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Abstract

Anatomical brain networks change throughout life and with diseases. Genetic analysis of these 

networks may help identify processes giving rise to heritable brain disorders, but we do not yet 

know which network measures are promising for genetic analyses. Many factors affect the 

downstream results, such as the tractography algorithm used to define structural connectivity. We 

tested nine different tractography algorithms and four normalization methods to compute brain 

networks for 853 young healthy adults (twins and their siblings). We fitted genetic structural 

equation models to all nine network measures, after a normalization step to increase network 

consistency across tractography algorithms. Probabilistic tractography algorithms with global 

optimization (such as Probtrackx and Hough) yielded higher heritability statistics than “greedy” 

algorithms (such as FACT) which process small neighborhoods at each step. Some global network 

measures (probtrackx-derived GLOB and ST) showed significant genetic effects, making them 

attractive targets for genome-wide association studies.
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1. INTRODUCTION

Diffusion-weighted MRI is a non-invasive technique sensitive to white matter 

microstructure. Using diffusion MRI, water diffusion in each voxel can be modeled using a 

tensor or an orientation distribution function (ODF). Dominant diffusion directions may be 

extracted from these diffusion models; by following neighboring voxels’ dominant diffusion 

directions, large-scale neuronal tracts may be reconstructed. Anatomical brain networks can 

be modeled by counting the proportion of detected fibers that intersect or interconnect pairs 

of regions of interest (ROIs), defined on anatomical MRI. These structural brain networks 

are symmetric by definition. Characterized using graph theory, some brain network 
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properties are altered in certain disorders, such as bipolar illness [1, 2], body dysmorphic 

disorder [3], Alzheimer’s disease [4], and even HIV/AIDS [5]. Large population studies, 

such as ADNI [6] and ENIGMA [7], are increasingly prevalent as they offer increased 

power to evaluate risk factors and biomarkers for diseases and detect genetic associations 

with brain measures.

Some studies have identified genetic effects on brain networks [8–10]. Jahanshad et al. [8] 

used a genome-wide association scan (GWAS) to screen brain connectivity matrices 

suggesting that common variants in the SPON1 gene may influence anatomical networks. 

Candidate gene studies (e.g., [10]) have suggested lower global efficiency of the brain 

network in people carrying a variant in the Disrupted-in-Schizophrenia-1 (DISC1) gene, 

although these reports await replication.

However, dozens of tractography algorithms have been developed [11–17] yielding very 

different brain networks. We previously found no detectable differences in performance 

when classifying Alzheimer’s Disease based on brain networks computed from nine 

tractography algorithms [18], but the choice of tractography algorithm may well affect 

genetic studies. Prior to embarking on large-scale GWAS studies of brain networks, here we 

evaluated nine different tractography methods with four different normalization approaches. 

We computed brain networks using each tractography algorithm and normalized each 

network using each normalization method. 10 network measures were extracted from each 

normalized network based on graph theory analysis. We addressed two questions: (1) Which 

normalization method leads to the least variation (i.e., greatest consistency) among different 

tractography algorithms; and (2) which network measures show greatest heritability, to 

prioritize or rank them for future in-depth genetic analyses.

2. METHODS

2.1 Participant Demographics and Imaging

DTI data from 853 young healthy adults were analyzed (Table 1 shows their demographics). 

Each participant was scanned with 3D T1-weighted anatomical brain MRI and diffusion-

weighted imaging (DWI) on a 4T Siemens Bruker Medspec MRI scanner. T1-weighted 

images were acquired with an inversion recovery rapid gradient echo sequence, with 

TI/TR/TE= 700/1500/3.35 ms; flip angle, 8°; slice thickness, 0.9 mm. Diffusion MRI was 

acquired using single-shot echo planar imaging with a twice-refocused spin echo sequence 

to reduce eddy-current induced distortions. Acquisition parameters were: 23 cm FOV, 

TE/TR 92.3/8250 ms. 105 images were acquired per subject: 11 with no diffusion 

sensitization (i.e., T2-weighted b0 images) and 94 diffusion-weighted (DW) images (b=1159 

s/mm2) with gradient directions evenly distributed on the hemisphere. Total scan time was 

14.5 minutes.

