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why the epididymis has come to be organized 
as it is.

At  t h e  Wo r c e s t e r  F o u n d a t i o n 
for Experimental Biology, Shrewsbury, 
Massachusetts, USA in 1959, I joined the 
laboratory of MC Chang, which was focused on 
in vitro fertilization, cross‑species fertilization, 
sperm capacitation, sperm transport in the 
female, the Fallopian tube, and implantation 
of the embryo. At that time, Chang’s group 
had no specific interest in the epididymis, 
which was something of a scientific backwater 
compared to the focus then on the testis. 
I first became involved with the epididymis 
in asking whether, as spermatozoa are gaining 
the ability to fertilize there, they require the 
same period of capacitation as those from 
the cauda region – a point answered later for 
the pig, whose upper‑corpus spermatozoa 
are capacitated more rapidly than those from 
the cauda.1 However, that question led me to 
others having to do with sperm maturation 
and sperm storage in the epididymis.

SPERM MATURATION IN THE EPIDIDYMIS
Development of fertilizing ability
In the early 1960s, specific information as to 
the fertilizing ability of spermatozoa in the 
epididymis was limited to the guinea pig,2 and 
rat,3 but there was none for the rabbit  ‑ my 
sperm capacitation model. I therefore created 
a fertility profile of the rabbit epididymis 
by tubal insemination of sperm aliquots 
from its successive segments via a flank 
incision. On the basis of fertilization rates 
and sperm numbers on the eggs, this revealed 
an exponential development of fertilizing 
ability beginning in the mid‑corpus region, 
completed by the time spermatozoa reach 
the proximal cauda.4 Orgebin‑Crist5 drew 
similar conclusions after insemination via the 
uterine route. However, the profile that obtains 
in the rabbit is not universal. It is skewed 
further towards the cauda epididymidis in 
the hamster,6 whereas some pig spermatozoa 

The sperm maturation and storage 
functions of the epididymis are important 

determinants of ejaculate quality, and perhaps 
provide an avenue to male contraception. In 
the last 50 years, the creation of epididymal 
fertility profiles in laboratory animals was 
followed by recognition of new sperm 
maturation‑related parameters (organization 
of the acrosome, of the sperm plasmalemma, 
and –S–S– ‑based structural change) which 
made it possible to confirm that a similar 
pattern of sperm maturation obtains in 
man. The novel sperm storage function 
of the cauda epididymidis in therian 
mammals is regulated by androgen, usually 
in conjunction with the low temperature of 
the scrotum. The temperature‑dependence 
of the scrotal cauda is reflected in the 
secretory and ion transport functions of 
the epithelium, in its duct dimensions and 
so in sperm storage capacity. Moreover, 
a variety of indirect evidence suggests 
that an elevated temperature of the cauda 
created by clothing may be compromising 
its function in man. The pattern of change in 
the sperm plasmalemma involving sterols, 
and also glycosylphosphatidylinositol‑linked 
macromolecules as spermatozoa enter the 
cauda region, may underlie the need for their 
capacitation subsequently in the female tract. 
Further, in a variety of taxa the anatomy of 
the scrotum, together with the U‑shaped 
configuration of the epididymis/vas deferens, 
suggests that the cauda’s storage function may 
also underlie the evolution of the scrotum. 
Finally, despite the still relative paucity of 
comparative evidence, we can consider now 
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first gain the ability to fertilize in the upper 
corpus region.1

Some years later, by the use of X‑irradiation 
as a marker,7 the relative competence of 
the spermatozoa in different regions of the 
rabbit cauda was assessed by mixed vaginal 
insemination of two equal populations. 
Spermatozoa from the upper cauda fertilized 
64% of eggs in competition with those from 
the lower cauda and 82% in competition with 
equal numbers of vas deferens’ spermatozoa.8 
Yet the superior population in the upper cauda 
is not immediately available for ejaculation. 
In accordance with the observation that 
stimulation of the (sympathetic) vas deferential 
nerve elicits tubular contractions only of the 
vas and main body of the cauda,9 repeated 
mating in the rat almost emptied these 
two regions  ‑ but with no change in sperm 
numbers in the upper cauda.8 As a further 
point, after vaginal insemination rabbit cauda 
spermatozoa competed equally with ejaculated 
spermatozoa in terms of their transport in the 
female and of fertilization success.10

