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Abstract

Disorders of the central nervous system are often accompanied by brain abnormalities detectable 

with MRI. Advances in biomedical imaging and pattern detection algorithms have led to 

classification methods that may help diagnose and track the progression of a brain disorder and/or 

predict successful response to treatment.

These classification systems often use high-dimensional signals or images, and must handle the 

computational challenges of high dimensionality as well as complex data types such as shape 

descriptors.

Here, we used shape information from subcortical structures to test a recently developed feature-

selection method based on regularized random forests to 1) classify depressed subjects versus 

controls, and 2) patients before and after treatment with electroconvulsive therapy. We 

subsequently compared the classification performance of high-dimensional shape features with 

traditional volumetric measures. Shape-based models outperformed simple volumetric predictors 

in several cases, highlighting their utility as potential automated alternatives for establishing 

diagnosis and predicting treatment response.

Index Terms

Random forest; classification; feature selection; regularization; shape analysis; major depressive 
disorder; electroconvulsive therapy

1. Introduction

High resolution structural magnetic resonance brain imaging (MRI) has offered a rich 

description of the brain differences associated with a wide variety of disorders affecting the 

central nervous system including Alzheimer's [1, 2], Parkinson's [3] and Huntington's 

disease [4, 5]. Recent developments in pattern recognition and machine learning have been 

applied to brain imaging data to aid in the diagnosis and staging of numerous diseases and 

their progression [6, 7].
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Computer assisted diagnosis (CAD) of disease progression or remission may have several 

key advantages over standard radiologic assessment of MRI. CAD is not as susceptible to 

human errors and provides an unbiased, consistent outcome. Additionally, a CAD system is 

better suited to observing patterns that may exist in higher dimensions or at more subtle 

thresholds than a human eye could discern. Brain differences are still poorly understood in 

many disorders, across their different stages of onset and recovery and often present subtle 

alterations across a set of brain regions. It is therefore of major value to public health to 

develop biomarkers of disease progression and algorithms capable of discerning the stage of 

a disease or future response to treatment.

Global volume and thickness measures for various brain regions are most commonly used to 

characterize neurological disease. While volume and thickness often reveal robust group 

differences, these are summary measures that lack detailed local information. Several 

surface-based shape metrics have been developed to provide descriptions of a brain region's 

local morphometry. Subtle changes in local morphometry of a brain structure may provide 

additional information to classification systems about the diagnosis and stage of a disease.

The choice of classifier is critical when incorporating local shape descriptors. Volume and 

thickness both provide a single measure for each sub-structure volume of interest (VOI), but 

shape descriptors are most commonly defined locally at each vertex of a given surface. 

Therefore, the set of shape descriptors describing a single VOI may exist in a very high 

dimensional space, as a function of the resolution of the surface mesh. Different 

classification algorithms have differing degrees of susceptibility to overfitting high 

dimensional data.

The prevalence of major depressive disorder (MDD) is approximately 10-20% in the U.S. 

[8, 9] with an estimated lifetime suicide risk of about 15–20% and an average annual cost of 

$42 billion dollars in the U.S. alone [10]. Antidepressant drugs and behavioral therapy are 

the most frequently prescribed treatments for MDD. However, due to its rapid onset of 

action and efficacy, electroconvulsive therapy (ECT) is commonly used in cases of 

treatment-resistant depression and in cases of imminent risk for suicide [11].

In this study we implement a recent extension of the random forest algorithm, termed guided 

regularized random forests (GRRF) to classify depression and treatment status in a matched 

cohort of participants with and without MDD in which the MDD participants received an 

index treatment series of ECT. We report the accuracy of 1) volumetric and 2) surface-based 

shape metrics derived from the same set of subcortical VOIs to classify participants as pre- 

or post-ECT. We similarly report the accuracies of classification of MDD versus control 

participants.

