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Abstract

Multi-wavelength single molecule fluorescence microscopy is a valuable tool for clarifying 

transcription mechanisms, which involve multiple components and intermediates. Here we 

describe methods for the analysis and interpretation of such single molecule data. The methods 

described include those for image alignment, drift correction, spot discrimination, as well as 

robust methods for analyzing single-molecule binding and dissociation kinetics that account for 

non-specific binding and photobleaching. Finally, we give an example of the use of the resulting 

data to extract the kinetic mechanism of promoter binding by a bacterial RNA polymerase 

holoenzyme.
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1. Benefits of single-molecule fluorescence in studying transcription 

mechanisms

Transcription is arguably the single most extensively regulated cellular process. 

Transcription regulation is biochemically complex for at least two important reasons. First, 

there are many intermediate steps between when an RNA polymerase molecule first binds to 

a promoter and when it finally transitions to a fully processive transcription elongation 

complex. Second, typical promoters are regulated by multiple transcription factors that 

interact with multiple binding sites on the DNA, on the polymerase, or both. As a result of 

these two phenomena, a given transcription template DNA molecule in a population can 

exist in one of tens or hundreds of different combinatorial states. This profusion of different 

chemical states makes analysis of mechanisms, particularly kinetic mechanisms, challenging 

to achieve by conventional bulk techniques that are restricted to studying the aggregate 

properties of a molecular ensemble.
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Over the last 20 years, the field has made a sustained and highly successful effort to 

circumvent the difficulties of ensemble analysis by using single-molecule light microscopy 

techniques to study transcription mechanisms (reviewed in [1–3]). Multi-wavelength single-

molecule fluorescence co-localization approaches, which we term CoSMoS (co-localization 

single-molecule spectroscopy), have been used to explore both initiation mechanisms and 

the ways that transcription factors interact with DNA (e.g., refs. [4–8]). In a simple CoSMoS 

experiment (Fig. 1), a promoter-containing DNA tagged with a fluorescent dye is tethered to 

the surface of a microscope slide (e.g., by a biotin-streptavidin linkage). If the surface 

density of the DNA is low and the microscope is sufficiently sensitive, the individual dye 

molecules can be detected as discrete spots of fluorescence and the locations of the 

individual DNA molecules thus visualized (Fig. 1B). These tethered molecules then serve as 

“targets” with which “binder” molecules from solution can associate. For example, if one or 

more DNA-binding proteins (e.g., RNA polymerase; transcription factors) each labelled 

with a different color dye are added to the solution, the association and dissociation of these 

proteins with each individual DNA molecule can be monitored by observing a spot of binder 

fluorescence that co-localized to the position of a target molecule. By design, the dyes are 

attached to the molecules at locations sufficiently far apart that no fluorescence resonance 

energy transfer (FRET) can occur. The physical principle of the co-localization 

measurement is that only molecules that are linked at a fixed position on the surface produce 

a fluorescent spot; molecules free in solution move too rapidly and contribute only diffuse 

background fluorescence when observed on timescales > 1 ms. The approach can give a real 

time “movie” of the occupancy of an individual promoter DNA molecule and thereby allow 

determination of the kinetic mechanisms of initiation [4].

In multi-wavelength single-molecule fluorescence experiments the most challenging aspects 

of the technique are often not the preparation of the molecules or making the microscope 

observations, but in analyzing the resulting data. Data analysis has two primary challenges. 

First, one is studying inherently stochastic processes (thermally driven reactions of single 

molecules), so that analysis is inherently statistical. Second, the number of photons that can 

be emitted by a single fluorophore is limited by photobleaching, so images often have low 

signal-to-noise ratios, making discrimination of real signals from noise a challenge. In this 

article, we summarize the fundamental steps in the process of data analysis. These include 

mapping, drift correction, spot discrimination, kinetic analysis (measurement of association 

and dissociation rate constants), and mechanistic interpretation. Each of these topics is 

discussed in a separate section below. The descriptions here are not comprehensive, they 

simply describe some of the particular approaches that we have used in our experiments. 

While the discussion focuses on studying transcription, many of the approaches that we 

describe here can be used to study the mechanisms of other complex biochemical processes 

[9–12].

2. Alignment of images from multiple wavelength channels

In multi-wavelength single-molecule fluorescence co-localization experiments, images of 

the microscope field of view are recorded from each of the wavelength channels (i.e., 

excitation/emission wavelength pairs) corresponding to the different fluorophores being 

used. An essential step in data analysis is to define the physical locations in images from one 
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channel that correspond to the same locations recorded in the other channels. We call the 

process of establishing these relationships “mapping”. Different wavelength images may be 

recorded simultaneously, or in rapid alternation. Simultaneous acquisition often uses dual-

view optics, which spatially offset images on the camera sensor based on the emission 

wavelengths (e.g., simultaneously producing an image of Cy5 emissions >635 nm and a 

second image of Cy3 emissions <635 nm). Even when dual-view optics are not used and 

images for different wavelength channels are alternately collected on the same area of the 

camera sensor (time multiplexing), mapping may still be necessary to correct for spatial 

distortions in the images (e.g., from chromatic aberration) (Fig. 2).

