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Abstract

A renewed global commitment to malaria elimination lends urgency to understanding the biology 

of Plasmodium transmission stages. Recent progress towards uncovering the mechanisms 

underlying P. falciparum sexual differentiation and maturation reveals potential targets for 

transmission-blocking drugs and vaccines. The identification of parasite factors that alter sexual 

differentiation, including extracellular vesicles and a master transcriptional regulator, suggest that 

parasites make epigenetically controlled developmental decisions based on environmental cues. 

New insights into sexual development, especially host cell remodeling and sequestration in the 

bone marrow, highlight open questions regarding parasite homing to the tissue, transmigration 

across the vascular endothelium, and maturation in the parenchyma. Novel molecular and 

translational tools will provide further opportunities to define host-parasite interactions and design 

effective transmission-blocking therapeutics.

I. Introduction

The parasite Plasmodium falciparum causes the most severe form of malaria with around 

600,000 deaths annually, mostly young children and pregnant women in sub-Saharan Africa 

[1]. Resistance to current drug therapies, the absence of a licensed vaccine, and a large 

asymptomatic reservoir [2] make the development of effective transmission-blocking 

therapeutics particularly important to any malaria elimination or eradication program. Given 

the paucity of known transmission stage-specific biomarkers or drug and vaccine targets, a 

deepened understanding of the biology of transmissible parasite stages, including their 

interaction with the host, is essential [3].

P. falciparum has a complex life cycle, in which asexual replication and sexual development 

take place in red blood cells (RBCs) of the human host and sexual reproduction in the 

mosquito vector. Though the asexual stages are responsible for all morbidity and mortality, 

successful transmission is dependent on generation of the sexual stages, termed 

gametocytes. Gametocytes sequester in deep tissues during their development and once 
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mature, are released back into circulation where they can be taken up by the mosquito 

vector. Once in the mosquito midgut, gametocytes emerge from host RBCs, develop into 

male and female gametes, and undergo fertilization and further development. Recent 

discoveries of factors in the human host microenvironment contributing to sexual 

differentiation and development raise exciting new questions about the biological 

mechanisms of these processes. In this review, we will examine recent advances in host-

gametocyte interactions and discuss open questions and new tools to block malaria 

transmission.

II. Parasite and host factors drive commitment to gametocytogenesis

Blood stage parasites replicate asexually, with a small fraction diverting away from asexual 

multiplication and towards sexual development in each replication cycle. Although this 

process may have stochastic elements, it has long been thought that host environmental or 

secreted parasite factors may push cell fate decision from asexual to sexual differentiation. 

MicroRNAs from sickle cell erythrocytes have been associated with increased gametocyte 

numbers [4] while on the parasite side, genes such as P. falciparum gametocyte 

development gene 1 (Pfgdv1) have been implicated in control of sexual differentiation [5]. 

In addition, conditioned media (i.e. the supernatant of P. falciparum cultures) can stimulate 

sexual conversion in vitro [6,7], implying that the process is induced either by presence of 

parasite-secreted factors and/or by parasite depletion of nutrients present in the culture 

media. Several recent studies have identified parasite factors that contribute to the sexual 

conversion switch.

First, two groups showed that extracellular vesicles (EVs) secreted from malaria-infected 

red blood cells (iRBCs) can increase gametocytogenesis in vitro and hypothesized that EVs 

can transfer parasite and/or host factors that lead to sexual conversion (Figure 1b) [8,9]. 

Mantel et al observed that EVs purified from asexual parasite-conditioned media can be 

transferred between iRBCs and stimulate sexual conversion in a dose-dependent manner. 

Regev-Rudzki and colleagues demonstrated that drug pressure increased EV release and that 

EVs could transfer DNA between parasite lines, conferring drug resistance while also 

increasing sexual conversion in recipient cells. Both studies point towards EVs triggering 

downstream signaling that modulates the rate of commitment to the sexual pathway; 

however, given that EV characteristics, including size and timing of release, differed 

between these studies, further work is needed to validate this central finding. Additional next 

steps include identifying the EV component responsible for inducing sexual conversion and 

exploring how this signaling feeds into epigenetic control mechanisms that underlie sexual 

differentiation (discussed below).

Four recent studies have uncovered a molecular framework by which parasites can integrate 

signals such as those provided by EVs to commit to sexual development (Figure 1a–b). A 

transcription factor, AP2-G, has been identified as a master transcriptional regulator for 

gametocytogenesis, as its deletion or disruption abolished sexual conversion in both P. 

falciparum and Plasmodium berghei, a murine malaria parasite. AP2-G expression during 

schizont stages was linked to upregulation of hundreds of genes, many of which have been 

implicated in gametocyte development. Positive feedback regulation may also play a role in 
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commitment, as recombinant AP2-G in vitro binds two short recognition sequences 

frequently found upstream of gametocyte-specific genes including ap2-g itself [10,11]. 