2. Materials and Methods

2.1. Participants

43 patients meeting DSM-V criteria for MDD and eligible to receive ECT (mean age, 40 

years [SD 11.57]; range 20-64) and 32 controls (mean age, 40 years [SD 12.44]; range 

20-74) were recruited as part of an ongoing study examining biomarkers of treatment 
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response in patients with MDD. Patients and controls were evaluated at two separate time 

points: prior to ECT or at baseline (T1) and within a week of completing the ECT treatment 

index series (T2) at transition to a maintenance therapy. 35 MDD and 30 control participants 

continued to T2. Written informed consent was obtained from all participants. The study 

protocol was approved by the University of California, Los Angeles Institutional Review 

Board.

2.2. Image acquisition and segmentation

High-resolution motion-corrected multi-echo T1-weighted MPRAGE images [12, 13] were 

acquired on a Siemens 3T Allegra system (Erlangen, Germany) for all subjects and time 

points (TEs/TR= 1.74, 3.6, 5.46, 7.32/2530 ms, TI=1260 ms, FA=7°, FOV=256 × 256 mm, 

192 sagittal slices, voxel resolution = 1.3 × 1.0 × 1.0 mm3)

Previously validated FreeSurfer [14] workflows, which include removal of non-brain tissue, 

intensity normalization and automated volumetric parcellation based on probabilistic 

information from manually labeled training sets, were used to segment the following VOIs 

in each hemisphere: the nucleus accumbens, amygdala, caudate, hippocampus, pallidum and 

thalamus. Each segmented image was visually inspected to ensure its quality.

2.3. Surface parameterization and registration

The parameterization of each VOI's surface was obtained via a conformal mapping to a 

holomorphic 1-form as detailed in [15]. Here, the conformal parameterization of the surface 

is mapped to a rectangular Euclidean domain. This mapping has the advantage of 

maximizing the uniformity of the resultant mesh grid [16].

2.4. Morphological descriptors

Three descriptors were used: 1) volume, 2) the Jacobian determinant (JD) and 3) radial 

distance (RD) maps of the parametric surfaces.

Volume was computed directly from FreeSurfer. The Jacobian matrix at each vertex is given 

by the following: Take φ: S1 → S2 to be the conformal mapping of the VOI surface to the 

rectangular holomorphic 1 -form. In a discretized setting, the derivative map of φ can be 

approximated by the linear mapping between two triangular faces, [υ1, υ2, υ3] →[w1, 

w2,w3], embedded in ℝ2. The Jacobian matrix, dφ, is then simply given by,

(1)

The local JD at each vertex is given by taking the determinant of dφ. Local surface dilation 

is indicated by a JD > 1 while JD < 1 indicates local atrophy.

The local RD of the surface mesh is calculated by first computing a 3D medial core which 

traverses the volume's local center. The radial distance from each vertex to the nearest point 

of the medial core provides the index of radial distance, an approximation of the structure's 

local thickness [1, 17].

Wade et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5. Feature selection and classification

Prior to submitting surface-based morphometric data to a classification model, we opted to 

perform feature selection to reduce the risk of overfitting to our training data. Each surface 

mesh was composed of 15,000 vertices with each having RD and JD as an attribute. 

Recently, a three-step feature selection and classification procedure called guided 

regularized random forests (GRRF) [18] was proposed, to handle high-dimensional data 

within the RF framework. The GRRF algorithm uses importance scores associated with each 

variable obtained from a standard RF to inform a regularized RF in the feature selection 

process. Features selected by GRRF are then submitted to a standard RF for classification. 

The process is detailed in [18, 19] and summarized below.

2.5.1. Random forests and importance scores—RFs are supervised classifiers built 

on an ensemble of classification and regression trees (CART) [20]. Each CART is 

constructed of a bootstrapped sample of the total observations. At each node of the CART a 

random subset of features is selected and the Gini index is calculated for each feature at the 

present node, v. Gini(v) is given by:

(2)

where  is the proportion of observations belonging to class C at node v. The RF algorithm 

aims to split each CART node by the feature Xi which maximizes the class purity of the 

resultant child nodes, υr and υl. This is achieved by selecting the maximum Gain (Xt, υ) 

where,

(3)

and ωl and ωr are the proportions of observations in node v assigned to child nodes and υr 

and υl , respectively. The forestwise importance, I, of feature Xi is given by the summation 

of the decreases in the Gini index at each node where the CART was partitioned by Xi [7]. 