2.2 Data Preprocessing

Non-brain regions were automatically removed from each T1-weighted image, and from a 

b0 image from the DWI dataset, using the bet function in FSL (http://fsl.fmrib.ox.ac.uk). A 

neuroanatomical expert manually refined all brain extractions. We corrected eddy current 
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distortion in DWI scans using FSL’s eddy_correct function. All T1-weighted scans were 

linearly aligned using FSL (with 9 DOF) to a common space. For each subject, the 11 eddy-

corrected b0 images were averaged, linearly aligned to the corresponding T1 image and 

elastically registered to the structural scan using a mutual information cost function to 

compensate for EPI-induced susceptibility artifacts. The resultant deformation field was 

applied to the other DWIs. Based on the registered DWIs, we computed whole-brain 

tractography with a wide variety of deterministic and probabilistic tracking algorithms that 

used tensor or full ODF-based models of diffusion.

2.3 Whole Brain Tractography

Among the deterministic methods were four tensor-based deterministic algorithms: FACT 

[12], the 2nd-order Runge-Kutta (RK2) method [11], the tensorline (TL) [13] and 

interpolated streamline (SL) methods [14] and two deterministic tractography algorithms 

based on 4th order spherical harmonic derived orientation distribution functions (ODFs) - 

FACT and RK2. We also tested three probabilistic approaches: one was “ball-and-stick 

model based probabilistic tracking” (Probtrackx) from the FSL toolbox [15]; the other two 

were based on ODFs represented by 4th order spherical harmonic series: the Hough voting 

method [16] and the Probabilistic Index of Connectivity (PICo) method [17].

All deterministic tracking approaches were conducted with the Diffusion Toolkit (http://

trackvis.org/dtk/). Fiber tracking was restricted to regions where fractional anisotropy (FA) 

≥ 0.2 to avoid gray matter and cerebrospinal fluid; fiber paths were stopped if the fiber 

direction encountered a sharp turn (with a critical angle threshold ≥ 30°). Sharp “right-

angle” turns may be biologically possible in some cases [19], but allowing right-angle turns 

in tractography would create large numbers of false positive pathways at fiber crossings.

Probtrackx was performed after Bedpostx was applied. Bedpostx stands for Bayesian 

Estimation of Diffusion Parameters Obtained using Sampling Techniques [15]. In our study, 

up to 3 fibers were modeled per voxel. Once Bedpostx had been run, we chose all voxels 

with FA≥0.2 as the seeds. Following Bedpostx, Probtrackx was run on each individual seed 

voxel. Probtrackx repeatedly samples from the voxel-wise principal diffusion direction 

calculated in Bedpostx, creating a new streamline at each iteration. This builds a distribution 

on the likely tract location and path, given the data. A value of 1000 iterations was chosen to 

ensure convergence of the Markov chains, from which the posterior distributions of the local 

estimate of the fiber orientation distribution were sampled.

The Hough voting method was performed with code provided by the authors [16]. ODFs at 

each voxel were computed using the normalized and dimensionless constant solid angle 

ODF estimator, derived for Q-ball imaging (QBI) in [20]. Tractography was performed by 

probabilistically seeding voxels with a prior probability based on the FA value (FA≥0.2). All 

curves passing through a seed point receive a score estimating the probability of the 

existence of the fiber, computed from the ODFs. Then a Hough transform voting process 

was adopted to determine the best fitting curves through each point. Hough probabilistic 

tractography optimizes the fiber pathway globally, so there is no explicit upper limit on the 

number of detectable crossing fibers although the data angular resolution will limit this in 

practice.
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PICo was conducted with Camino (http://cmic.cs.ucl.ac.uk/camino/). Seed points were 

chosen at those voxels with FA ≥ 0.2. ODFs were estimated using 4th order Spherical 

Harmonics and a maximum of 3 local ODF maxima (where fibers mix or cross) were set to 

be detected at each voxel. Then, a probability density function (PDF) profile can be 

produced from the derived local ODF maxima. Monte Carlo simulation was used to generate 

fibers emanating from seed points inside the entire brain. Streamline fiber tracking followed 

the voxel-wise PDF profile with the Euler interpolation method, for 10 iterations per each 

seed point. The maximum fiber turning angle was set to 30°/voxel. Tracing stopped at any 

voxel whose FA was less than 0.2. This approach generates many more fibers than other 

methods used in this study.