Furthermore, two epigenetic regulators, histone deacetylase 2 (PfHda2) and heterochromatin 

protein 1 (PfHP1), have been shown to repress sexual development, with disruption of these 

proteins leading to increased gametocytogenesis and decreased asexual replication [12,13]. 

Conditional depletion of PfHP1 or PfHda2 in asexual parasites led to de-repression of the 

ap2-g locus and upregulation of gametocyte-specific genes [12,13], implying that epigenetic 

control of AP2-G regulates sexual commitment. Taken together, these findings support the 

hypothesis that epigenetic regulation allows P. falciparum to adjust developmental decisions 

promoting survival and transmission based on EVs, nutrients, drugs, and other host or 

environmental factors (illustrated in Figure 1a–b).

In the murine model, Sinha and colleagues identified an additional transcription factor from 

the AP2 family, AP2-G2, whose disruption completely blocks development of male 

gametocytes and reduces numbers of mature female gametocytes [10]. Analogous to 

regulation of AP2-G expression, it is hypothesized that there are environmental factors that 

can affect sex ratio by altering AP2-G2 expression. Indeed, mathematical and evolutionary 

models theorizing that plasticity in gametocyte investment enables parasites to maintain 

fitness in a changing host environment [14,15] highlight questions of how host factors and 

drugs interplay to alter male and female sexual commitment. Additional clinical and 

molecular studies are needed to probe mechanisms of male vs. female gametocyte formation 

and clearance.

III. Parasites exploit host microenvironments: sequestration in bone 

marrow

Mature asexual stage parasites are known to avoid splenic clearance by cytoadhering to the 

endothelial lining of capillaries in many tissues. The extensively characterized remodeling 

mechanisms that mediate asexual sequestration involve specific ligand-receptor interactions, 

primarily mediated by binding of the parasite antigen PfEMP1 to host endothelial receptors 

such as ICAM-1 and CD36 [16]. In contrast to asexual stages, only limited binding of early 

gametocytes to human endothelial cell lines or to CD36 and ICAM-1 has been demonstrated 

[17,18]. Further evidence for a gametocyte-specific sequestration mechanism includes 

minimal levels of PfEMP1 on the surface of early gametocyte-iRBCs and downregulation of 

var genes (responsible for PfEMP1 expression) [18]. Both forward and reverse genetic 

studies support a role for gametocyte-specific proteins, including the PfGEXPs, which are 

expressed during early sexual differentiation [19], in gametocyte host cell remodeling 

[20,21]. Previous qualitative analyses established the presence of immature P. falciparum 

gametocytes in the bone marrow and spleen of infected individuals [22,23], but quantitative 

information about gametocyte sequestration and remodeling has only been obtained 

recently.

Gametocytes undergo a marked change in morphology during maturation. Beginning as a 

round form indistinguishable from asexual stages (termed Stage I), they then develop 

through several transition stages (Stages II/III) to an elongated spindle form (Stage IV) and 

finally, the curved sausage-like mature form seen in circulation (Stage V) [24,25]. Three 
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groups have recently characterized the mechanical properties of these distinct morphological 

stages, using filtration through a bead matrix, micropipette aspiration and ektacytometry to 

show decreased gametocyte-iRBC deformability during Stage I–IV and restored 

deformability during or prior to Stage V [26–28]. Interestingly, the dissociation of 

polymorphic STEVOR proteins from the iRBC membrane correlates with the rigidity switch 

from Stage IV to V [28], suggesting a possible role for these proteins in gametocyte 

deformability. Fluorescence microscopy experiments probing the mechanism for gametocyte 

morphological and mechanical changes revealed that microtubules elongate from Stage I to 

IV and collapse from Stage IV to Stage V [29]. Further, an actin cytoskeleton present 

primarily at the gametocyte poles dissociates during the transition to Stage V [30]. 

Computational modeling based on iRBC deformability predicts that immature gametocytes 

cannot pass through sinusoidal slits during splenic filtration [26], agreeing with observations 

of circulating mature gametocytes vs. sequestering immature gametocytes.