Concretely,

(4)

where SXi denotes the set of all nodes split by Xi.

Each CART is allowed to grow to its full extent, unpruned. As an ensemble classifier, the 

RF uses the majority vote of its constituent CARTs terminal nodes to predict the class label 

of a new observation.

The bootstrap resampling process of RFs leaves about one third of the observations out of 

each CART. Referred to as out-of-bag (OOB) data, these observations classified and used as 

an intrinsic measure of the tree's performance. The classification error of the OOB 

observations is referred to as OOB error.
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2.5.2. Guided regularized random forests—GRRFs are an extension of RFs that use 

normalized importance scores, In, from an ordinary RF to parameterize the regularization of 

Gain (Xi, υ) in a secondary RF. This allows GRRF to apply a unique penalty to each feature,

(5)

where F is the set of feature indices used to split previous nodes in previous trees and λi is 

the regularization coefficient for feature Xi. λi is given by,

(6)

where γ ∈ [0, 1], is a constant argument to GRRF to control the degree of gain penalization.

2.6. GRRF-RF parameters

Within each training subset (described in section 2.7), the 15,000 vertices of each VOI mesh 

were separately submitted to the GRRF feature selection algorithm. This ensured that the 

final classification would be based on information from each surface and that classification 

based on each of the three metrics would draw from the same set of VOIs.

The features selected by GRRF were submitted to a standard RF. For the purposes of our 

study, we included 10,000 trees in each GRRF-RF model. We set the base penalization 

coefficient, γ, to 0.5 for GRRF feature selection. The number of variables included in the 

random subset at each tree node was the standard √M, where M is the total number of input 

variables to the RF. A unique random bootstrapped sample of two-thirds of the training 

sample was used for each tree.

To compare the efficacy of shape-based and volumetric features, separate RFs were formed 

using each of the three feature sets: Volume, RD and JD. Finally, we combined the three sets 

in a final RF model to investigate whether the full compliment of information would 

enhance diagnostic accuracy.

2.7. Training and testing data

We investigated the discrimination of three pairings: (Group 1) MDD participants prior 

(TlD,) to and following ECT (T2D), (Group 2) T1D and unaffected controls imaged at the 

same time point (TlC) and (Group 3) MDD participants following ECT (T2D) and unaffected 

controls at the same time point (T2C). Each of the three comparisons was assessed using a 

two-fold cross validation, with 50% of subjects used for training and the remaining for 

testing. Table 1 outlines the partitioning of subjects for cross validation.

3. Results

3.1. Classification of group 1: T1D and T2D

Volumetric and RD measures were most accurate in distinguishing T1D and T2D from each 

other, and volumetric measures slightly outperformed RD. The JD performed more poorly 
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than volume and RD. DeLong's test [21] for two correlated receiver operating characteristic 

curves (ROC) detected no significant differences in the area under (AUC) of the ROCs 

given by the various metric-specific RF models. Combining all metrics to predict ECT status 

did not significantly outperform models built from individual feature sets. Figure 1 plots 

ROCs for each model by comparison group.

Table 2 outlines the AUC for the ROC for each group and model and summarizes the out-

of-bag classification error and percentage of features retained by the GRRF feature selection 

process among the shape metrics, RD and JD.

Figure 2 illustrates the relative importance of each VOI to each RF model by comparison 

group by plotting the scaled sum of the mean decrease in Gini score for each VOI within its 

model. Higher scores of the mean decrease in Gini score indicate a relatively higher 

importance for that variable in classification [20].

