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Abstract Atherosclerosis is the most life-threatening

pathology worldwide. Its major clinical complications,

stroke, myocardial infarction, and heart failure, are on the

rise in many regions of the world—despite considerable

progress in understanding cause, progression, and conse-

quences of atherosclerosis. Originally perceived as a lipid-

storage disease of the arterial wall (Die cellularpathologie in

ihrer begründung auf physiologische und pathologische

gewebelehre. August Hirschwald Verlag Berlin, [1871]),

atherosclerosis was recognized as a chronic inflammatory

disease in 1986 (New Engl J Med 314:488-500, 1986). The

presence of lymphocytes in atherosclerotic lesions suggested

autoimmune processes in the vessel wall (Clin Exp Immunol

64:261–268, 1986). Since the advent of suitable mouse

models of atherosclerosis (Science 258:468–471, 1992; Cell

71:343-353, 1992; J Clin Invest 92:883–893, 1993) and the

development of flow cytometry to define the cellular infil-

trate in atherosclerotic lesions (J Exp Med 203:1273–1282,

2006), the origin, lineage, phenotype, and function of distinct

inflammatory cells that trigger or inhibit the inflammatory

response in the atherosclerotic plaque have been studied.

Multiphoton microscopy recently enabled direct visualiza-

tion of antigen-specific interactions between T cells and

antigen-presenting cells in the vessel wall (J Clin Invest

122:3114–3126, 2012). Vascular immunology is now

emerging as a new field, providing evidence for protective as

well as damaging autoimmune responses (Int Immunol

25:615–622, 2013). Manipulating inflammation and

autoimmunity both hold promise for new therapeutic

strategies in cardiovascular disease. Ongoing work (J Clin

Invest 123:27–36, 2013; Front Immunol 2013; Semin

Immunol 31:95–101, 2009) suggests that it may be possible

to develop antigen-specific immunomodulatory prevention

and therapy—a vaccine against atherosclerosis.
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Monocytes—precursors of most macrophages
and dendritic cells

It has been shown over the last decades by a plethora of

experiments that macrophages—tissue-resident cells of

myeloid origin that figure in a variety of physiological and

pathological conditions—are the main effector cells in the

atherosclerotic plaque [13, 14]. In a simplified view,

macrophages represent promiscuous phagocytes that can

engulf a plethora of pathogens and debris in a variety of

tissues, including modified and native lipids in the vessel

wall [15]. While fulfilling their role as the main scavengers

of the innate immune system, macrophages transform,

become lipid-laden foam cells and drive the inflammatory

milieu in the atherogenic vessel wall by secretion of

cytokines and chemokines, and their interaction with other

immune cells in the plaque [16], although this view has

recently been challenged [17]. It has been proposed that

lesional macrophage burden and phenotype may correlate

with clinical outcome. This as yet unproven hypothesis has

led to the terms stable (thick cap, few inflammatory cells)

and unstable (macrophage and lipid-rich plaque) plaque
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[18]. Unstable plaques are more likely to give rise to life-

threatening complications, such as myocardial infarction

and stroke [19]. Destabilization of the atherosclerotic pla-

que is thought to occur as result of matrix

metalloproteinases that are secreted by macrophages and

other cells and can eventually destruct the plaque’s extra-

cellular matrix [20, 21].

Originally, it was believed that macrophages solely arise

from monocytes [22]. However, many tissues are seeded by

primitive hematopoietic precursor cells prior to the emer-

gence of definitive hematopoiesis [22, 23] and self-renew in

tissues [24]. Consistent with this, macrophages are found in

the aorta even in the absence of atherosclerosis [7]. However,

monocyte invasion, in particular of the pro-inflammatory,

CCR2? Ly6Chigh (Gr-1?) monocyte subset occurs through

all stages of disease [25, 26], an observation that has led to

the assumption that plaque macrophages originate from

monocytes [27, 28]. A number of findings supports that

circulating monocytes contribute to plaque macrophages:

Numbers of monocytes in the periphery are elevated in

atherosclerosis-prone ApoE-/- mice and correlate with

disease severity [25–27]. Homing studies using latex beads

to label monocyte populations [26] suggest that both Ly-6Chi

and Ly-6Clo monocytes access atherosclerotic lesions, but

monocyte transendothelial migration and differentiation to

macrophages have not been observed directly. Recent

development of multiphoton intravital microscopy in

atherosclerotic arteries [29] holds promise that this may

become possible soon. This would establish whether

monocytes enter from the lumen as is currently believed, or

whether vasa vasorum is an additional source of monocytes.

Novel mechanisms that explain monocytosis during

atherosclerosis have recently been identified: Some of them

are located in the bone marrow, where hyperglycemia [30]

or modulation of reverse cholesterol transport in

hematopoietic stem cells (HSPCs) [31] regulates monocyte

generation and their efflux in the periphery. Interestingly,

activation of the sympathetic nervous tone by pain, anxiety,

stress, and circadian events can drive adrenergic signaling

in the bone marrow niche and generation of Ly6Chigh pro-

inflammatory monocytes [32–34]. Notably, monocyte

progenitors can also populate alternative niches, such as the

spleen, and can be released into circulation [35, 36]. Taken

together, monocytes infiltrating into the plaque are one

origin of plaque macrophages.