As a sequitur to establishment of a 
fertility profile, the role of specific epididymal 
regions was examined by ligation of the 
epididymis  (Figure  1a). Although this 
approach proved less successful in the hamster,6 
rabbit spermatozoa became fertile throughout 
the epididymis up to the distal limb of the 
caput flexure when withheld for 8–12  days 
above ligatures in the corpus region.11,12 On the 
other hand, while many spermatozoa released 
after 12+ days after ligation from distended 
tubules of the caput flexure  (Figure  1b) 
displayed highly progressive motility in culture 
for >24 h, these did not adhere to or penetrate 
the tubal eggs. This failure indicated that the 
head of the rabbit epididymis has an essential 
role in the development of the sperm’s ability to 
fertilize oocytes. Secondly, the fact that highly 
motile spermatozoa from the proximal caput of 
the ligated epididymis could not do so pointed 
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to the involvement, beside motility, of other 
facets of the sperm cell in this maturation. 
Subsequent observations demonstrated 
that development of the sperm’s fertilizing 
ability in the epididymis also involves change 
in,  (a) the sperm plasmalemma,  (b) the 
acrosome, and (c) the structure of organelles 
in the sperm head and tail.

The sperm plasmalemma
In the course of epididymal ligation 
experiments, it became apparent that highly 
motile rabbit spermatozoa from the proximal 
caput did not undergo the head‑to‑head 
auto‑agglutination typical of mature 
spermatozoa of most eutherian mammals 
when suspended in a serum‑containing 
medium  (with man a notable exception in 
this regard). That hint of change in the sperm 
plasmalemma was confirmed by the differential 
electrophoretic behavior of viable spermatozoa 
cooled to immotility at 4°C13 (Figure 2). Most 
caput spermatozoa displayed a relatively slow 
electrophoretic mobility and required about 
4 min to adopt a head‑to‑anode orientation. 
By contrast, cauda spermatozoa not only 
displayed a greater electrophoretic mobility 
but assumed a tail‑to‑anode configuration 
within   ca.   1  min  –  clearly indicating 
redistribution and an increase of net negative 
charge over the sperm surface as a correlate of 
epididymal maturation.13 That sperm surface 
change was confirmed using cationized 
ferric colloid as a marker in other species, 
including a macaque and man, among others.14 
Subsequently, the use of fluorescinated 
lectins and other techniques established 
that epididymal maturation of the sperm 
plasmalemma involves an exchange of both 
glycosylated proteins, in some cases transferred 
by epididymosomes,15 and of sterols.16 However, 

sperm membrane cholesterol/phospholipid 
ratios illustrate the important point that the 
molecular details of this aspect of maturation 
may vary widely according to species.17

Early investigations of epididymal change 
in the sperm surface also brought two 
misconceptions in this regard. Relying on 
cationized ferric colloid and fluorescinated 
lectins as surface markers, I first concluded that 
spermatozoa of monotremes, birds (excepting 
passerines) and reptiles do not undergo 
surface change during Wolffian duct 
passage.18 However, it was later shown using 
immunocytochemical methods that Wolffian 
duct proteins bind to maturing spermatozoa 
in a lizard,19 the chicken20 and a snake.21 In 
all, the current evidence suggests that sperm 
surface change in such subtherian vertebrates 
does not involve glycosylated elements, 
whereas these seem important for therian 
spermatozoa.22 Rather than fertilizing ability 
per se, posttesticular sperm surface changes in 
reptiles and birds may prove to relate primarily 
to the challenge of spermatozoa survival in 
the female tract.

A second misinterpretation was viewing 
epididymal change in the sperm plasmalemma 
solely in terms of fertilizing ability, the current 
picture suggesting that elements of this relate 
very much also to sperm storage in the cauda. 
For example, the acquisition of HIS protein23 
and CD5224 as rat spermatozoa transition 
into the upper cauda was considered to be 
‘maturation‑related’. Yet some rat spermatozoa 
develop the ability to fertilize in the lower corpus 
region before any such surface modification. It 
seems most likely that the late sperm surface 
acquisition of HIS protein and CD52 relate 
rather to the longevity of sperm survival in 
the cauda. That the receptor for HIS protein 
evidently first appears on spermatozoa in the 
upper regions of the epididymis,23 is a further 

indication that some aspects of sperm surface 
change during epididymal transit relate not to 
fertilizing ability per se but rather to prolongation 
of the life of spermatozoa in the cauda region.