2.4 Brain Network Computing and Normalization

34 cortical regions of interest (ROI) per hemisphere, listed in [21], were automatically 

extracted from all aligned T1-weighted scans with FreeSurfer (http://

surfer.nmr.mgh.harvard.edu). To ensure tracts would intersect cortical labeled boundaries, 

we dilated labels with an isotropic box kernel of size 5×5×5 voxels. For each ROI pair, the 

number of fibers connecting them was determined from the tractography. A fiber was 

considered to connect two ROIs if it intersected both ROIs. This process was repeated for all 

ROI pairs, to compute a 68×68 whole brain fiber connectivity matrix. This matrix (M0) is 

symmetric, by definition, and the diagonal elements represent the total number of fibers 

originating from each ROI. Since Probtrackx can output the brain network directly, the 

results from all other tractography algorithms except Probtrackx were analyzed using the 

above procedures to generate brain network. We then defined four ways to normalize these 

brain networks (Table 2).

2.5. Network measures

After normalization, M1–M4 were analyzed using graph theory. Nine network global 

measures were calculated including Mean Clustering Coefficient (MCC), Transitivity (TS), 

Characteristic Path Length (CPL), Density (DS), Degree (DG), Global Efficiency (GLOB), 

Strength (ST), Diversity (DV) and Small-Worldness (SW), using the brain connectivity 

toolbox (BCT) [22]. We used weighted versions of these 9 measures. Definitions and 

mathematical equations may be found at the BCT toolbox website (https://sites.google.com/

site/bctnet/).

2.6. Statistical Analysis

For each network measure listed in section 2.5, we used generalized linear regression (GLR) 

to remove statistical effects of age, sex and total brain volume (TBV). The resultant residue 

(RR) was used for the following two analyses.

Our first aim was to find which normalization technique would minimize the variations 

among different tractography algorithms, i.e. yield most consistent networks across 

methods. So we ran one-way ANOVA on four sets of normalized matrices using all 853 

subjects. Each group consists of 853 values. We first computed each subject’s variability 

across the nine tractography algorithms, defined as Q=abs(SD/mean), in which abs is 

absolute value, SD is the standard deviation of RRi (i=1–9) and the mean is the mean value 
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of RRi (i=1–9). RRi is the residual network corresponding to the i-th tractography algorithm. 

We repeated this process nine times for the nine network measures in section 2.5.

Second, based on the “optimal” normalization technique, we aimed to find which 

tractography algorithm and which network measures showed evidence of heritability 

(genetic influence). So for each network measure from 114 pairs of MZ and 160 pairs of DZ 

twins, we fitted a structural equation model (SEM) to estimate to what extent the variance in 

each measure was attributable to additive genetic, A, common environment, C, and unique 

environment/measurement error, E (please refer to [23] for model details). MZ twins raised 

in a family share 100% of their genes, as well as a shared environment. Any differences 

arising between them in these circumstances are random (unique). The correlation between 

identical twins provides an estimate of A + C. DZ twins also share C, but share on average 

only 50% of their genes: so the correlation between fraternal twins is a direct estimate of ½A

+C. Therefore, the additive genetic component of variance, a2, is approximately twice the 

difference between identical and fraternal twin correlations: the additive genetic effect 

(Falconer's formula) [24]. Measures with lower a2 values tend to be less promising 

candidates for further genetic analysis.