The plaque macrophage—a stem cell
within the artery?

The dogma that every monocyte turns into a macrophage

has been challenged in the last years. Firstly, it was shown

that Ly6Chigh monocytes that enter inflamed tissue do not

necessarily turn into macrophages, but instead serve as

short-lived antigen-presenting cells that are capable of

presenting antigen on MHC-II and traveling to lymph nodes

without significant differentiation [37]. Secondly, it was

observed that blocking CCR2, a chemokine receptor highly

efficient in recruiting Ly6Chigh monocytes to inflammatory

sites, did not alter atherosclerotic lesion development [38].

Similarly, diphtheria-toxoid-guided depletion of leukocytes

bearing the integrin Mac-1, including neutrophils, mono-

cytes, and macrophages [39], only affected de novo

atherosclerosis, but not established disease [40]. These

findings have called into question whether monocyte influx

is always required for atherosclerosis.

An alternative idea is that atherosclerotic plaque may be

populated with macrophages by self-renewal and prolifer-

ation of tissue-resident cells. Notably, proliferation signals

have been detected in the atherosclerotic plaque, especially

in the macrophage-rich fatty streaks [41, 42], where they

co-localized with foam cells [43]. Also, macrophages in

other locations have been shown to proliferate in response

to inflammation, presumably by innate immune signaling

[44], and in steady state [45]. A study by Robbins et al.

demonstrated that plaque macrophages proliferate in situ

[46]. The authors of this study have used an elegant

experimental approach called parabiosis to address this

challenging question: The skin of two mice expressing

distinct reporter genes is stitched together to establish a

shared blood circulation. Thus, migration of cells traveling

from one mouse into the circulation and organs of the other

mouse allows fate-mapping studies. By testing parabiosis,

the authors demonstrated that the macrophage pool in the

plaque actively incorporated BrdU—a surrogate marker for

replicating DNA and hence cellular turnover. Influx of

circulating monocytes contributed little to plaque macro-

phages. These data indicate that plaque macrophages—

under some circumstances and likely in the later stages of

disease—proliferate locally. The authors conclude that

proliferation accounts for about 90 % of macrophage

accumulation in established disease. Notably, proliferation

was supported by LDL-uptake into macrophages by the

scavenger receptor SR-A (Msr1) in this study. The role of

SR-A in atherosclerosis is controversial: While one study

shows that Msr1-/- mice develop normal atherosclerotic

lesions [47], other studies suggest a role for Msr1 in late

atherosclerotic, necrotic lesions [48]. A gene-silencing

approach also suggested a pro-atherogenic role of Msr1

[49].

After myocardial infarction, the heart muscle is infil-

trated by macrophages [35]. Interestingly, fate mapping of

macrophages residing in the myocardium demonstrated

that proliferation occurred in macrophages that preferen-

tially take up bacteria, suggesting a role in immune-

surveillance [50]. On the contrary, in an inflammatory
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milieu during myocardial infarction, the proliferating

fraction of macrophages died or disappeared from the

heart, while newly recruited macrophages dominated.

These data unveil that the function of proliferating mac-

rophages in heart and atheromata may be distinct [51].

It is clear from these results that macrophages in the

plaque and in the heart share properties with self-renewing

stem cells, although their lineage potential may be very

narrow. Tissue-resident macrophages have clearly been

shown to self-renew in the peritoneum, liver (Kupffer-

Cells), brain (microglia), and the skin (Langerhans cells).

These cells originate from primitive hematopoietic cells in

the yolk sac and are placed in tissues during embryogenesis

[23, 24, 52–56]. Such macrophages are also found in the

heart and their contribution to tissue regeneration, antigen

sampling, and efferocytosis, rather than to inflammation

has been proposed [57, 58]. Whether such yolk sac-derived

macrophages are also present in the arterial wall and

whether they proliferate locally remains to be tested.

Transdifferentiation—an alternative source
of plaque macrophages?

The different origins of plaque macrophages may be expanded

by one old idea that has gained new attention in the last years:

that non-myeloid cells may give rise to macrophage-like

phagocytes in the plaque. It has been proposed by some studies

that vascular smooth muscle cells (VSMCs) can acquire some

of the prototypic functions of a macrophage, such as phago-

cytosis of lipids [59] or phenotypic conversion toward the

monocyte lineage [60]. A recent study by Feil et al. has pro-

vided new evidence supporting this concept. By employing a

genetic fate-mapping approach, the authors suggest that

VCMCs residing in the media aortic wall before disease ini-

tiation are mobilized into the intima during atherosclerosis

[61, 62]. Loss of typical markers of contractile smooth muscle

cells (SMC), such as smooth muscle actin (SMA), clonal

expansion of the transdifferentiated cells, and expression of

myeloid cell markers, such as CD68 and Mac-2, supports the

author’s hypothesis that SMCs convert in macrophage-like

cells. However, despite their phenotypic similarities, it is

unclear whether these transdifferentiated cells harbor the

same functions as classical plaque macrophages. This will

have to be clarified in future studies on gene expression, sig-

naling, and function—an evaluation beyond the expression of

some more or less specific myeloid cell markers. In this

regard, one recent study proposed that cholesterol signaling

skews the phenotype of SMCs toward macrophage-like cells

in vitro [63], which would support a specific role for transd-

ifferentiation in atherosclerotic plaques that are rich of native

and modified cholesterol.