For each dye labeled DNA molecule attached to the slide surface, precise (x, y) coordinates 

are determined by independently fitting the pixels in a square region around each spot image 

to a two-dimensional Gaussian

(1)

where Io, x, y, σ, and H are fit parameters.

To determine the position in channel 2 (x2, y2) that is equivalent to the position of a spot in 

channel 1, (x1, y1), we apply the transformation

(2)

where A-F are fit parameters. Because the values for these parameters vary systematically 

across the microscope field of view, we determine their values separately for each spot 

coordinate (x1, y1) by local fitting [13] of Eq. 2 to pairs of corresponding points determined 

from calibration images. In particular, we use the 15 calibration pairs nearest to (x1, y1) 

(which are typically within a 4.5 to 6.5 μm distance) to determine the best fit parameter 

values that apply to (x1, y1).

Typically, we collect one set of calibration images on each day of experiments. A 

convenient calibration sample contains a surface-anchored DNA oligonucleotide, each 

molecule of which is hybridized with a set of shorter oligonucleotides [14] that are labeled 

with the same dyes used in the experimental samples. Use of the same dyes minimizes 

chromatic aberration differences between calibration and experimental samples. The 

oligonucleotide design allows ready preparation of samples with the precise combination of 

dyes needed, and the dye spacing can be made large enough to minimize FRET 

(fluorescence resonance energy transfer) between dyes. Accurate mapping requires a high 

density of calibration points to adequately compensate for geometric aberration and other 

factors [15–17]; we typically prepare samples with ~300 randomly distributed molecules per 

65 μm diameter microscope field and collect images from ~9 fields of view.

The data derived from the calibration sample consists of a calibration list of Np pairs of 

corresponding spot coordinates from the two channels:
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(3)

where the subscripts 1 and 2 refer to the two channels. Since the calibration images have 

large numbers of spots, we employ an automated spot-detection algorithm [18,19] that 

enables us to batch process hundreds of spots. The algorithm is tuned by specifying spot 

amplitude and diameter thresholds. However, not all detected spots in the calibration sample 

are included in the calibration list. Incomplete labeling of the oligonucleotides will cause 

spots of one color to not have matching partners of the other color. This can lead to incorrect 

spot pair assignment for mapping. To minimize these complications we follow a calibration 

list construction procedure (Protocol 1). The result is a self-consistent list that usually 

contains from 400 to 800 coordinate pairs (Eq. 3) and produces mapping results that are 

limited only by the accuracy of the spot position measurements (Fig. 3).

In experiments that use three colors we typically produce three different calibration lists to 

perform mappings between all three possible pairwise combinations of images. In addition 

to its use in identifying corresponding spots in images from two different wavelength 

channels, the same mapping protocol can also be used to connect images in the same 

wavelength channel acquired before and after an interruption in data acquisition, such as 

those which may be required to introduce new reagents into the sample.

3. Drift correction

Mechanical instability in the microscope optics can cause apparent slow movement of the 

sample in the microscope image. Movement can also be caused by experimental 

manipulations (e.g., introducing a new solution into the sample chamber). It is often 

necessary to correct for these drift movements so that individual target molecules can be 

followed over time, particularly when observation of the same field of view extends over 

minutes or hours. In our microscopes, movements are typically small (a few pixels over a 

period of an hour), so we find it most convenient to compensate for drift during data 

analysis, rather than by moving the microscope stage during image acquisition.

The simplest way to collect the information needed for drift correction is to include on the 

sample chamber surface bright fiducial markers that show a fluorescence signal that remains 

visible throughout image acquisition. For example, polystyrene beads derivatized with 

multiple fluorescent dyes are commercially available and can be included at surface density 

sufficient to give 1–5 beads in each field of view. Bead images are typically bright enough 

that they are readily distinguishable from the weaker fluorescence from molecules labeled 

with single dyes (Fig. 4A). Gaussian fitting of a bead fluorescent spot in successive frames 

produces a record of bead movement, which is summarized in a table listing the Δx and Δy 

movement between each frame interval during an recording (Fig. 4B,C). When photostable 

beads are not present, it is still possible to construct a drift table using the single-dye 

fluorescence spots of the molecules being studied. Single dye spots typically do not last 

through the entire duration of an experiment, but drift records data from multiple spots can 

be averaged (when overlapping in time) and stitched together to construct the necessary (Δx, 

Δy) table.
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To correct for drift in dual-field imaging, we form separate drift tables for each field. This 

may be done either by independently finding the centers of fiducial markers in the two fields 

or by constructing a drift table for one field and then mapping the resulting (x, y) track 

(Figure 4B, bottom) into the second field.