The acrosome
The evidence points to the therian acrosome 
as undergoing epididymal maturation‑related 
changes at two levels  –  in its morphology, 
and in the organization of its matrix. Initially, 
Rose‑Bengal stained spermatozoa gave 
me an impression that the acrosomes of 
rabbit spermatozoa from the proximal caput 
were somewhat “fatter” than those of cauda 
spermatozoa. Measurement of sperm head 
dimensions using a camera lucida confirmed 
this,25 with electron microscopy showing 
that an elongated margin of the acrosome in 
immature spermatozoa then retracts to form 
the asymmetrical bulbous border seen in 
mature rabbit spermatozoa.26 Coincidentally, 
Fawcett et al. illustrated a more dramatic change 
in the morphology of guinea and chinchilla 
acrosomes,27,28 and our later studies revealed 
varying degrees of this change in a macaque 
monkey, hyrax, white‑tailed rat (Mystromys 
albicaudatus), and the prosimian bush baby 
(Galago senegalensis), with the most striking 
examples reported in the marsupial brush‑tailed 
possum29,30 and tammar wallaby.30 On the other 
hand, there is no visible postspermiation change 
in the acrosome of the laboratory rat, the tree 
shrew (Tupaia glis), the lemur (Lemur fulvus)31 
nor in man,32 and so this facet of maturation 
is not universal. A  further and more subtle 
aspect ‑ a reorganization of components within 
the acrosomal matrix during epididymal 
passage ‑ has been described in such species as 
the hamster, guinea pig and boar.33–35

Sperm structure
In attempting to understand what determines 
its expansion within the egg, Harold Calvin 
and I observed that the sperm nucleus remains 
intact if exposed in vitro to sodium dodecyl 
sulfate  (SDS) or to dithiothreitol  (DTT) 
alone, but soon disassociates in SDS + DTT 
at pH  9.0. By building on this, exposure of 
spermatozoa from successive regions of the 
epididymis to SDS + DTT then showed that 
the nucleus, perinuclear material and also 
various tail structures become stabilized 
by  –S–S–  ‑crosslinks during epididymal 
passage.36 However, while an  –S–S–  ‑based 
stability of sperm tail elements is seen in some 
nonmammalian species,37 the keratinoid 
quality of the eutherian sperm head is highly 
unusual.38 It has often been suggested that this 
quality serves to protect the sperm genome, 
but the eutherian sperm head is not subjected 

Figure 2: Diagram of the electrophoretic behavior 
of rabbit epididymal sperm populations from 
the caput and cauda regions, respectively. Not 
only do cauda spermatozoa exhibit a superior 
electrophoretic mobility, but the great majority 
assumes a tail-to-anode orientation in about 1 
min, whereas caput spermatozoa slowly adopt a 
head-to-anode orientation in about 4 minutes.

Figure 1: (a) Rabbit epididymis ligated 12 
days previously in the lower part of the corpus 
epididymidis. Note the distended tubules proximal 
to the point of ligation. (b) Distended tubules in 
the initial segment of the caput epididymidis 
12 or more days after ligation of the low corpus 
region. Spermatozoa released from these tubules 
were often highly motile but could not fertilize 
oocytes; nor did they display the tendency for 
head-head agglutination seen typically in mature 
spermatozoa.

ba
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more so in cauda spermatozoa. However, unlike 
the picture coming from animals, many cauda 
spermatozoa displayed poor forward motility or 
none.32 This point was codified by Yeung et al.43 
who observed that, in man, the percentage 
of motile spermatozoa in the corpus region 
exceeds that in the cauda population.