3. RESULTS AND DISCUSSIONS

3.1 Normalization Effects

Figure 1 shows One-Way ANOVA results on variability (Q) for network measures in the 

four normalization groups across the cohort described in section 2.6. Only three measures 

(MCC, DV and TS) show significant differences in consistency that depends on the 

normalization method in One-Way ANOVA (P= P=2.5×10−3, 7.69×10−3 and 5.82×10−5 

respectively). As only the IndNorm method gave consistently significant smaller mean 

variability (i.e., greater consistency) for these three network measures and there are no group 

differences in Q among four normalization methods for the other six network measures, we 

chose the IndNorm method for later analysis.

3.2 Heritability statistic

Based on the above results, we computed ACE-based heritability statistics for the IndNorm 

group only. Figure 2 shows the heritability statistic results (a2 values with P<0.05) for all 

network measures and for nine tractography algorithms. Our results indicated most A values 

do not differ detectably from zero, so those measures may not be suitable for further genetic 

studies. Five measures (including Tensor-TL derived TS, Probtrackx-derived GLOB, ST, 

DV and Hough-derived CPL) are highlighted in Figure 2. Table 3 summarizes the ACE 

outputs for these five measures.

From Table 3, if Bonferroni correction is adopted to correct for multiple comparisons, our 

results still showed that Probtrackx-derived GLOB and ST have significant a2 values (PA 

less than 0.05/9/9≈6.2E-04). Probabilistic tractography algorithms with global optimization 

(such as Probtrackx and Hough) may yield higher heritability statistics for genetic studies 

than other “greedy” types of tractography algorithms (such as FACT) which process small 

neighborhoods at each step. Furthermore, probtrackx-derived GLOB and ST have 
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significant (and large) a2 values (red colors in Table 3). For these measures, genetic factors 

may account for over 50% of the measured variance among individuals.

4. CONCLUSIONS

In our study, we the first used an IndNorm normalization technique to increase the 

consistent among network measures computed from 9 different tractography algorithms. 

Probabilistic tractography algorithms with global optimization generated measures in which 

a greater proportion of the variance was attributable to genetic differences among 

individuals. Probtrackx-derived GLOB and ST were two measures for which genetic factors 

explained over half of the overall variance across individuals. This suggests the value of 

further genetic association analysis, at least for these measures. Also in current study, we 

only investigated typical global network measures, which are averages computed from local 

network measures. Future work will also assess local network measures.
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Figure 1. 
One-Way ANOVA results for network measures. The y-axis shows the type of 

normalization used, and the x-axis is variability (Q) and its 95% confidence interval (CI) 

across the cohort described in Section 2.6. No CI overlap suggests significant differences 

between normalization methods. Different colors (blue and red) show pairs of methods with 

significant differences. We show GLOB as one example where there was no detectable 

difference in mean variability across the four normalization methods. For the network 

metrics MCC, DV and TS, there are significant differences among the four normalization 

methods - with P=2.5×10−3, 7.69×10−3 and 5.82×10−5 respectively in a one-way ANOVA.
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Figure 2. 
SEM heritability statistic results (a2 values) for all network measures and for all 

tractography algorithms, when using IndNorm as normalization method. Only Tensor-TL 

derived TS, Probtrackx-derived GLOB, ST, DV and Hough-derived CPL have a2 values 

significantly larger than 0 (with P value<0.05). Most of other measures have zero values.
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Table 1

Cohort Demographics.

N Age Sex

Monozygotic twins (MZ) 228 22.38±2.74 y 72M

Dizygotic twins (DZ) 320 22.22±2.55 y 127M

Siblings 305 23.56±2.99 y 108M

Total 853 22.74±2.83 y 306M

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhan et al. Page 11

Table 2

Matrix Normalization Equation

Equation

Raw M1=M0 ◦ (1-E)

MaxNorm M2=M1◦(1/max(M1))

SumNorm M3=M1◦(1/sum(M1))

IndNorm

M0 is the initial computed matrix; E is the unit matrix; ◦ is the Hadamard product; max() is the maximum value of all matrix elements; sum() is 

summation of all matrix elements; (i,j) is the element (i,j) in the matrix. M1–M4 are four normalized matrices.
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