Three recent studies, including a case study of a patient with subacute malaria [31], an 

autopsy study looking at different sequestration sites in children who died from cerebral 

malaria [32], and a study of bone marrow aspirates of children with nonfatal malarial anemia 

[33], together demonstrate by histology and transcript abundance that gametocytes are 

enriched in the bone marrow parenchyma. In the cerebral malaria study, the majority of 

bone marrow gametocytes in most patients localized at erythroblastic islands, specialized 

sites of erythropoiesis, and a minority of gametocytes appeared to be developing inside 

erythroid precursor cells [32]. These data suggest that gametocytes can develop in the bone 

marrow parenchyma before returning to circulation as deformable Stage V gametocytes, but 

they leave open which parasites (asexually or sexually committed) migrate to the bone 

marrow (illustrated in Figure 1c–e). Transcriptional profiling from malaria-infected patient 

blood demonstrates quantitative presence of a young gametocyte population in circulation, 

intimating that at least a subset of these stages are homing to the bone marrow [34]. 

However, presence of asexual stage parasites in the bone marrow parenchyma and formation 

of gametocytes in erythroid precursor cells in vitro [32,35] suggests that the bone marrow 

may also represent a reservoir for asexual replication and gametocyte formation. Figure 1c–e 

illustrates a hypothesized flow of events for parasite sequestration in human bone marrow.

Further research in this exciting new area of gametocyte biology should confirm gametocyte 

enrichment in the bone marrow parenchyma in other patient cohorts, develop phenotypic 

assays to characterize the binding and transmigration properties of different gametocyte 

stages, and replicate the bone marrow microenvironment under in vitro or ex vivo 

conditions. Severe anemia, dyserythropoiesis and the presence of the parasite byproduct 

hemozoin have independently been associated with a higher prevalence of mature 

gametocytes in the bone marrow [33,36], providing a compelling foundation for future 

studies on the impact of host pathology on gametocyte sequestration. In addition, advances 

in in vivo live imaging of Plasmodium infections in rodent and non-human primate models 

will enable the study of gametocyte sequestration in the context of the host organism 

(reviewed in [37,38]).
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IV. Discussion

Recent advances in our understanding of P. falciparum gametocyte biology and 

development of molecular, imaging, and drug screening tools provide exciting opportunities 

to better define the parasite’s interaction with its host and design transmission-blocking 

therapeutics (summarized in Figure 2). Evidence for EV-mediated cellular communication 

and epigenetic/transcriptional machinery controlling commitment provides a rationale for 

the systematic dissection of the triggers and downstream targets involved in P. falciparum 

sexual differentiation. Similarly, research building on parasite sequestration in the bone 

marrow should define mechanisms of homing, transmigration across the vascular 

endothelium, and development in the parenchyma. Furthermore, it is still unknown whether 

other tissues of the reticulo-endothelial system, such as the spleen and liver, can also support 

extravascular parasite development. The application of molecular manipulation tools (most 

recently CRISPR-Cas-mediated genetic disruption [39,40]) to P. falciparum will enable 

targeted investigation of the developmental pathways involved in sexual commitment and 

sequestration.

Though recent findings open up numerous possible avenues for drug development, a subset 

of gametocyte proteins, particularly those involved in epigenetic regulation, signal 

transduction, metabolism, and cytoskeletal remodeling, likely represent the most realistic 

points of intervention (Figure 2). Identified in a transposon mutagenesis screen and 

transcriptional analysis during gametocyte formation and development, putative genes 

involved in these processes may yield novel drug or vaccine targets [5,21,34]. Several 

possible drug targets have also emerged from metabolomics approaches indicating increased 

gametocyte sensitivity to TCA-cycle inhibitors [41] and work implicating the perforin-like 

protein PPLP2 and sex-specific organelles in membrane permeabilization during parasite 

egress [42–44]. Further upstream, recent work suggest that lipid metabolism differs between 

asexual stages and gametocytes [45] and that a female-specific ATP-binding cassette 

transporter is linked to the accumulation of lipids needed for membrane biogenesis [46]. 

Despite these advances, there remain many questions about parasite uptake of host nutrients 

and application of possible gametocyte vulnerabilities to transmission-blocking therapeutics.

Several new platforms for high throughput screening of gametocytocidal drugs could be 

used to test drugs intervening in the processes mentioned above. Some of these assays rely 

on fluorescent or luminescent reporters, enabling monitoring of gametocyte-specific drug 

activity [47,48], while others use DNA dyes, viability dyes, or enzymatic assays to allow 

screening of all parasite lines including field isolates [49–52]. In addition, new readouts for 

transmission-blocking activity [53,54] will increase throughput of drug and vaccine testing 

while the sex-specific proteome of mature gametocytes [55] may help identify stage-specific 

biomarkers.