Although human spermatozoa thus undergo 
an epididymal maturation broadly comparable 
to that in animals, to what extent this depends 
on any one region of the epididymis is not yet 
clear, the functional evidence being derived 
necessarily from clinical situations. Cases 
involving epididymo‑vasostomy showed higher 
pregnancy rates the lower the anastomosis 
along the epididymal duct.44–46 However, the 
essential role of the epididymis for sperm 
maturation in man was cast into some doubt by 
fertilization in vitro with spermatozoa recovered 
from the vasa efferentia of the obstructed 
epididymis,47 and with spermatozoa produced 
after anastomosis of a seminiferous tubule 
directly to the vas deferens.48 In the latter case, 
however, the vas deferens may have contributed 
key maturation factors since this expresses 
several genes in common with the epididymis.49

S P E R M  S T O R A G E  I N  T H E  C A U D A 
EPIDIDYMIDIS
In discussing the enigma of scrotal evolution 
with medical students in 1971, I asked for 
suggestions as to the adaptive significance of this. 
One student suggested that this development 
may relate not to the testis, but rather to sperm 
storage in the epididymis. That idea struck an 
immediate chord, in view of our focus then on 
the white‑tailed rat (M. albicaudatus), in which 
the thick scrotal fur ceases abruptly at the lower 
poles of the testes, with a discrete bald patch 
overlying the cauda (Figure 4a). Although the 
scrotal anatomy varies among mammals, a 
similar pattern occurs in other groups including 
the bushbaby, G. senegalensis (Figure 4b), and 
this would seem to preferentially promote 
cooling of the cauda. A  further example is 
seen in the laboratory rat, and others are not 
uncommon among widely different taxa,50 
lending credence to the possibility that the 
cauda’s sperm storage function was a major 
determinant of scrotal evolution.

It has long been known that body 
temperature suppresses sperm storage in the 
cauda.51 However, following the idea that 
temperature‑dependent promotion of sperm 
storage was the prime mover in scrotal evolution, 
the effect of an elevated temperature was studied 
by reflecting one or both epididymides to the 
abdomen, leaving normally‑functioning testes in 
the scrotum.52 Such bilaterally cryptepididymal 
males remained potentially fertile–laying to 

rest any suggestion that sperm maturation 
is vulnerable to deep body temperature. At 
the same time, this model revealed that its 
higher temperature brings major change in the 
transepithelial transport of water, Na+, K+ and 
Cl− in the cauda,53 and also the disappearance 
of several proteins typically present in its 
secretions54,55 – undoubtedly both major factors 
in the temperature‑induced collapse of regulated 

to unusual “stresses” during epididymal 
maturation or in the female tract. Rather, 
the example of a buckled rabbit sperm head 
within the zona pellucida  (ZP) (Figure  3) 
points to –S–S– ‑stiffening of the nucleus and 
perinuclear matrix as an adaptation to the 
challenge of penetrating an unusually robust 
egg coat.

SPERM MATURATION IN THE HUMAN 
EPIDIDYMIS
By the early 1970s, recognition of four 
parameters related to sperm maturation in the 
epididymis (motility, acrosomal modification, 
sperm structure, sperm plasmalemma), made 
it possible to probe the status of spermatozoa 
in the human epididymis. At that time, there 
was only the early report by Belonoschkin39 that 
human spermatozoa acquire the capacity for 
progressive motility there. Moreover, evidence 
of the success of high epididymo‑vasostomy,40 
and fertile spermatozoa withdrawn from a 
caput cyst41 cast some doubt as to whether 
epididymal maturation in man resembles that in 
the animals so far examined. In fact, the changes 
human spermatozoa undergo in traversing the 
epididymis prove to be comparable.

Of the epididymides donated by men 
undergoing orchiectomy for prostate cancer, 
only 16 (<10%) were chosen on the basis of their 
normal appearance. Within the epididymal 
population, the morphology of the sperm 
head was highly variable as a consequence 
of defects arising during spermiogenesis, 
but the human acrosome did not exhibit 
any change in its form after spermiation. On 
the other hand, we observed that human 
spermatozoa transiting the epididymis clearly 
undergo maturation‑associated changes in the 
plasmalemma, in the structural character of 
the sperm head and tail, and in the capacity for 
motility.32 In regard to the sperm surface, the 
binding pattern of cationized ferric colloid gave 
evidence of maturation‑associated change in 
the plasmalemma. Modification of the human 
sperm surface by epididymal secretions was later 
confirmed by the use of immunocytochemical 
techniques.42 In investigating the sperm’s 
structural quality, –S–S– ‑related stabilization 
of the human sperm nucleus and structural 
tail organelles during epididymal passage 
were very evident on treatment of successive 
populations with SDS and DTT. As for their 
motility, spermatozoa released from the caput 
were immotile or displayed only a weak wide 
thrashing movement that produced little or 
no forward progression. Progressively motile 
spermatozoa, characterized by a stiff tail beat of 
limited sweep, were first seen in the population 
released from the lower corpus region, and then 