The drift table is used to identify the positions corresponding to the location of a target 

molecule in two frames recorded at different times. Specifically, the coordinate 

displacements that occur for a molecule between frame m and frame n (for n > m) are 

calculated by summing the Δx or Δy values in the drift table for the frames spanning m to n.

4. Spot discrimination

Having analyzed image mapping and drift, the next step in analysis of single-molecule co-

localization data is to compile information about when a binder molecule fluorescence spot 

is observed at the surface position of a target molecule. For example, one may wish to 

tabulate when, for each AF488-labeled DNA molecule, a co-localized spot of Cy3-RNA 

polymerase (or a transcription factor) fluorescence is observed (Fig. 1).

First, we identify a set of target molecules and their corresponding locations in the binder 

images. We usually identify surface-tethered DNA molecules in an image collected before 

other reaction components are added. Analogously to the procedures used for mapping, a list 

of target positions is created by automated spot-detection and spot pairs that are too closely 

spaced are removed. During the analysis, the positions corresponding to target molecule 

locations in each frame of the binder molecule channel recording are then identified by 

applying the mapping and drift correction data.

The initial goal is to translate the images into binary time records that summarize when 

binder is co-localized with each target (Fig. 5). One method [4,9,11] relies on integrating the 

binder fluorescence intensity over small regions of the image (e.g., squares 0.4 μm on a side) 

centered on the mapped, drift-corrected location of the target molecule. Co-localized 

appearance and disappearance of the binder spot are accompanied by abrupt increase and 

decrease of the integrated fluorescence. The time interval during which the binder is present 

is defined by applying distinct high and low integrated intensity thresholds to identify the 

interval beginning and end. False positives are common with this method due to binder 

molecule association with nearby target molecules (Fig. 5A,B) and diffusion of brightly 

fluorescent particulates above the surface. It is usually necessary to visually inspect the 

images that accompany each identified landing interval to remove those false positives and 

improve detection accuracy. However, visual inspection introduces an undesirable 

subjective aspect to the data analysis, and it is impractical on large datasets.

A superior method (Fig. 5C) [5] makes use of aspects of the binder spot image data (e.g., 

size, shape, intensity profile, and precise distance to target) that are disregarded when only 

the integrated intensity is used. We first apply to all frames in the image sequence the same 

spot-detection algorithm used in the mapping procedure. This spot detection is applied twice 

to each image, using a high spot amplitude threshold to avoid false positives and a low spot 

amplitude threshold to avoid false negatives (Fig. 6). The start of a co-localization interval is 

scored when a binder spot center is detected within a set distance (e.g., 180 nm) of the target 
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while using the high intensity threshold. The interval is scored as ending during the first 

subsequent frame in which a binder spot is not detected within 270 nm of the target location 

using the low intensity threshold. The less stringent criteria used to score interval ends helps 

to minimize instances in which a single binding event might be incorrectly scored as 

multiple bindings of shorter duration. Intervals that are between binder co-localization 

intervals are designated binder absent intervals. For further analysis, intervals in each binary 

trace are summarized in a data structure (the `intervals table') that records the location, time, 

duration, and type of each interval (Fig. 7). Intervals that begin or end a data record are 

marked as such because these require special treatment in some data analyses as noted 

below.

Using the above spot detection based method avoids the necessity of visually inspecting all 

scored binding events to remove false positives. Nevertheless, we occasionally find that a 

small number of target molecules account for a disproportionately large number of binder 

co-localization intervals. This can occur because of binding to an unlabeled target molecule 

adjacent to the labeled target being measured, resulting in a binder spot that is borderline 

with respect to either the intensity or proximity threshold. Statistical methods can be used to 

exclude these anomalous target locations from subsequent analyses (Fig. 8) when the 

anomalies arise from such experimental artefacts and not from actual heterogeneity in target 

molecule behaviors.

5. Measuring association rate constants

The ability to observe individual protein molecules associating with DNA, for example, 

RNA polymerase molecules binding to a promoter, allows direct measurement of 

association kinetics uncomplicated by the participation of isomerization steps that follow 

binding [4,5]. To measure the association rate at a particular solution concentration of binder 

(e.g., RNA polymerase), we ordinarily use the absent intervals that precede the first 

observed binding interval (i.e., the intervals coded −2 in Fig. 7). The statistics of those 

intervals will in principle match those of the larger data set of intervals separating successive 

bindings (i.e., those coded 0 in Fig. 7). However, in practice the use of only the intervals that 

precede the first event greatly reduces artefacts caused by the effects of binder 

photobleaching (intervals in which target molecules are occupied by photobleached binder 

will be erroneously scored as absent intervals) and negative dropouts (in which a single 

binding event is scored as multiple co-localization intervals separated by spurious short 

absent intervals).

