is very important in maintaining the 
stabilized redox status of cells (7).

Protein transduction domains (PTDs) are small peptides 
which are capable of transducing macromolecules into cells 
and tissues without any specific receptors (8). A recent study 
demonstrated that transduced Tat-PRDX6 protein protects 
against eye lens epithelial cell death and delayed lens opacity, 
suggesting that protein transduction could be an effective ap-
proach to delaying eye disease (9). Previous studies by this 
group have demonstrated that PEP-1 fusion proteins efficiently 
transduce into various cells and protect against a variety of dis-
eases including skin inflammation and neuronal diseases 
(10-17). Also, we demonstrated that PEP-1-Catalase transduced 
into astrocyte cells and protected against oxidative stress-in-
duced cell death as well as ischemic injury (18). 

In this study, we examined the protective effect of trans-
duced PEP-1-Catalase in SH-SY5Y cells and in a PD animal 
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Fig. 1. Purification and transduction of PEP-1-Catalase into SH-SY5Y
cells. (A) Expression and purification of PEP-1-Catalase and control 
catalase proteins were identified by 12% SDS-PAGE and Western 
blot analysis using an anti-His antibody. Lanes are as follows: lane 
1, marker; lane 2 and 5, non-induced; lane 3 and 6, induced; lane
4 and 7, purified. (B) Localization of transduced PEP-1-Catalase
confirmed by confocal fluorescence microscopy. After transduction 
of PEP-1-Catalase (3 M), the cells were examined by DAPI and 
Alexa staining. Scale bar = 50 m. (C) The stability of transduced
PEP-1-Catalase into SH-SY5Y cell. After PEP-1-Catalase (3 M) 
transduced into the cells were incubated for 3-60 h and analyzed 
by Western blotting and the band intensity was measured by 
densitometer.

model. PEP-1-Catalase transduced into SH-SY5Y cells and ani-
mal brain cells and offered significant protection against oxida-
tive stress-induced cell death in vitro and in vivo. Therefore, 
we suggest that PEP-1-Catalase could be used as a therapeutic 
agent for various oxidative stress related disorders including 
PD. 

RESUTLS AND DISCUSSION 

Purification and transduction of PEP-1-Catalase into SH-SY5Y 
cells
Catalase is a major antioxidant enzyme found in almost every 
living organism and plays an important role in protecting cells 
from the damage induced by reactive oxygen species (ROS) (7, 
19). Catalase has therefore been considered for therapeutic use 

in ROS-related diseases. 
Protein transduction domains (PTDs) have demonstrated 

their ability to deliver exogenous proteins into cells which has 
potential for targeting specific proteins, delivering them into 
living cells. There is also room for the examination of novel 
therapeutic proteins (8, 20). PEP-1-Catalase and control cata-
lase proteins were expressed and purified as described pre-
viously (18) and were confirmed by SDS-PAGE and Western 
blot analysis using an anti-histidine antibody (Fig. 1A). In order 
to clearly confirm whether PEP-1-Catalase transduced into the 
cells, we used confocal fluorescence microscopy analysis us-
ing an His antibody, DAPI, and Alexa fluor-488 conjugated 
secondary antibody. As shown in Fig. 1B, strong fluorescence 
signals were detected in the PEP-1-Catalase treated cells while 
fluorescence signals were not detected in the control catalase 
treated cells. 

We examined the stability of transduced PEP-1-Catalase in 
the cells. After transduction of PEP-1-Catalase (3 M) for 3 h, 
the cells were incubated at various times up to 60 hours. We 
observed that intracellular levels of transduced PEP-1-Catalase 
persisted in the cells for 48 h (Fig. 1C). PEP-1-Catalase trans-
duced into the cells in a dose- and time-dependent manner. 
However, control catalase did not transduce into the cells 
(data not shown). These results indicate that PEP-1-Catalase 
transduced into SH-SY5Y cells and remained stable in the cells 
for 48 h.

Transduced PEP-1-Catalase protected against MPP+-induced 
cell death and cytotoxicity
1-Methyl-4-phenylpyidinium ion (MPP+) is known to induce 
ROS in dopaminergic neuronal cells which then leads to DNA 
fragmentation and eventually to cell death (21-23). MPP+, the 
active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr-
idine (MPTP), has been used extensively in PD experiments as 
a classic neurotoxin for its ability to induce PD-like symptoms 
including loss of dopaminergic cells damage and death (24-26). 
Therefore, we confirmed whether transduced PEP-1-Catalase 
can protect against MPP+-induced SH-SY5Y cell death. As 
shown in Fig. 2A, transduced PEP-1-Catalase markedly in-
creased cell viability in a concentration dependent manner, up 
to 76%. On the other hand, cell viability was roughly the same 
as the cells treated with MPP+ alone (46%) compared with 
control catalase treated cells (52%). 