Figure 3: Electron micrograph of a rabbit sperm 
head in the act of penetrating the zona pellucida 
(ZP). In this example, the sperm head has buckled 
at the point marked by arrow heads.

Figure 4: (a) Scrotum of the white-tailed rat, 
Mystromys albicaudatus. This view illustrates the 
localized fur-free segment overlying the cauda 
epididymidis. Arrows mark the furred region 
occupied by the testes. (b) Scrotum of an adult 
male bushbaby, Galago crassicaudatus. The 
scrotal surface over the testes is heavily furred, 
whereas the carunculated region overlying the 
cauda is bare.

ba

Figure 5: (a) Histological section of the scrotal 
cauda epididymidis of a rat. (b) A comparable 
section of the ipsilateral cauda reflected the 
abdomen 3 months previously. In (b) the diameter 
and length of the distal segment are reduced. Note 
that the epididymis in (b) remained in continuity 
with a normal scrotal testis, and had a normal 
sperm number in the caput. C: The lower region 
of the corpus epididymidis. V: the vas deferens.
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sperm storage there. Among other significant 
consequences, the time of sperm transit in 
cryptepididymal rabbits was reduced to 2–5 days 
from ca. 9 to 10 days in normal males.52 In 
addition, hamster spermatozoa recovered from 
the cryptepididymal cauda were capacitated 
in vitro significantly sooner than those from the 
scrotal cauda.56

A further outcome of the imposition of 
body temperature on the epididymis was a 
reduction of the diameter and length of the 
duct in the cauda region57 (Figure 5), and so in 
its storage capacity. Consequently, over a series, 
cryptepididymal rats ejaculated only ca. 25% of 
the number of spermatozoa produced by normal 
males (Figure 6), despite a comparable sperm 
output by the testis, and sperm numbers in the 
caput region. Although such cryptepididymal 
males fathered litters,52 this picture raises an issue 
as to the impact of sperm numbers in a natural 
setting. In the case of the rat at least, as more 
spermatozoa were inseminated, more reached 
the oviduct ampulla and fertilization occurred 
sooner.58 This was seen in the outcome of one 
versus two ejaculates (Figure 7).

THE HUMAN CAUDA EPIDIDYMIDIS
Given that clothing raises the human 
scrotal  temperature by 4°C or more 
depending on the situation; it is perhaps 
not surprising to find that much of the 
picture seen in cryptepididymal animals 
is echoed in man.59 As reflected in the 
ratio of cauda sperm number/daily testis 
sperm production, the relative storage 
capacity of the cauda is the lowest in man 
among commonly studied mammals, 
being akin to that of the cryptepididymal 
rat. In the latter  [Figure  6] and in man 
alike  [Figure  8], the cauda’s minimal 
capacity is reflected in a modest first 
ejaculate and then a precipitous fall in the 
sperm numbers produced in subsequent 
ejaculates. In addition, the percentage 
motility in sperm populations released from 
the human cauda is lower than that from 
the corpus.43 That the human cauda does 
not support sperm viability is indicated 
as well by the outcome of abstinence. 
Unlike the minimal  consequence of 
this in animals, prolonged abstinence 
in man resulted in a major reduction in 
the motility index of the first ejaculate 
produced thereafter.59,60 That the passage 
of many spermatozoa through the human 
epididymis is relatively brief,61,62 and that 
some are capacitated rapidly in  vitro , 
adds to the evidence that in modern 
societies the human cauda functions in a 
temperature‑suppressed state.