The removal of plaque macrophages

In the context of plaque inflammation, it has been proposed

that myeloid cells are capable of leaving the plaque and

thus facilitate resolution of inflammation [64, 65]. This

idea has partially been based on the observation that sta-

tins—potent anti-inflammatory drugs developed to lower

cholesterol by blocking endogenous cholesterol synthe-

sis—resulted in regression of atherosclerotic plaques in

individuals with coronary heart disease [66]. Likewise,

inducible reconstitution of ApoE in mice expressing a

hydromorphic ApoE allele or that lack ApoE demonstrated

diminished atherosclerotic plaques and foam cell content

[67, 68]. On the other hand, aggravation of atherosclerosis

is associated with increased accumulation of macrophages,

which possibly lost their ability to leave the plaque.

Notably, in the later stage of disease, but not in the early,

the clearance of apoptotic cells—a mechanism referred to

as efferocytosis—is impaired [69]. As a result, accumu-

lating apoptotic cells cause secondary necrosis, which in

turn aggravates the inflammatory response [70]. Both

observations have led to the idea that plaque macrophages

are removed from the plaque during regression, a hypoth-

esis also supported by studies demonstrating that

macrophages may actively exit some inflammatory com-

partments by migration, such as from the peritoneal cavity

or adipose tissue [71, 72]. Macrophage removal from pla-

que could occur by active emigration or cell death. To

distinguish between these possibilities in the context of

atherosclerosis, a surgical model was developed: The

atherosclerotic aortic arch was isolated and transplanted

into either atherosclerosis-prone ApoE-/- or wildtype mice

[65]. When the atherosclerotic aortic arch (marked by an

allogeneic marker) was transplanted into wildtype mice,

macrophages rapidly disappeared, and their disappearance

correlated with the appearance of marker-positive cells in

lymph nodes. These findings suggested active migration of

plaque macrophages to lymph nodes in an atheroprotective

milieu. This effect seemed to be dependent on the che-

mokine receptor CCR7 and to be modulated by the

cholesterol load of macrophages [64, 73]. However, newer

studies using bead-tracking techniques optimized for exact

quantification of cellular trafficking showed that the egress

of macrophages is only a minor factor or even dispensable

for the loss of macrophages from the plaque [74]. Instead,

lowered monocyte recruitment to the plaque in an envi-

ronment of normalized circulating lipids—a factor required

to induce plaque regression—and a stable, unchanged rate

of apoptosis among plaque macrophage were the likely

explanations for decreasing macrophage numbers in the

plaque during regression. Notably, the authors of this study

used a viral transduction by adenovirus to restore ApoE in
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an ApoE-/- mouse, a strategy that could bear potential side

effects to bias the conclusion of the study [74]. Later

studies confirmed that macrophage death is the main con-

tributor to macrophage removal in the peritoneal cavity. In

one study, a minor proportion of cells emigrated to lymph

nodes [75]. These findings suggest that macrophage death,

not egress from the plaque, accompanies plaque regression.

The many faces of plaque macrophages

Macrophages in vivo form two major subsets, M1 and M6

[76, 77]. M1 macrophages kill pathogens by NO produced

by iNOS. M2 macrophages promote would heal by con-

verting arginine to ornithine via arginase-1 [177]. The M1

polarization of macrophages is further promoted by IFN-c
and such macrophages are known as classically activated

[78]. M2 macrophages can be stabilized and further driven

to express more arginase-1 by IL-4, also known as alter-

natively activated macrophages, which express not only

arginase-1 but also CD206 (Mannose receptor, MR) [79].

In vitro studies have suggested some possible inducers and

signaling molecules predisposing for either one of the

phenotypes, including TLR ligands, IFN-c, GM-CSF (M1),

or IL-4 and some fatty acid species (M2) [80]. However,

the in vivo cues are largely unknown. Genetic predisposi-

tion of the host, tissue-derived cues, and pathogen-derived

molecules like TLR ligands is suspected modifiers of

macrophage phenotype [77]. NFjB and NLRP3 pathways

are dominant in M1 macrophages [81] and PPARc and

Nr4a1 in M2 macrophages [82]. The distinct transcriptome

of M1 and M2 macrophages includes IL-12 and Tumor

Necrosis Factor (TNF)-a in M1, which supports a TH1

adaptive immune response, and IL-10 in M2, which sup-

ports a TH2 adaptive immune response. One view holds

that M1 and M2 macrophages dominate in the atheroscle-

rotic plaque at different stages. The few available in vivo

studies suggest that M1, M2, and other macrophages exist

in plaques side-by-side [83].

Many in vitro studies have suggested that macrophage

polarization could be more complex. Some plaque macro-

phages show reduced expression of the scavenger receptor

CD163 for the hemoglobin-haptoglobin complex, which is

characteristic of M4 macrophages induced by the chemokine

CXCL4 [84, 85]. A fourth macrophage phenotype can be

identified by its expression of the anti-inflammatory enzyme

heme oxygenase (HOX) -1, a unique phenotype, induced by

oxidized phospholipids, called Mox [80, 83]. In vitro, some

macrophages express high levels of IL-10 and have been

termed regulatory macrophages (Mreg) [86, 87], but their

in vivo relevance for atherosclerosis remains unclear. The

description of macrophage phenotypes in mouse or human

atherosclerosis remains incomplete [13, 88, 89]. Although

there is no requirement for adaptive immune cytokines to

induce M1 or M2 polarization [90], it is reasonable to

speculate that immune cells, such as T or B cells, help reg-

ulate the macrophage phenotype by cytokine expression,

e.g., by secretion of the TH2 cytokine IL-4 to induce a pro-

tective M2 phenotype.