For most experiments there is some binder co-localization that occurs even at randomly 

chosen sites that do not contain a visible target molecule. This may result from transient 

non-specific interactions of the binder protein with the chamber surface (or possibly from 

specific binding to rare non-fluorescent target molecules). This “nonspecific” binding 

contributes to the association rate recorded at all locations and we must account for it when 

measuring the specific association rate to target. To measure the non-specific rate, we pick 

Nc control locations that do not overlap target sites (Fig. 9). For these sites we compile a list 

of initial absent intervals {τcj} that correspond to the time elapsed prior to the first binder 

co-localization at the control location (i.e., those coded −2 in Fig. 7). We also separately 
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count the number nc of control locations at which no binding occurs throughout the entire 

observation interval Tmax. To derive the nonspecific binding rate constant kns we fit these 

data using a maximum likelihood algorithm [20,21] in which we vary kns to maximize the 

likelihood function associated with all Nc observations:

(4)

In Eq. 4, each factor of knsexp(-kns τcj) is proportional to the probability of observing a time-

to-binding interval of length τcj and each of the nc factors of exp(-knsTmax) is the probability 

of not observing any binding during the entire observation interval Tmax (or equivalently, the 

probability of observing a binding at some time during the interval from time Tmax to 

infinity). (To accommodate the limited precision of digital representation of real numbers, 

we maximize the sum of the logarithms of the individual factors instead of their product.)

Having determined the rate constant for non-specific binding to the surface, we next analyze 

the specific binding to target molecule locations. For the N target sites we tabulate (1) the 

number n of sites at which no binder co-localization was observed throughout the entire 

observation interval Tmax, (2) the number nz of sites for which co-localized binder was 

already detected at the beginning of the recording (i.e., code −3 in Fig. 7), and (3) a list of 

initial absent intervals {τj} that correspond to the time elapsed prior to the first binder co-

localization at the target location (i.e., those coded −2 in Fig. 7).

These data are fit (Fig. 10A) to a model that assumes there are two subpopulations of target 

molecules: an active fraction Af ≤ 1 that exhibits binder co-localization at a rate (ka + kns), 

where ka is the specific apparent first-order association rate constant, and an inactive fraction 

(1 − Af) that shows only nonspecific binding at the same kns rate found at the control 

locations. The active faction includes the nz sites at which co-localized binder was already 

detected at the beginning of the recording. In this model, the probability for each τj 

observation given chosen values ka and Af is proportional to

(5)

and the probability of each of the n observations of targets with no binder co-localization is

(6)

Therefore, to derive ka and Af we vary those parameters to maximize the likelihood function

(7)

To determine the standard error in the fit parameters ka, Af, and kns, we use a bootstrap 

calculation [22]. The Nc observations made at control sites are listed in a table that includes 
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both the nc observations of no co-localization plus the Nc−nc observations of {τcjinitial 

absent intervals. We generate a large number (typically 5,000) simulated data sets. To 

generate each such set, we randomly sample with replacement Nc values from the 

observations table. Each bootstrapped data set is then fit by maximizing Eq. 4 to yield an 

estimated kns. We then generate bootstrapped data sets from the list of N experimental 

observations made at target sites. In that instance we randomly sample with replacement 

from a table that includes n observations of no binder co-localization, nz observations of 

binder co-localization at time zero and N–n–nz observations of the {τj} initial absent 

intervals. We also randomly sample a kns value from the set calculated in the prior bootstrap. 

These sampled data are then together fit by maximizing Eq. (7) to determine values for ka 

and Af. Repeated bootstrapping yields simulated distributions for kns, Af and ka (e.g., Fig. 

10B); the standard deviation of each distribution yields the estimated standard error of the 

corresponding parameter.

For bacterial RNA polymerase molecules binding to promoter DNA targets (e.g., ref. [5]) 

and transcription factors binding to transcription complexes (e.g., Fig. 10), this approach 

typically yields fits in close agreement to the experimental data. The slow increase in the 

target curve after 200 s is not mechanistically significant; the model explains this as slow 

non-specific binding to the surface at the fraction of target sites that are inactive to specific 

binding.

6. Measuring dissociation rate constants

The lifetime of co-localization intervals can provide information about the dissociation rate 

of the binder-target complex. Furthermore, the distribution of co-localization intervals can 

reveal the existence of multiple types of these complexes, their mechanism of 

interconversion and their relative kinetic stabilities. Typically, co-localization interval 

distributions are the sum of multiple exponential terms reflecting the presence of multiple 

types of binder-target complexes. In general, more than one type of complex contributes to 

each term in the distribution [23,24].