Figure 6: Histogram of the mean number of spermatozoa produced at ca. 15 min intervals in sequential 
ejaculates, by normal (n = 13) versus 3–4 weeks cryptepididymal (n = 8) rats. Notwithstanding a normal 
sperm production by the testes and numbers present in the caput, cryptepididymal males ejaculated 
only <25% of the spermatozoa produced by males with scrotal epididymides.

Figure 7: Histogram, for four males, of the percentage rat eggs fertilized by 8–10 h postovulation after 
either one or two ejaculations, or one ejaculation followed by mating with a vasectomized male. The 
sperm numbers contributed by a second ejaculate clearly favor earlier fertilization.

COMMENT
While much has emerged about the epididymis 
over the last 50 years, puzzles remain at several 
levels. In particular, the sperm maturation 
and sperm storage functions of the therian 
epididymis raise a fundamental question as to 
why it is organized as it is, given the absence of 
these functions where fertilization is external; 
e.g.,  in the cyclostomes, teleosts and anuran 
amphibians studied.18 It has been difficult to 
develop a balanced perspective in this regard 
not least because research has focused primarily 
on therian and particularly eutherian mammals. 
The few observations on subtherian vertebrates 
indicate that where fertilization is internal, as in 
elasmobranchs, reptiles, birds and monotremes, a 
form of sperm maturation appears in the excurrent 
duct. However, this seems to be characterized only 
by development of the capacity for progressive 
motility  (dependent on glycolysis as well as 
oxidative phosphorylation), and by sperm 
surface acquisition of protein moieties secreted 
by the duct.19–21 It is not yet clear for sub‑therian 

vertebrates whether such surface change bears 
ultimately on the sperm’s fertilizing ability per 
se,63 or whether in subtherian taxa these act only 
to foster the survival of spermatozoa during what 
is often a prolonged stint in the female tract.

At the same time, events in the epididymis 
appear to have become more complex in therian 
mammals. As judged by spermatozoa withheld 
in the testis by ligation of the efferent ducts, the 
capacity for sustained progressive motility has 
become epididymis‑dependent. In addition, 
remodeling of the sperm plasmalemma involves 
an exchange of both sterols and glycosylated 
proteins, the details showing considerable 
variation from species to species. A  change 
in the morphology of the acrosome seen in 
some species may parallel and even reflect a 
reorganization of its matrix. However, as seen 
in the rat, modifications of the matrix may also 
occur during epididymal passage in the absence 
of any coincident morphological change in 
the acrosome.64 It seems likely that one key to 
these acrosomal changes has been evolutionary 
change in the egg vestment that created novel 
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spermatozoa being wafted back and forth at 
each level before slowly moving on to the 
next. Allied to a relatively modest sperm 
production,68 these factors compromise the 
potential for rapid replacement by younger 
spermatozoa after ejaculation. This view seems 
consistent with the picture in passerine birds, 
which also have evolved such a sperm store 
within a scrotum‑like protuberance.69 For in 
a prototypical passerine, Melopspizia melodia, 
modest numbers pass through a ciliated 
Wolffian duct, to complete what appears as a 
more complex maturation and then storage in 
the terminal glomus.18

Finally, a case can be made,  (a) that the 
state in which sperm are stored in the cauda 
underlies the need for their capacitation 
subsequently in the female tract, and (b) that 
the storage function of the cauda initially 
drove the evolution of the scrotum.65 But what 
benefit does the cauda provide? As noted, this 
not only serves to prolong the life of mature 
spermatozoa, but the relative passivity of its 
more capacious duct allows them to accumulate, 
making significantly more available in an 
ejaculate series over a limited time period. As 
well as the implications of this for polygyny 
or for sperm competition, in the rat at least 
the sperm number made available by this 
organization of the cauda seems to favour sperm 
numbers reaching the oocytes and thus early 
fertilization58 [Figure 7]. The important role of 
sperm numbers is also suggested from studies 
in large animals. For example, in horses better 
pregnancy rates followed multiple ejaculations,70 
and in sheep it appears that there can often be 
too few spermatozoa in a first ejaculate to ensure 
an optimal rate of conception.71,72 It is thus very 
possible that what appears as a suppressed state 
of the cauda epididymidis in man may underlie 
the fact that, on average, the establishment of a 
pregnancy requires unprotected intercourse for 
several months.
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