Certain macrophage phenotypes may predispose toward

distinct clinical outcomes: Some newer studies show that

macrophages with specific functional repertoires localize

within distinct parts of the plaque, an effect likely mediated

by the site-specific microenvironment: While M1 macro-

phages predominate in rupture-prone regions of human

plaques, M2 macrophages seem to inhabit the adventitia.

Notably, areas of plaque hemorrhage show elevated

expression of the hemoglobin receptor CD163 (Mhem

phenotype) [91]—while the fibrous cap of atheromata, as

well as foam cells, showed no clear predisposition for M1/

M2/M4/Mox/Mhem/Mreg phenotypes [90, 92]. Based on

these data, it is reasonable to propose that M1 macrophages

may predispose for later clinical events, but this remains to

be confirmed by clinical studies. Older findings suggested

that plaque instability is associated with macrophage-rich

lesions showing higher expression of extracellular matrix

destabilizing metalloproteinases (MMPs) [20, 93]. Indeed,

M1 and M2 polarized macrophages have distinct expres-

sion patterns of MMPs: Murine M1-type macrophages

show increased gene expression for MMP-13, -14, -25 and

lowered expression of MMP-19 and TIMP-2, while M2

macrophages increase expression of MMP-19. A similar

pattern was observed in human macrophages [90, 94, 95].

All these data should be considered with caution, because

in vitro polarized macrophages are not directly relevant to

atherosclerosis.

Besides plaque stability, certain pathologies could the-

oretically benefit from modulating phenotypic functions of

macrophages. For instance, tissue repair—an effector

function associated with the M2 phenotype—holds great

promise in tissue remodeling after myocardial infarction.

Indeed, it was shown that modulation of master transcrip-

tion factors predisposing for a certain polarization, such as

the M1 phenotype driving Interferon regulatory factor

(IRF) 5 could represent such a strategy. Silencing IRF5

induced a shift from the inflammatory M1 phenotype

toward the M2 phenotype in heart macrophages improving

outcome after myocardial infarction [96]. Likewise,

genetic inhibition of IRF5 in a combined atherosclerosis/

lupus model was protected from both pathologies, but

macrophage-specific function was not tested [97]. These

findings are encouraging attempts to understand the impact

of polarization-specific transcription factors and distinct

functional properties.
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The cellular origin of macrophage polarization

Macrophage heterogeneity and function may not only be

caused by the microenvironment as new evidence suggests

[98, 99], but also by origin. Two models have been pro-

posed as follows: 1) Macrophage subsets are pre-defined by

circulating monocyte progenitors—CCR2? Ly6Chigh (hu-

man: CD14??) inflammatory or CCR2low Ly6Clow

patrolling (human: CD14dim) monocytes—as previously

suggested [100] or 2) by conversion from one subset into

another. Hanna et al. have previously demonstrated that the

orphan nuclear receptor Nr4a1 (also known as Nur77) is

required for differentiation of patrolling Ly6low monocytes

in the bone marrow. Nr4a1-/- mice lack Ly6Clow mono-

cytes [101], suggesting Nr4a1 is as master transcription

factor for the development of this monocyte population.

Further studies showed that genetic deficiency of Nr4a1

accelerated atherosclerosis and skewed the phenotype of

macrophages toward a pro-inflammatory phenotype with a

high expression of TNF-a, nitric oxide, and reduced

expression of arginase-1 [82].

Newer studies suggest that alternatively activated mac-

rophages (just like M1 macrophages) originate from

Ly6Chigh, not Ly6low monocytes [82]: During myocardial

infarction, only Ly6high monocytes enter the inflamed

myocardium, convert to macrophages, and prolong post-

infarct healing [102]. Apparently, Nr4a1 is needed to

facilitate conversion toward a protective phenotype, an

observation based on the finding that Nr4a1-/- mice

developed an inflammatory macrophage phenotype that

was associated with worsened outcome in myocardial

infarction [82]. This is also suggested by studies on human

lesional macrophages, where over-expression of Nr4a1

decreased their pro-inflammatory gene expression in vitro

[103]. This new concept is further supported by observa-

tions in different pathologies, such as liver injury, which

propose that reparative macrophages arise from recruited

Ly6high monocytes [104]. Of course, observations from

liver tissue or myocardium cannot directly be translated to

the atherosclerotic plaque and future studies will have to

clarify the exact origin of these cells. All these findings

suggest that Ly-6Chi monocytes may be able to turn into

Ly-6Clow monocytes, a concept supported by lineage

tracking studies [105].