To measure the lifetimes of binder-target complexes, we first tabulate the durations of co-

localization intervals (coded −3 and 1 in Fig. 7) at N target and Nc non-target sites. To get an 

initial idea of the distribution of target-specific co-localization intervals, we subtract the 

non-target from the target data:

(8)

where nm and  are the measured numbers of co-localization intervals with durations 

lasting m frames detected at target and non-target sites, respectively; and T and Tc are the 

sum of the durations of all absent intervals (coded −2, 0 and 2 in Fig. 7) observed at target 

and non-target sites, respectively. The  values are then the estimates of target-specific co-

localizations with duration lasting m frames, which can be summarized in a histogram to 

visualize the shape of the distribution of co-localization durations.
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Once the shape of the distribution is known, we proceed to a more quantitative, model-

dependent analysis. Typically, co-localization intervals can be recorded only when their 

duration exceeds a minimum tmin that is set by experimental conditions [20]. We model the 

{τcj}interval durations that occur at non-target sites as arising, for example, from a bi-

exponential probability density distribution

(9)

where ac is the relative amplitude and r1c and r2c are two characteristic departure rates. As 

written, P2 is normalized so that it integrates to 1 over durations t greater than tmin. We 

maximize the likelihood function

(10)

where Lc is the total number of observed co-localization intervals (typically a few hundred 

to one thousand) at the non-target sites, thus obtaining values for ac, r1c, and r2c.

Correcting the co-localization interval distributions measured at target locations for the 

nonspecific binding contribution requires that we again account for the relative frequencies 

of co-localizations at target vs. non-target sites. The non-target site frequency is Ac = Lc / Tc 

and the target site frequency is similarly A = L / T where L is the total number of observed 

co-localization intervals. We then model the frequency distribution of interval durations at 

target sites as

(11)

so that F(t|r1,r2,a,r1c,r2c,ac)dt is the predicted rate of co-localization intervals with durations 

between t and t+dt that occur at one target site. Eq. 10 separates the binding frequency 

contributions into a first term for co-localizations that are target-specific and a second term 

for those that are non-specific. For the L observed co-localization durations at target sites 

{τj} we maximize the likelihood function

(12)

by varying the values of r1, r2, a (using the fixed values for r1c,r2c, and ac determined 

earlier).

Once the data have been fit, it is useful to visually compare plots of the distribution of data 

and the distribution predicted by the fit parameters and model. For example, the plot in Fig. 

11A compares data and a fit for co-localization of σ54RNA polymerase on a promoter DNA 

target. The data plot is a cumulative frequency distribution, in which each point represents 

the average frequency at which binder co-localization intervals (coded −3 and 1 in Fig. 7) 

longer than the specified co-localization duration occur at a target location. The fit is a plot 

of the function
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(13)

where

(14)

Eq. 13 consists of contributions arising from the DNA-specific (first term) and the 

nonspecific (second term) co-localization intervals.

In judging the agreement between data and fit curve, it is important to remember that in this 

type of plot the statistical deviations of each successive data point are not independent. 

Indeed, each point in the cumulative frequency distribution includes the random 

experimental errors of all points to its right. This is why we do not directly fit the cumulative 

curve using a conventional fitting procedure that assumes independent errors; instead we use 

maximum likelihood methods to directly fit the underlying observations as described earlier. 

To visualize the statistical uncertainty in the cumulative distribution curve, we construct a 

family of curves from bootstrap samples of the experimental data and plot the envelope for 

the 95% confidence interval of the family (Fig. 11B).

An alternative visualization of the data is to plot a binned probability density histogram [20]. 

Colocalization events are sorted into bins that record the number of co-localizations ni with 

durations between the limits of the ith bin. The probability density in bin i is then

(15)

where L is the total observed number of co-localized landings at all target sites and wi is the 

width of the ith bin (Fig. 11C). The standard error in each pi is the binomial uncertainty (ni 

[1−(ni/L) ])1/2 /( Lwi ). These errors are statistically independent for each bin. In the 

probability density function representation, the fit curve is plotted as the model probability 

density function F(t, r1, r2, a, r1c, r2c, ac)/A (see Eq. 11).