We examined whether transduced PEP-1-Catalase inhibits 
MPP+-induced intracellular ROS generation and DNA frag-
mentation using DCF-DA and TUNEL staining. Cells treated 
with MPP+ showed higher intensity of fluorescence compared 
to control cells demonstrating MPP+-induced intracellular ROS 
generation. In the control catalase treated cells, the amount of 
ROS generation was similar to the MPP+ treated control cells. 
However, transduced PEP-1-Catalase markedly inhibited the 
level of intracellular ROS generation by MPP+ (Fig. 2B). As 
shown in Fig. 2C, transduced PEP-1-Catalase also significantly 
inhibited the DNA fragmentation. These results indicate that 
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Fig. 2. Inhibitory effects of PEP-1-Catalase against cell death and 
cytotoxicity by MPP+. (A) After pre-processing with 3 M of 
PEP-1-Catalase and control catalase protein for 3 h into SH-SY5Y 
cells, (A) cell viability, (B) intracellular ROS levels, and (C) DNA 
fragmentation were detected by MTT assay, DCF-DA and TUNEL 
staining, respectively, as described in Materials and Methods. Scale 
bar = 50 m. **P ＜ 0.01, compared with MPP+-treated cells.

Fig. 3. Effects of PEP-1-Catalase against MPP+-induced cell survival 
signals in SH-SY5Y cells. After treatment of SH-SY5Y cells with 3 
M of PEP-1-Catalase and control catalase proteins, the cells were 
treated with 4 mM of MPP+ for 10 min (p-Akt), 3 h (Bax and 
Bcl-2), and 35 min (p-p38), respectively. The indicated protein 
levels were measured by Western blot analysis and the band in-
tensity were measured by densitometer. **P ＜ 0.01, compared 
with MPP+-treated cells.

transduced PEP-1-Catalase efficiently protects against 
MPP+-induced SH-SY5Y cell death and DNA fragmentation by 
inhibiting intracellular ROS levels.

Transduced PEP-1-Catalase regulation of cell survival signaling
Next, we confirmed whether transduced PEP-1-Catalase effects 
cellular survival signaling induced by MPP+. Several studies 
have demonstrated that the cellular damage induced by MPP+ 
results from increased phosphorylation of Akt, Bax, and p38 
expression levels with a corresponding decrease in anti-apop-
totic protein, Bcl-2 expression levels in the cells (27, 28). As 
shown in Fig. 3, the expression levels of phosphorylation of 
Akt, Bax, and p38 were markedly increased by MPP+. However, 
cells treated with transduced PEP-1-Catalase demonstrated 
dose-dependent decreased phosphorylation of Akt, Bax, and 
p38 expression levels. At the same time, the expression levels 
of Bcl-2 were significantly decreased in cells treated with 

MPP+ while transduced PEP-1-Catalase increased Bcl-2 expre-
ssion levels. 

The expression of several cell survival proteins including 
Bax, Bcl-2, Akt, p38 have been shown to be regulated by ROS 
and their importance in cell survival has also been well docu-
mented (22, 24, 25, 28). Akt is also known to be a cell survival 
mediator and studies have demonstrated that the expression 
levels of these survival proteins were influenced by exposure 
to MPP+ (27-29). Consistent with other studies, we demon-
strated that PEP-1-Catalase regulates cell survival signals and 
protects against MPP+-induced SH-SY5Y cell death. However, 
further studies are needed to examine the exact mechanism. 

PEP-1-Catalase transduced into mouse brain and protected 
dopaminergic neuron in a PD animal model
Since the blood-brain barrier (BBB) prevents entry of ther-
apeutic proteins to brain, transduce into brain of therapeutic 
protein is important to protein therapy. Thus, we examined 
whether PEP-1-Catalase protects against MPTP-induced dop-
aminergic neuronal cell death. Cell viability was evaluated by 
immunohistochemistry using a tyrosine hydroxylase (TH) anti-
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Fig. 4. Effect of PEP-1-Catalase on dopaminergic neuronal cell 
death in PD animal model. (A) Protective effect is confirmed by 
staining immunoreactivity neuron with tyrosine hydroxylase (TH) 
and cresyl violet (CV) in MPTP-induced PD mice model. Scale 
bar = 100 m and 50 m. (B) Localization of PEP-1-Catalase is 
confirmed by double-staining with His and TH antibody, as de-
scribed in Materials and Methods. DA neurons (anti-TH), red; 
PEP-1-catalase (anti-His), green. Scale bar =100 m and 18.8 m.

body and cresyl violet (CV) staining (Fig. 4A). In the MPTP- 
treated mice, dopaminergic neuronal cell death was signifi-
cantly increased compared to the sham control-treated mice. 
In addition, in the control catalase-treated and PEP-1 pep-
tide-treated mice, dopaminergic neuronal cell death was sim-
ilar to those of MPTP-treated mice. However, in the PEP-1- 
Catalase-treated mice, dopaminergic neuronal cell viability sig-
nificantly increased and showed similar level compared to 
sham control mice. 