The need for an integrated model of myeloid cell
dynamics in the plaque

How can such new data be integrated into an updated

model of macrophage origin and fate in the plaque? Firstly,

the role of local proliferation of plaque macrophages versus

differentiation from blood monocytes will have to be

understood quantitatively. Secondly, macrophage effector

function, proliferation, and cell death may depend on the

specific microenvironment [98]. Thirdly, different, maybe

apparently divergent mechanisms may coexist. In line with

this notion, intestinal macrophages not only proliferate

in vitro [106] but are also replenished from blood mono-

cytes in vivo [107] and have been shown to be eliminated

by apoptosis and migration to lymph nodes [71]. Most

likely, different mechanisms exist at the same time, trig-

gered, and amplified by the specific environment. While

macrophage accumulation was considered to be in almost

linear relationship to monocyte infiltration in the past,

future models will have to integrate and quantify the dif-

ferent relative impacts of distinct macrophage progenitors

in a spatial and time-dependent view [108], also incorpo-

rating the loss of macrophages by apoptosis or emigration,

and possible transdifferentiation from SMC or precursors

in the adventitia [109] (Fig. 1).

The footprints of autoimmunity in atherosclerosis

A large body of recent evidence supports the hypothesis

that atherosclerosis is an autoimmune disease, driven by

the deposition and modification of lipoproteins in the

vessel wall and their detection by specific T cells and

antibodies. Particularly, 4 major findings support this

hypothesis: (1) T cells infiltrate the aorta, accumulate, and

show a restricted repertoire of T cell receptor (TCR), (2)

Activation of T cells in the plaque is sustained by inter-

action with plaque resident antigen-presenting cells (APCs)

and requires presentation of specific antigens, (3) In dif-

ferent species, auto-antibodies to lipid antigens and their

protein moieties are atheroprotective and associated with

better disease outcome, and (4) Outcome of murine

atherosclerosis can be modulated by immunizing against

some known antigens. The above-mentioned evidence

builds the theoretical basis of considering atherosclerosis

as autoimmune disease (a comprehensive review is found

in Ref. [110]).

The antigen-specific T cell orchestrates plaque
inflammation

About 59 % of cells within advanced human atheroscle-

rotic lesions are macrophages, *38 % of all cells

represent CD3? T cells depending on plaque morphology,

while Natural Killer (NK) cells (*1 %) and B cells

(*2 %) are only present at minor frequencies [111]. T

cells can be detected in all stages of the atherosclerotic

plaque [7] and based on their commitment to T helper cell

(TH) lineages, T cells can either act as pro- or anti-
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inflammatory cells [9]. Notably, most T cells in the plaque

are of the TH1 lineage and express the pro-inflammatory

cytokines IFN-c, IL-2, IL-3, TNF, and LT. These cytokines

fuel plaque inflammation by stimulating macrophages and

other cells resident in the plaque [112]. IFN-c is also

present in the human atherosclerotic plaque. Genetic

knock-out of IFN-c, its receptor, or of its lineage-defining

transcription factor T-bet reduced atherosclerosis in mice

[113–115], while the contribution of the TH2 or TH17

lineage is less important or controversial [116–124].

Fig. 1 Proposed origin and fate of myeloid cells in the atheroscle-

rotic plaque in mice. Early plaque macrophages originate from

inflammatory Ly6Chigh monocytes that transmigrate into the plaque

and differentiate (1). A second monocyte subset, patrolling Ly6Clow

monocyte is thought to patrol the vessel wall to remove debris and

dead endothelial cells. However, Ly6Clow monocyte may also

contribute to the pool of plaque macrophages by transmigration and

differentiation into macrophages. Ly6Clow monocytes in the plaque

may also originate by conversion from Ly6Chigh monocytes to give

rise to macrophages (2). Alternatively, it has also been speculated

whether plaque macrophages may stem from migrated adventitial

macrophages that are possibly derived from the primitive yolk sac

during embryogenesis and that may have the potential to self-renew.

Depending on the context, macrophages may ingest lipids and turn

into foam cells (3) or die (4). It has recently been reported that the

pool of plaque macrophages can independently be maintained in the

later stages of disease by direct proliferation in situ (5). Besides their

differentiation into macrophages, Ly6Chigh monocytes may transmi-

grate into the plaque, engulf, and present antigens by MHC-II, before

leaving the plaque and migrating into peripheral lymph nodes (6).

Likewise, dendritic cells (not shown) and macrophages can migrate

into the lymphatic system to present antigens to T cells and initiate an

immune response
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CD4? T cells appear to respond to certain antigens in

the atherosclerotic plaque: T cells from human and murine

plaques show a restricted TCR repertoire, suggesting that

those T cells accumulate and proliferate in the plaque,

which bear a specific TCR detecting the antigen [125, 126].

Native and modified (ox-) LDL, as well as apoB-100, the

main protein component of LDL, represents the most

promising candidates for such antigens [127–129], but also

heat shock proteins (HSPs) and some pathogens were

proposed [110, 130]. Notably, T cells isolated from an

atherosclerotic aorta specifically recognize oxLDL [129].

Antigen-experienced CD44hiCD62L- CD4? T cells iso-

lated from atherosclerotic mice interacted extensively with

dendritic cells in situ in a novel ex vivo imaging approach

of explanted aortas [8]. Transfer of a crude T cell sus-

pension responding to oxLDL ex vivo aggravated

atherosclerotic disease after adoptive transfer in a model in

of scid/ApoE-/- mice [131]. Cytokine expression of auto-

reactive T cells was dependent on antigen presentation by

MHC-II on APCs and binding to TCR [128], suggesting a

specific antigen-driven immune response in the plaque

against those autoantigens.