The apparent departure rates as determined above will in general have contributions from 

both the rate of dissociation of binder from target and from photobleaching of the dye label 

on the binder. Photobleaching has the most pronounced effects on the slower terms of multi-

exponential lifetime distributions. To measure dissociation kinetics independent of 

photobleaching, we repeat experiments using different amounts of exposure to the excitation 

laser and extrapolate the results to zero exposure. A convenient way to vary exposure is to 

keep the laser power constant but to vary the fraction of time I during which the sample is 

exposed to the laser (for example, I = 1 for continuous exposure, whereas I = 0.1 for a time 

lapse acquisition in which the laser is alternately on for 1 s and off for 9 s) [25]. The rates 

measured at different exposure fractions r(I) can then be fit to

(16)

yielding values for the fit parameters ro, the photobleaching-independent dissociation rate, 

and b, the photobleaching rate at continuous exposure.
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7. Deducing reaction mechanisms from single-molecule kinetics

The analysis outlined above enables us to summarize the kinetics of co-localization intervals 

and binder-target association in terms of probability distributions. Those distributions may 

contain multiple exponential terms, and the rates associated with those terms are 

mathematically related to (but not generally the identical to) rate constants in the kinetic 

mechanism of the reaction. Well established methods exist to relate single-molecule 

probability distributions to kinetic mechanisms (for example in refs. [23,24]). Here we 

illustrate the process using the example of a bi-molecular association followed by a 

conformational isomerization, the mechanism of closed promoter complex formation by 

σ54RNA polymerase enzyme (E) at the glnAP2 promoter (D) in the absence of activator [4]. 

In that instance two distinct closed complex species form, and the appropriate reaction 

scheme is

(17)

where (E•D)1 is a short-lived closed complex, (E•D)2 is a long-lived closed complex, and 

the pseudo first-order rate constant ka = k1[E], where k1 is the second-order binding rate 

constant and [E] is the polymerase concentration.

The Eq. 17 mechanism predicts a single exponential target-specific association distribution 

(Eq. 5) and a bi-exponential co-localization interval distribution (Eqs. 9 and 11). In this 

instance the association rate measured in our single molecule binding experiment (the rate ka 

in Eq. 5) is identical to the rate constant ka appearing in the reaction scheme (Eq. 17). In 

contrast, the values of k−1, k−2, and k−2 in Eq. 17 do not directly correspond to any measured 

rate. However, the values of these rate constants can be derived from the parameters of the 

co-localization interval distribution (Eq. 11) as follows:

Each RNA polymerase that binds a promoter first occupies the (E•D)1 state at time t = 0. 

The fraction of binding events in which the polymerase still remains bound (i.e., in either 

(E•D)1 or (E•D)2) at time t > 0 is:

(18)

where r1 and r2 are the measured rates that appear in the Eq. 11 co-localization interval 

distribution. The relative weights of the two components in Eq. 11 are then given by the 

ratio of coefficients in Eq. 18, so that

(19)

and the measured relaxation rates r1 and r2 are given by the two roots

(20)
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Given values of r1, r2, and a, Eqs. 19 and 20 can be numerically solved to yield k−1, k−2 and 

k2; for example, r1 = 0.426 s−1, r2 = 0.00592 s−1 , and a = 0.76 yields k−1 = 0.33 s−1, k2 = 

0.10 s−1, and k−2 = 0.0077 s−1.

Eq. 17 is not the only three-state reaction scheme consistent with a single exponential 

association and bi-exponential co-localization interval distributions. Often data from 

additional experiments can be used to distinguish between alternative mechanisms of similar 

complexity; Figure S4 of ref. [4] illustrates one example of that approach.

For more complex reaction schemes than the example described above, there are general 

algorithms and computer software packages that aid relating measured distributions to the 

chemical rate constants given a specified reaction scheme [24,26,27].
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Protocol 1: Constructing a list of calibration spot pairs for mapping

1. Auto pick spots in Image 1. Typically, 200 or more candidate spot coordinates 

are selected from an Image 1 based on user-defined thresholds for spot diameter 

and amplitude input to the automated spot-detection algorithm.

2. Remove from the list any Image 1 spots whose coordinates are too close 

together. The program calculates distances between all spots and removes any 

pairs closer than some threshold (typically 792 nm, corresponding to six pixels). 

At this stage, any spots that are clearly aggregates or dirt may also be removed 

manually.

3. Map coordinates to Image 2 using prior calibration list. The coordinates of 

Image 1 spots are mapped onto Image 2 to identify matching partner spots in the 

Image 2. For this mapping we use Eq. 2, initially with parameters determined 

from a calibration list prepared from a previous calibration sample. If no 

previous list is available, a preliminary sparse mapping list can be built by 

manually picking unambiguous spot pairs (e.g., from a sample with fluorescent 

beads).

4. Remove from the list spots lacking an Image 2 partner. Any Image 1 spot that 

maps more than a threshold distance (e.g., 2 pixels) from all Image 2 spots is 

removed.

5. Remove from the list spots too close to other Image 2 spots. Image 1 spots with 

an Image 2 partner are removed if any other Image 2 spot is too close (e.g., 

closer than 6 pixels).

6. Fit Image 2 spots. Each remaining Image 2 spots is Gaussian fit to define its 

center coordinates.

7. Map Image 2 spot coordinates back to Image 1 using prior calibration list. Each 

remaining Image 2 spot is mapped back to Image 1. Each Image 2 spot should 

map close (within 2 pixels) to its Image 1 partner.