We further examined transduced PEP-1-Catalase localization 
in the substantia nigra (SN) region. PEP-1-Catalase (2 mg/kg) 
was i.p. injected into mice before MPTP treatment. Brain tissue 
samples were obtained 12 h after MPTP injection and dou-
ble-stained with a TH antibody (red) and an His antibody 
(green). As shown in Fig. 4B, there is no difference in the TH 
staining between the sham control and others groups. 
However, green fluorescent staining was only detected in the 

PEP-1-Catalase-treated group. Our results demonstrated that 
PEP-1-Catalase efficiently crossed the BBB and markedly pro-
tected against MPTP-induced dopaminergic neuronal cell 
death. In agreement with our results, other studies have dem-
onstrated that overexpression of antioxidant proteins signifi-
cantly protects against dopaminergic neuronal cell death in PD 
models (30).

In conclusion, PEP-1-Catalase efficiently transduced into 
neuronal cells and protected against oxidative stress-induced 
dopaminergic neuronal cell death in vitro and in vivo. Though 
further study will be necessary to understand the precise 
mechanism our results show that PEP-1-Catalase has potential 
in the treatment of ROS-related diseases including PD.

MATERIALS AND METHODS

Materials and cell culture
PEP-1-Catalase and control catalase protein were constructed, 
overexpressed, and purified as described previously (18). The 
primary p38, p-p38, Akt, p-Akt, Bax, and Bcl-2 rabbit anti-
bodies were purchased from Cell signaling (Denvers, MA, 
USA). His rabbit primary antibody and secondary anti-rabbit 
antibody were obtained from Santa Cruz Biotechnology (CA, 
USA). Unless otherwise stated, all other chemicals and re-
agents were purchased from Sigma-Aldrich (St. Louis, MO, 
USA) and were of the highest quality analytical grade acce-
ssible. 

The SH-SY5Y human neuroblastoma cells were preserved in 
Eagle’s Minimum Essential Medium (EMEM; Lonza, MD, USA) 
including 10% fetal bovine serum (FBS; Gibco BRL, Grand 
Island, NY, USA) and antibiotics (100 g/ml streptomycin 100 
U/ml penicillin; Gibco BRL) at 37oC in a humidified atmos-
phere containing 95% air and 5% CO2.

Western blot analysis
For Western blot analysis, equal amounts of proteins in each 
cell lysate were resolved by 12% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE). The resolved pro-
teins were electrotransfered to a nitrocellulose membrane, 
which was then blocked with 5% non-fat dry milk in TBS-T 
buffer (25 mM Tris-HCl, 140 mM NaCl, 0.1% Tween 20, pH 
7.5). The membrane was incubated with a rabbit anti-histidine, 
p38, p-p38, Akt, p-Akt, Bax, and Bcl-2 primary antibodies 
(dilution 1:1,000; Cell Signaling) and a horseradish perox-
idase-conjugated secondary antibody (dilution 1:10,000; Santa 
Cruz). Enhanced chemiluminescent reagents were used to vis-
ualize protein bands, according to the manufacturer’s in-
structions (Amersham, Piscataway, NJ, USA).

Cell viability assay
A cell viability assay was performed using 3-(4,5-dimethylathia- 
zol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) as described 
previously (10,13). Cells were plated in a 96-well plate and 
treated with PEP-1-Catalase (1-3 M) for 3 h. Then the cells 
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were washed with PBS and incubated with 1-methyl-4-phenyr-
idinium (MPP+) 4 mM for 17 h. MTT solution was admini-
stered to each well. After 4 h of incubation, the precipitated 
formazan crystal was dissolved in dimethyl sulfoxide and ab-
sorbance was measured at 570 nm using an ELISA microplate 
reader (Lab systems Multiskan MCC/340). Cell viability was 
defined as the percentage of control cells. 