Naturally occurring T-regulatory cells (nTregs) are

gatekeepers of self-tolerance. Although some high affinity

self-recognizing T cells are removed in the thymus by

negative selection, it is important to recognize that essen-

tially all T cells in an organism not exposed to pathogens

are (positively) selected for self-antigens [132, 133]. The

effect of Tregs has been extensively tested in the setting of

atherosclerotic disease [134]. From a functional point of

view, nTregs are considered anti-inflammatory immune

cells, classically defined by co-expression of IL-2 receptor,

CD25, the forkhead transcription factor (FoxP)-3, and the

co-stimulatory molecule CTLA-4 [135]. nTregs are gener-

ated in the thymus, selected by self-peptides. Other T cell

subsets with potential regulatory function include CD4 T

cells that have acquired FoxP3, called induced T-regulatory

cells (iTregs). These cells are induced in the periphery

(outside the thymus) and can easily be converted to other T

cell subsets, i.e., they are unstable. Other CD4 T cells

secrete the anti-inflammatory IL-10 (Tr1 cells) and can act

as immune-modulating cells by expressing TGF-b. IL-10

and TGF-b are known to inhibit atherosclerosis in mouse

models [136–138]. In adoptive transfer experiments, a

population of CD4? CD25? T cells (containing Tregs) was

protected from atherosclerosis [139]. However, newer

studies employing a model of Treg depletion by diphtheria

toxin receptor under control of the Foxp3 were uninter-

pretable, because the blood lipid profile of these mice

changed significantly [140]. IL-2 antibody complexes are

thought to induce Tregs and showed beneficial effects in

atherosclerosis [141]. These findings are intriguing since

Tregs are required to limit the pro-inflammatory effects of

auto-reactive T cells [132]. Indeed, loss of Tregs can induce

severe autoimmune disease [139]. A thrilling, but yet

unproven presumption based on these and other findings

from immunization experiments [142, 143] is that some of

the specific T cell clones reactive to ApoB-100 are Tregs.

Several other important questions remain: Does a natural

repertoire of T cells detecting specific antigens exist?

Which circumstances may limit or expand this cell subset?

Which exact peptide epitopes within the proposed antigens

are recognized by specific TCRs on these cells?

Antigen presentation by subsets of macrophages
and dendritic cells drives specific immune
responses

Antigen presentation is a prerequisite to mature and

polarize naı̈ve T cells toward their effector status and the

major determinant of antigen specificity in adaptive

immunity. To induce a specific immune response against

proteins, antigenic peptides must be presented on Major

Histocompatibility Complex (MHC)-II (I-Ab in C57Bl/6

mice) on antigen-presenting cells (APCs) to allow binding

of the T cell receptor (TCR) [144] in the context of CD4. In

atherosclerosis, CD4? T cell activation and secretion of the

pro-inflammatory cytokines IFN-c and TNF-a critically

depend on interaction and antigen presentation by APCs [8,

145]. Notably, the interaction of APCs and T cells in the

atherosclerotic plaque depends on cognate antigens,

emphasizing that T cells in the plaque are antigen specific

[8]. It is less clear to which extent the interaction with T

cells requires specific APCs to maintain or break self-tol-

erance in the setting of atherosclerosis. However, it has

been proposed that distinct lineages of DCs may contribute

to or antagonize the autoimmune response in atheroscle-

rosis [146]. Different subtypes of DCs with distinct

functional repertoires have been identified in the

atherosclerotic plaque. Depending on origin, lineage, and

expression of surface markers, at least three different DC

subtypes have been defined. All of these show expression

of MHC-II and CD11c: Monocyte-derived DCs/macro-

phages that respond to M-CSF and express CD11b,

conventional DCs (cDCs) which can either express CD11b

or CD8 or CD103, and PDCA and B220 plasmacytoid DCs

(reviewed in Ref. [146]). It is noteworthy that DCs are

already present in the intima of a healthy aorta in mice and

humans [147, 148], although the subsets have not been

identified. In advanced plaques, antigen presentation is

predominantly carried out by cDCs and macrophages,

which show co-expression of CD11b and CD11c and pre-

dispose for a TH1 priming of T cells by secretion of IL-12

and CCL17 (a review summarizing these findings is pro-

vided in Ref. [149]). It has been proposed that the
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polarization of an immune response—immunogenic or

tolerogenic—will be guided during initial antigen presen-

tation [146, 150]. Various mediators can skew the

polarization of the immune response by modulating DC

activation. While anti-inflammatory signals as IL-10 and

TGF-b [151] will skew the response toward a tolerogenic

response, IL-6 induces a TH17, and IL-12 a TH1 response.

In atherosclerosis, disruption of tolerogenic pathways in

dendritic cells, for instance, by deletion of the receptor for

cytokine fms-like tyrosine kinase 3 ligand (Flt3L), Flt3,

can reduce Tregs and the net effect is pro-atherogenic [152].