Here, the right hippocampus is the most important VOI in the volume-only model while the 

right accumbens is the most influential VOI among the shape-feature models. The bilateral 

caudate is also reported to have a strong influence on the RD model.

3.2. Classification of group 2: T1D and T1C

RD and JD both outperformed volume in classifying T1D and T1C with RD having the 

largest AUC. Here, the combined information from all metrics in a single RF outperformed 

each single-metric RF. There were no significant differences in AUC following FDR 

correction for multiple comparisons [22].

The left pallidum was the most influential VOI in the volumetric model. The right pallidum 

was most predictive VOI in the RD model while the left caudate was most important in the 

JD model.

3.3. Classification of group 3: T2D and T2C

In the classification of T2D and T2C RD again had the highest overall accuracy with JD 

performing nearly as well. Here, volume only performed slightly above the level of chance 

with an AUC of 56.49%. The combined metric model slightly outperformed all other single-

metric models. After FDR correction, the AUC for the RD (DeLong's Z = 2.90, p < 0.005) 

and combined (DeLong's Z = 2.83, p < 0.05) models were both significantly greater than for 

the volumetric model.

The left hippocampus followed closely by the right amygdala were the most predictive VOIs 

for the volumetric model. The left pallidum was most distinguishing in the RD model while 

the right caudate informed the JD model most heavily.

4. Discussion

Automated diagnosis and tracking of a disorder's progression or remission is a central goal 

in medical imaging and pattern recognition. CAD systems that employ high dimensional 

feature spaces pertaining to subtle phenotypes may offer the most accurate information.
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Our study demonstrated an effective method to reduce high-dimensional shape features 

derived from subcortical brain structures to a feature set amenable to classification in a 

standard RF model. Our results highlight the importance of investigating both volumetric 

and shape-based features in the analysis of brain or mood disorders.

Applied to the treatment of MDD with ECT, we found that shape metrics are nearly as 

sensitive as traditional volumetric measures in detecting short-term changes in MDD 

participants following ECT. In distinguishing MDD from controls however, shape-based 

changes significantly outperform solely volumetric measures. Importantly, the most 

effective approach was to combine all feature sets, suggesting that the diagnosis of MDD 

was added by the multiple brain measures.
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Fig. 1. 
ROC curves and associated AUC (95% C.I.) by feature set used in model and by group 

comparison: (a) T1D and T2D, (b) T1D and T1C and (c) T2D and T2C.
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Fig. 2. 
Mean decrease in Gini scores by VOI by group comparison. Larger scores indicate a 

variable is more important when classifying the two groups of interest.
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Table 1

Count of subjects in the training and testing partitions, by comparison group.

Group Train Test

G1 22T1 : 15T2 21T1 : 14T2

G2 22D : 16C 21D : 16C

G3 15D : 15C 14D : 15C
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Table 2

Outline of classification accuracies by comparison group and metrics (Model ‘All’ is formed by the 

combination of volumetric, RD and JD features). ‘Percent M’ indicates the percentage of the original 1.8×105 

features retained by GRRF.

Group Model OOBE AUC (95% CI) Percent M

G1 Vol. 69% 69.0 (43.8 - 94.3) NA

RD 5.9% 66.3 (47.8 - 84.7) 0.06%

JD 8.2% 48.3 (27.8 - 68.7) 0.06%

All 3.6% 66.3 (41.1 - 91.5) NA

G2 Vol. 57.3% 62.6 (39.6 - 85.7) NA

RD 5.2% 89.5 (79.9 - 99.2) 0.05%

JD 5.1% 77.0 (42 - 92.7) 0.05%

All 4.5% 92.0 (79.5 - 100) NA

G3 Vol. 32.9% 56.4 (32.5 - 80.4) NA

RD 6.1% 92.8 (83.7 - 100) 0.04%

JD 0.14% 80.0 (62.7 - 97.2) 0.04%

All 3.8% 95.4 (86.2 - 100) NA
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