Confocal fluorescence microscopy
For detection of transduced PEP-1-Catalase in SH-SY5Y cells, 
Confocal fluorescence microscopy was performed as de-
scribed previously (10, 13). The cells were seeded on cover-
slips after which they were exposed to PEP-1-Catalase and con-
trol catalase protein (3 M) for 3 h. Cells were then washed 
with PBS twice and fixed with 4% paraformaldehyde at room 
temperature for 5 min. The cells were incubated with an an-
ti-histidine primary antibody and an Alexa Fluor 488-con-
jugated secondary antibody (Invitrogen; Carlsbad, CA, USA). 
Nuclei were stained for 5 min with 1 g/ml 4'6-diamidino- 
2-phenylindole (DAPI; Roche Applied Science, Basel, Switzer-
land). An Olympus FV-300 confocal fluorescence microscope 
(Olympus, Tokyo, Japan) was used to analyze fluorescence 
images. 

Measurement of intracellular ROS level
Intracellular ROS levels were determined using 2'7'-dichloro-
fluorescein diacetate (DCF-DA) staining as described pre-
viously (10,13). After being incubated with PEP-1-Catalase or 
control catalase protein (3 M) for 3 h, SH-SY5Y cells were ex-
posed to MPP+ (4 mM) for 40 min. Cells were then washed 
twice with PBS and stained with DCF-DA (30 M) for 30 min. 
Photomicrographs of each sample were taken using an Eclipse 
80i fluorescence microscope (Nikon, Tokyo, Japan). Under the 
same experimental conditions, the fluorescence intensity was 
quantified using a Fluoroskan ELISA plate reader (Labsystem 
Oy, Helsinki, Finland). 

Terminal deoxynucleotidyl transferase-mediated dUTP nick 
end labeling (TUNEL) staining 
DNA fragmentation was determined using TUNEL staining as 
described previously (10, 13). SH-SY5Y cells were incubated 
on coverslips with PEP-1-Catalase or control catalase protein (3 
M) for 3 h, after which they were treated with MPP+ (4 mM) 
for 14 h 30 min. A Cell Death Detection kit (Roche Applied 
Science, Basel, Switzerland) was used to perform TUNEL stain-
ing according to the manufacturer's instructions. Fluorescence 
micrographs were produced using an Eclipse 80i fluorescence 
microscope (Nikon, Tokyo, Japan). Under the same experi-
mental conditions, the fluorescence intensity was quantified 
using a Fluoroskan ELISA plate reader (Labsystem Oy, Helsinki, 
Finland). 

PD animal model
Male, 6-week-old, C57BL/6 mice were obtained from the 

Hallym University Experimental Animal Center. The animals 
were housed at a constant temperature (23oC) and relative hu-
midity (60%) with an alternating 12 h light-dark cycle. They 
were provided free access to food and water. All procedures 
regarding animals and their care conform to the Guide for the 
Care and Use of Service of Korea and were approved by the 
Hallym Medical Center Institutional Animal Care and Use 
Committee.

An animal PD model was prepared as described in previous 
studies (13). The mice (n = 5/each group) were divided into 
five groups; 1) non-treated sham controls, 2) MPTP-treated, 3) 
MPTP + PEP-1 peptide-treated, 4) MPTP + control cata-
lase-treated, 5) MPTP + PEP-1-Catalse-treated. The mice re-
ceived four injections of MPTP (20 mg/kg) at 2 h intervals. To 
determine the protective effects of PEP-1-Catalase against PD, 
mice were single i.p. injected with PEP-1-Catalase (2 mg/kg) 
12 h before the MPTP injection. 7 days after the last injection, 
mice were euthanized for immunohistochemistry.

To examine the localization of PEP-1-Catalase in the SN of 
mice, animal PD models were prepared as described above. 
Mouse brains were harvested 12 h later and immunohisto-
chemistry was performed.

Immunohistochemistry
Immunostaining was performed as described in previous stud-
ies (13). Sections were blocked with 3% bovine serum albu-
min in PBS at room temperature for 30 min and then were in-
cubated with an His antibody for detection of PEP-1-Catalase 
or with a tyrosine hydroxylase (TH) antibody to detect DA 
neurons. To detect viable cells, cresyl violet counter-staining 
for Nissl bodies was carried out after TH-immunostaining. The 
sections were visualized with 3,3'-diaminobenzidine in a 0.1 
M Tris buffer and mounted on gelatin-coated slides. Images 
were taken and analyzed using an Olympus DP72 digital cam-
era and DP2-BSW microscope digital camera software. Figures 
were prepared using Adobe Photoshop version 7.0 (San Jose, 
CA, USA). 

Statistical analysis
Data are expressed as the means ± SD from three indepen-
dent experiments. Differences among means were analyzed 
using one-way ANOVA. Newman-Keuls post hoc analysis was 
employed when differences in ANOVA testing were observed 
(P ＜ 0.01).
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