Surprisingly, some signaling pathways involved in DC

maturation and T-effector (Teff) cell generation, such as

those initiated by toll-like receptors (TLRs), can result in

both, immunogenic and tolerogenic pathways. For

instance, genetic deletion of MyD88, a master TLR adap-

ter, resulted in a decrease of both Teff and Treg [153].

Unexpectedly, the decrease of Tregs, and not of Teffs,

determined the outcome in this study with enlarged

atherosclerotic lesions and increased recruitment of mye-

loid cells into the plaque. Moreover, ex vivo pulsing of

dendritic cells with ApoB-100 aggravated the immune

response with enhanced infiltration of CD4? T cells, and

increased IFN-c and Il-2 in the aorta. DCs that were primed

with IL-10 were atheroprotective [154]. However, trans-

ferring peptide-pulsed DCs was also atheroprotective

without prior cytokine treatment in another study [155],

rendering these results difficult to interpret. Besides

monocyte-derived and cDCs, pDCs have recently been

tested in an elegant experimental approach, in which the

transcription factor Tcf4 was abrogated selectively in

CD11c? cells to reduce pDCs numbers. Mice with such

pDC reduction were protected from atherosclerosis and had

fewer TH1 polarized T cells [156]. Taken together, these

results clearly indicate that antigen presentation is a fun-

damental part of atherogenesis and may be accessible to

therapeutical modulation. However, the assessment of

distinct APC subsets in atherosclerosis has been difficult

with respect to its heterogeneity and incomplete tools to

inhibit antigen presentation in a disease-specific manner.

For instance, diphtheria toxin-guided depletion in CD11c?

DCs also abrogates CD11c-expressing M1-macrophages

[157]. It is not known whether antigen presentation in the

vessel wall is crucial for atherosclerosis. It is likely that

priming of naı̈ve T cells occurs in peripheral draining

lymph nodes and not in the aorta itself [149]. However,

there is good evidence that the recall response re-activating

antigen-experienced CD4? T cells occurs in the

atherosclerotic vessel wall [8] (Fig. 2). Interestingly,

cholesterol removal from the plaque also occurs by afferent

lymphatics, thus providing a plausible path also for

(modified) LDL to reach draining lymph nodes [158].

Whether initial priming and proliferation of T cells

followed by tissue homing and second antigen-exposure in

non-lymphoid tissue to generate fully polarized effector

cells [150] remains to be tested.

Protective humoral autoimmunity
in atherosclerosis

TH1-committed T cells and their response to antigens drive

atherosclerotic disease, presumably by expression of pro-

inflammatory and pro-atherogenic mediators. Several

observations, however, propose the co-existence of a pro-

tective limb of autoimmunity in atherosclerosis: Naturally

occurring IgM auto-antibodies, which recognize oxidized

low-density lipoprotein (LDL) cholesterol or parts of its

main protein moiety, ApoB-100, are inversely correlated

with atherosclerotic disease [159–161], its complications

and risk factors [162]. While IgG antibodies could origi-

nate from plasma cells derived from B cells specifically

activated by follicular-helper T cells (TFH), which involves

maturation of B cells and Ig-class switch from IgM to IgG

[145], IgM auto-antibodies are expressed by a specific B

cell subset, B1a cells, independent of TFH cell help [163].

B1a cells are thought to recognize self-antigens and

respond with secretion of IgM antibodies. Those IgM

antibodies have been functionally implicated in athero-

protection. Binder et al. demonstrated that immunization of

mice with heat-inactivated S. pneumoniae antigen, which

shares epitopes with oxidized LDL, increased IgM levels

and diminished atherosclerosis [164]. Also, mice with a

deficiency in secreting IgM presented increased levels of

atherosclerosis [165]. Vice versa, treatment with poly-

clonal IgM was protected from atherosclerotic disease

[166]. Some IgM antibodies can bind to oxLDL and may

inhibit uptake of the antigen by macrophages [167, 168].

cFig. 2 Hypothesized mechanisms of T cell-dependent autoimmunity

in mice. Generation of T cell clones and antibodies that recognize

self-peptides from ApoB-100, the protein moiety of low-density

lipoprotein (LDL), have been proposed as main pathways of T cell-

dependent autoimmunity. Antigen-specific, pro-atherogenic T cells

are primed in peripheral lymph nodes (lower schematic), but remain

incompletely differentiated after first presentation of self-peptides by

dendritic cells or Ly6C? monocytes migrating from the plaque. (1) A

primed T cell may leave the lymph node and home to the plaque to

allow for terminal differentiation: In the plaque, presentation by IL-

12? APCs to primed T cells is thought to elicit a pro-atherogenic TH1

type immune response with the lead cytokines TNF-a and IFN-c.

Conversely, presentation by Flt3? tolerogenic dendritic cells can

induce an atheroprotective response with conversion of the primed T

cell into Treg cells and secretion of the anti-inflammatory mediators

IL-10 and TGF-b (upper schematic). (2) Alternatively, a primed T

cell can differentiate into a follicular-helper T cells (TFH), which

induces generation and secretion of ApoB-100-specific IgG antibod-

ies by plasma cells in the lymph node or tertiary lymphoid organs

(lower schematic)
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Interestingly, IgG antibodies to native and oxidized LDL,

are positively correlated with atherosclerotic disease in

mice and humans and accumulate in atherosclerotic

lesions [169, 170]. Conversely, higher titers of IgM anti-

bodies to oxLDL predict better outcomes [171, 172].