8. Fit Image 1 spots. The resulting collection of Image 1 spots are Gaussian fit to 

define their center coordinates. The Image 1/Image 2 spot pairs are now the new 

calibration list.

9. Map Image 1 spots in the calibration list into Image 2. The new calibration list is 

used to map all Image 1 spots from the calibration list into Image 2.

10. Remove inconsistent spot pairs. Remove Image 1/Image 2 spot pairs from the 

calibration list if the Image 1 spot maps to a position further from its 

corresponding Image 2 partner than a threshold (e.g., 0.4 pixels).

11. Add data from additional Image 1/Image 2 pairs to the calibration list. Repeat 

steps 1–10 using an Image 1/Image 2 pair of a new field of view of the 

calibration sample to add additional spot pairs to the new mapping calibration 
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list. In each repetition, the mappings in steps (3) and (7) are conducted using the 

calibration list finished in step 10 of the previous cycle.
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Highlights

- Methods for elucidation of transcription mechanisms by single-molecule 

fluorescence

- Processing of multi-wavelength single-molecule co-localization data

- Analysis of single-molecule binding and dissociation kinetics
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Figure 1. Example CoSMoS transcription experiment
(A) A transcription initiation reaction was conducted in two discontinuous steps: glnAp2 

promoter DNA molecules labeled with a fluorescent dye (AF488; blue star) were tethered to 

the slide surface. The reaction was initiated by introducing RNAP holoenzyme consisting of 

core RNAP (salmon) complexed with σ54 (red circle) labeled with a second dye color (Cy3; 

green star) plus the activator NtrC and its cofactor ATP. These conditions lead to the 

formation of stable open complexes. Next, the nucleoside triphosphates (NTPs) ATP, CTP, 

and GTP are added along with an oligonucleotide probe labeled with a third color (Cy5, red 

star) that is used to detect the transcript RNA (red curve) by hybridization. (B–D) 
Fluorescence images (all of same surface region) in the three color channels acquired at the 

three reaction stages depicted in (A). (E–F) Dye colocalization reports complex formation. 

[Redrawn from ref. [4]]
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Figure 2. Chromatic distortion in time-multiplexed imaging
Surface-tethered oligonucleotide molecules each labeled with both Cy3 and Alexa Fluor 488 

(AF488) were imaged in rapid succession with excitation wavelengths 532 nm (Cy3) and 

488 nm (AF488). Yellow squares mark the same pixel locations in the two images. 

Magnified views show that images from one part of the microscope field of view are well 

aligned (A), whereas distortions misalign another part of the same image (B).
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Figure 3. Mapping error
Graphs indicate the differences between actual position of a spot and the mapped position of 

its partner for 273 spots in a test image. For this experiment, the calibration data and test 

image were collected from different fields of view from a sample of surface-tethered DNA 

oligonucleotides labeled with Cy3 and Cy5 under illumination with a 532 nm laser. This 

oligonucleotide was designed so that Cy5 was excited through FRET, so that all Cy5 spots 

have a Cy3 partner. Coordinates of Cy5 spots are mapped into the Cy3 field and compared 

with the known locations of their Cy3 spot partners. (A) Global mapping using all 

calibration points for each spot causes large errors that vary systematically with spot 

position across the microscope field. (B) Local fitting using only the 15 closest calibration 

points (see text) eliminates systematic variation and produces r.m.s. errors (19 and 21 nm in 

x and y, respectively) close to the variation expected from the uncertainty in the position 

measurements alone (19 nm measured over all pairwise combinations of N = 130 spot 

position differences measured over 100 s [28]).
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Figure 4. Drift correction
(A) Spots from bright fluorescent beads (40 nm diameter TransFluoSpheres, Life 

Technologies, T10711) marked by squares are readily distinguishable from fluorescence of 

single dye molecules on a DNA oligonucleotide used to detect a nascent transcript by 

hybridization (unmarked spots). (B) Plots of the drift table data Δx and Δy against time. 

Images were recorded using four 0.24 s duration frames every 100 s between time 1950 – 

3630 s and recorded continuously using frames of duration 1 s elsewhere. Interruptions in 

the drift table (gray) are intervals when image acquisition was temporarily suspended. (C) 
Integrals of the drift table which display the net drift in x and y.
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Figure 5. Spot discrimination
(A) Integrated fluorescence intensity and selected images of binder molecules (Cy3-GreB) 

co-localizing with an individual target molecule (a transcription elongation complex). 

Intensity is integrated over a 0.4 × 0.4 μm square at 4 frames s−1; images are 1.3 × 1.3 μm 

and the integration area is marked (blue). (B) Co-localization intervals scored from 

integrated intensity (see text) using the intensity thresholds shown as dashed lines in (A). 