Finally, there is still much uncertainty about the nature and extent of transmission-blocking 

immunity. Numerous epidemiological studies have suggested that transmission-blocking 

antibodies are short-lived [56]; however, these studies have so far been in limited 

populations while transmission-blocking immunity likely varies by region. Furthermore, 

though model simulations suggest that antibodies attacking immature gametocytes would 
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significantly lower the density of transmissible mature gametocytes [57], it is still unknown 

what role antibodies play compared to other immune components and if antibodies can 

target developing gametocytes in addition to mature gametocytes. Whatever gametocyte 

stage(s) is (are) ultimately targeted by a transmission-blocking drug or vaccine, promising 

results from a recent vaccine candidate combining the established gamete antigen Pfs48/45 

with the asexual antigen GLURP [58] reinforce the value of targeting transmission stages 

together with asexual stages.

In conclusion, the malaria elimination agenda has driven recent discoveries with 

applications for novel biomarkers, drugs and vaccines. In particular, advances in 

illuminating the mechanisms of gametocyte commitment and sequestration uncover new 

parasite and host targets for transmission-blocking interventions. Further investigation of the 

knowledge gaps in these areas will both deepen our understanding of host-gametocyte 

biology and generate new tools to block malaria transmission.
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Highlights

• P. falciparum sexual conversion is regulated by epigenetic control of AP2-G.

• Extracellular vesicles and other environmental factors may alter sexual 

conversion.

• Gametocytes are enriched in the bone marrow parenchyma.

• Insights into sexual differentiation and development reveal potential drug 

targets.

• New tools will enable better understanding of parasite-host interactions.

Dantzler et al. Page 11

Curr Opin Microbiol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Model for gametocyte commitment and sequestration, including key host-parasite 
interactions and microenvironment characteristics for each step
In the asexual development pathway (a) (blue), HP1 and HDA2 (and potentially other 

proteins) inhibit ap2-g, and therefore gametocyte gene transcription. Asexual parasites 

develop in RBCs and may extravasate into the bone marrow parenchyma (c) (orange). In a 

subset of asexual parasites, ap2-g is transcribed, leading to the expression of genes essential 

for gametocyte development (b) (green). There are multiple parasite stages that may be 

involved (asexual parasite, merozoite, early gametocyte) in homing to the bone marrow and 

extravasation through the endothelial lining into the bone marrow parenchyma (c) (orange). 

Various possible parasite and host factors likely determine homing and extravasation, which 

may occur in a trans- or para-cellular process, and may be guided by an active endothelial 

cell process. Local inflammation and endothelial activation stimulated by sequestered 

parasites, parasite EVs, or hemozoin may contribute to extravasation (c). Upon 

extravasation, parasite development or ability to remain in this microenvironment may 

depend on local interactions with host cells, including nurse macrophages or erythroid 

precursors, or soluble host factors, such as nutrients, that are also present (d) (purple). 
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Finally, gametocytes must intravasate to return to circulation, with endothelial cells again 

likely mediating this process (e) (orange).

Dantzler et al. Page 13

Curr Opin Microbiol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Points of transmission-blocking intervention
Several recently elucidated aspects of gametocyte biology outlined in this review provide 

potential points of intervention for new clinical tools. Drugs or vaccines could block 

transmission by targeting (a) commitment to sexual development, (b) homing and 

transmigration (including extravasation and intravasation), and (c) gametocyte maturation. 

(a) During commitment, epigenetic regulation and signal transduction involved in sexual 

conversion and sex ratio determination could be targeted by transmission blocking drugs. 

Additionally, drugs could target machinery involved in the release or uptake of EVs from 

iRBCs. Vaccines could similarly target EV surface components or iRBC proteins involved 

in EV uptake and release. (b) During homing and transmigration, drugs could target 

parasite-encoded proteins that mediate cytoskeletal or surface remodeling involved in 

homing or transmigration in the bone marrow. Alternatively, host-targeted drugs could be 

used to modulate host inflammatory responses and endothelial activation that may drive 

sequestration. Vaccines could target gametocyte surface proteins required for bone marrow 

endothelium binding or transmigration. (c) During gametocyte maturation, drugs could 

target gametocyte metabolic enzymes or proteins involved in host nutrient uptake. Vaccines 

could target gametocyte surface proteins involved in binding to erythroblastic islands.

Host-targeted therapies are indicated by italics. Section colors in this figure correspond to 

microenvironment colors presented in Figure 1.
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