Antibodies directed against peptide epitopes of ApoB-100

are inversely correlated with disease outcome [173].

A vaccine against atherosclerosis

Following the observation that T cells can specifically

recognize autoantigens in the context of atherosclerosis,

several vaccination strategies have been proposed in recent

years [130]: Immunization of rabbits with MDA-modified

LDL, which contains MDA-modified ApoB-100, protected

from atherosclerosis [174], as well as with murine LDL,

MDA-modified LDL in mice [175], and AGE-modified

LDL in mice [176]. Additionally, a peptide derived from

human ApoB-100, p210 (ApoB-1003136-3155) was found to

bind to IgM and IgG antibodies from human sera [177].

Vaccination with p210 protected mice from atherosclerosis

and aortic aneurysm formation [178, 179]. While the effi-

cacy of immunization strategies against different antigens,

such as naı̈ve and modified LDL, ApoB-100 or peptides

derived from ApoB-100, has been demonstrated in various

species and animal models [110] (Table 1), the functional

properties of antigen recognition and its exact cellular and

functional consequences, as required for the ultimate goal

of defining a clinical vaccination strategy in humans,

remain enigmatic. For instance, it has been shown that

vaccination against some peptides, e.g., p210, conferred

atheroprotection in mice, an effect linked to T cell

responses in some studies [142, 143, 179–181]. However,

the tested peptide does not bind to mouse MHC-II (I-Ab),

thus excluding a CD4? T cell restricted mode of action. To

circumvent these limitations we have recently applied the

first systematic screening to determine peptide sequences in

mouse ApoB-100 with sufficient affinity to I-Ab [182]. Two

candidate peptides with high affinity to MHC-II were

identified and induced effective CD4? T cell proliferation.

Immunizing against those peptides with a prime in com-

plete Freud’s adjuvant (CFA) and three subsequent booster

injections in incomplete Freud’s adjuvant (IFA) reduced

murine atherosclerosis. Mechanistically, we detected more

IL-10 transcripts in aortas of immunized mice, suggesting

that this cytokine may be causal in atheroprotection [182].

This is supported by other studies showing that T cells with

properties of anti-inflammatory T-regulatory cells confer

atheroprotection in immunized animals, likely by Il-10

expression [142, 143, 183].

However, mechanisms of atheroprotection after vacci-

nation are controversial. Depending on antigen, route, and T
a
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dose, a plethora of different mechanisms has been sug-

gested (Table 1). Also, several methodological questions

remain unanswered in some studies. Only a few systematic

studies have tested and compared appropriate adjuvants,

routes, and doses. One study has revealed that the adjuvant

alum has atheroprotective effects even when given alone

[184]. Also, there is some controversy about whether

atheroprotection is carried out by a humoral immune

response. The function of plasma cell-derived IgG anti-

bodies against some epitopes after vaccination is not clear.

Such antibodies can clear pathogenic antigens [185], but

may be an epiphenomenon since epitopes recognized by

such antibodies may not be accessible in atherosclerotic

lesions and do not bind LDL [182]. This is consistent with

older reports, demonstrating increased IgG antibodies

against immunized antigens without protection against

atherosclerosis [175]. Also, some newer studies indicate

that vaccination with ApoB-100 may raise IgG antibodies

to antigens and TH2 signature immune response without

being atheroprotective [186]. Some newer evidence also

promoted the concept that over-activation of TFH cells can

aggravate atherosclerotic disease, lead by the observation

that deletion of to the mouse ortholog of MHC-I HLA-E,

Qa-1, resulted in uncontrolled TFH proliferation and gen-

eration of enlarged tertiary lymphoid organs (TLOs) in the

aorta, which was dependent on the ICOS-ICOSL pathway

[187]. Whether this increase was due to enhanced IgG

production was not tested. However, recent data also pro-

pose that some B cell effector functions in atherosclerosis

may be independent of antibody secretion, such as

enhanced cytokine secretion [188–190], or of triggering a

TH1 response [188] (an excellent review about the com-

plexity of B cell function in atherosclerosis is provided by

Ref. [191]).

Clinical perspective and concluding remarks

A substantial body of evidence identifies inflammatory and

immunologic mechanisms as a driving force behind

atherosclerosis and its clinical sequelae. Yet clinical

treatment strategies to improve outcome are largely limited

to inhibition of platelet aggregation and lowering of lipids.

While these may enfold additional immune-modulatory,

pleiotropic actions resulting in lower clinical event rates

[192] and plaque regression [66], therapies genuinely tar-

geting plaque inflammation and immunology are absent.

Two novel strategies, inhibition of interleukin (IL) -1 by a

monoclonal antibody called canakinumab [193] and the

application of low-dose methotrexate [194], are currently

tested in large clinical trials in a collective of high-risk

patients with coronary heart disease. These may shed more

light to the question whether modulation of inflammation

results into lowering of clinical events. Abundant CD4? T

cells in human and mouse atherosclerotic lesions suggest

an autoimmune component of atherosclerosis. There is

evidence for protective autoimmunity conferred by Tregs

and antibodies. Protective autoimmunity can potentially be

harnessed to prevent or treat atherosclerosis by vaccination

against autoantigens.
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