(C) Co-localization intervals scored by spot detection (see text). Note that this algorithm 

scores only the first and third peaks in (A), rejecting the middle event because the binder 

spot was not well-centered on the target location.
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Figure 6. Effect of the amplitude threshold setting in the spot detection algorithm
(A) Circular 65 μM diameter binder channel image. There are two bright spots due to 40 nM 

fluorescent bead fiducial markers and ~70 dimmer spots arising from Cy3B-GreB binder 

molecules bound to transcription elongation complex targets. (B, C) Magnified view of the 

13.2 × 13.2 μm region enclosed by the dotted yellow line in (A). The spot detection 

algorithm detects 6 spots (red squares in (B)) at the high spot amplitude threshold equal to 

25 and 60 spots (C) at the low threshold equal to 9. Images in (A–C) are reproduced at high 

contrast to emphasize image noise. (D) The number of detected spots (blue) for the field of 

view shown in (A) varies with the amplitude threshold setting. At low amplitude settings 

(i.e., <20) the algorithm identifies image noise features as spots, resulting in an excessive 

number of detected spots. The data are fit with a bi-exponential function (red) consisting of 

one term approximating the number of false positive spots due to image noise (green) and a 

second term approximating the number of true binder spots (black). The fits are used to 

calculate a threshold (dashed line) for which there is an estimated 50% probability of having 

no noise-induced spots detected within 1 pixel of a single DNA location during the 4000 

frame duration experiment.
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Figure 7. Coding binding interval data
Plots illustrate two schematic data records consisting of alternating binder co-localization 

(top brackets) and binder absent (bottom brackets) intervals. Co-localization and absent 

intervals are coded as −3 and −2 respectively when they are the first (or only) interval in a 

record, 3 and 2 when they are the last interval in a record and 1 and 0 elsewhere.
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Figure 8. Identification of outlier target molecules
Example of a histogram recording the frequency of binder co-localization intervals recorded 

at each target location during an experiment (red; in this case, GreB binding to transcription 

elongation complexes over 25 min.) and to randomly selected control locations that lack 

visible target molecules and therefore reflect non-specific surface binding (blue). Inset: 

Magnified view. The peak in the red curve centered at ~33 co-localization events per site per 

hr represents the behavior of typical target molecules; the tail at > 120 represents rare (9% of 

total) outlier target molecules that were excluded from subsequent analysis.
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Figure 9. Tabulating control locations devoid of target spots
Two identical images (32 × 32 μm) of a portion of a microscope field of view showing target 

fluorescent DNA spots. (A) A close-packed grid of 9 × 9 pixel (1.2 × 1.2 μm) squares (red) 

was constructed to cover the field of view. (B) The automated spot-detection algorithm was 

used to remove any square from (A) whose center is closer than 8 pixels (1.06 μm) to any 

detected spot. The remaining squares were reduced to a 4 × 4 pixel size.
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Figure 10. Association kinetics of GreB with transcription elongation complexes
(A) Cumulative fractions of surface-tethered elongation complex targets (blue; N = 287) and 

control sites (black; Nc = 382) at which GreB (0.5 nM) co-localized at least once prior to the 

indicated time. Fitting (see text) was used to calculate model curves based on Eq. 5 (red; ka 

= (1.49 ± 0.13) × 10−2 s−1 and Af = 0.83 ± 0.02) and an exponential probability density 

function (cyan; kns = (1.75 ± 0.19) × 10−4 s−1). (B) Estimated uncertainty in ka. The plot is a 

histogram of ka values derived from fitting 5,000 bootstrap samples of the data in (A). The 

standard deviation of these values (0.13 × 10−2 s−1) is the estimated standard error of ka 

reported in (A).
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Figure 11. Plotting co-localization interval distributions and their fits to models
All three panels show plots of the same example data set (taken from ref. [5]) of 0.1 nM 

σ54RNA polymerase binding to 3,591 bp target DNA molecules containing a σ54 promoter 

(blue, N = 122 DNA, L = 1000 co-localizations) and to non-target control sites (black, NC = 

157, LC = 129). Data were fit using biexponential distributions for both the target sites (red; 

r1 = 0.34 s−1, r2 = 1.6 × 10−2 s−1, and a = 0.85; Eqs. 11 and 12) and the non-target sites 

(cyan; r1c = 0.75 s−1, r2c = 2.4 × 10−3 s−1, and ac = 0.96; Eqs. 9 and 10). (A) Cumulative 

frequency distributions of co-localization intervals at target and non-target sites. Inset: 

semilog plot of the same data on an expanded timescale. (Redrawn from ref. [5].) (B) Same 

data and fit as in (A), with the bootstrap estimate of the 95% confidence limits (dashed) of 

the data. (C) The data and fit from (A) visualized as a probability density function (± s.e.).
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