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Abstract

In spatial-temporal neuroimaging studies, there is an evolving literature on the analysis of 

functional imaging data in order to learn the intrinsic functional connectivity patterns among 

different brain regions. However, there are only few efficient approaches for integrating functional 

connectivity pattern across subjects, while accounting for spatial-temporal functional variation 

across multiple groups of subjects. The objective of this paper is to develop a new sparse reduced 

rank (SRR) modeling framework for carrying out functional connectivity analysis across multiple 

groups of subjects in the frequency domain. Our new framework not only can extract both 

frequency and spatial factors across subjects, but also imposes sparse constraints on the frequency 

factors. It thus leads to the identification of important frequencies with high power spectra. In 

addition, we propose two novel adaptive criteria for automatic selection of sparsity level and 

model rank. Using simulated data, we demonstrate that SRR outperforms several existing 

methods. Finally, we apply SRR to detect group differences between controls and two subtypes of 

attention deficit hyperactivity disorder (ADHD) patients, through analyzing the ADHD-200 data.
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1. Introduction

The predominant functional imaging techniques, such as functional magnetic resonance 

imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG), 

have been widely used in behavioral and cognitive neuroscience to understand functional 

segregation and integration of different brain regions in a single subject and across different 

populations (Friston (2009)). Such statistical methods as principal component analysis 
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(PCA), general linear models (GLM), and independent component analysis (ICA), have 

been developed to extract both spatial and temporal patterns of interest from functional 

signals, and to understand how different brain regions interact with each other. For instance, 

ICA has been widely used in single-subject fMRI/EEG studies to separate spatially or 

temporally independent components (McKeown et al. (1998); Beckmann and Smith (2004)). 

However, the extension of these methods to group inference is not straightforward due to 

striking neuroanatomic variations, and thus it remains an active research topic (Calhoun, 

Liu, and Adalı (2009)). The aim of this paper is to develop a sparse reduced rank (SRR) 

spatial-temporal modeling framework in the frequency domain for group analysis of 

functional imaging data across multiple groups.

Two strategies are typically adopted in group ICA of neuroimaging data. The first strategy is 

to perform ICA for each subject separately, and then to combine the outputs across subjects 

through, for example, clustering analysis and correlation analysis (Calhoun et al. (2001a); 

Esposito et al (2005)). These methods are sensitive to different source separations obtained 

from different subjects, making it diffcult to establish good correspondence among 

independent components across subjects. The second strategy is to concatenate functional 

imaging data either temporally or spatially, and then perform ICA on the concatenated data 

matrix. For instance, temporal concatenation, namely spatial ICA, implicitly assumes that 

neural activation is observed at the same locations across all subjects (Calhoun et al. 

(2001b); Guo and Pagnoni (2008)), whereas spatial concatenation, namely temporal ICA, 

assumes subject-specific spatial maps with a common temporal basis (Svensén, Kruggel, 

and Benali (2002)).

To avoid the assumption of spatial correspondence, a possible solution is to extend temporal 

ICA by addressing two major limitations: temporal inconsistency and noise sensitivity. In 

the time domain, assuming a common temporal basis across subjects can be unreasonable 

for functional neuroimaging data due to the large temporal variability in response latency, 

especially for resting-state data. Hence, performing data analysis in the frequency domain 

can be a remedy to achieve temporal consistency. Calhoun et al. (2003) performed group 

spatial ICA in the frequency domain. However, as in the other ICA methods, PCA is needed 

to reduce the number of time points. There are two potential solutions to noise sensitivity. 

The first is to increase the temporal sampling rate and improve data quality (Smith (2012)); 

the second is to use some advanced mathematical and statistical methods, such as 

compressed sensing theory and regularization methods (Tibshirani (1996); Donoho, Elad, 

and Temlyakov (2006)). There are a few recent developments on the use of sparse dictionary 

learning algorithms for neuroimaging data in the time domain (Aharon, Elad, and Bruckstein 

(2006); Lee et al. (2011a); Lee, Tak, and Ye (2011); Varoquaux et al. (2011)).

The objective of the current paper is to develop a sparse reduced rank (SRR) modeling 

framework in the frequency domain, with several novel developments in order to carry out 

group functional imaging analysis and comparison across multiple groups. We view SRR as 

a combination of temporal ICA and sparse dictionary learning algorithms. Our new 

developments include i) a group modeling framework in the frequency domain, ii) detection 

of common frequency basis functions, iii) sparsity of the frequency basis functions, iv) novel 
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data-driven procedures to select sparsity level and model rank, and v) varying spatial 

functions across groups for group comparison and integration.

Different from many other methods, our proposal aims at finding “optimal” low-rank 

approximations to the power spectrum matrices of the original imaging data from multiple 

groups. The low-rank approximation assumes a set of common frequency factors, along with 

the subject-specific spatial maps which then enable group comparison and data integration 

across groups. Our modeling framework also imposes sparsity on the frequency factors, 

which is a natural consideration given the particular characteristics of power spectra of 

temporal functions. We propose an efficient alternating algorithm for estimating the 

frequency basis and spatial factors. We develop two Bayesian information criteria (BIC) for 

sparsity and rank selection, while accounting for dependence among observations at each 

distinct frequency. Simulation studies are performed to illustrate the nice performance of our 

method from a wide range of perspectives. Due to space limitations, we present the 

simulation results in the supplementary material. Through an analysis of the New York 

University (NYU) sub-sample of the ADHD-200 data, we demonstrate that our method can 

detect meaningful functional connectivity patterns across two ADHD subtypes and typically 

developing children (TDC), varying significantly across groups at some specific regions of 

interest.

The rest of the paper is organized as follows. In Section 2, we formulate our SRR model, 

and derive the alternating estimation algorithm, along with detailed discussions about the 

modified BICs. We report the analysis of the ADHD-200 data in Section 3, and compare 

functional connectivity patterns across one control and two patient groups. We conclude the 

paper with some discussion in Section 4. In Section S1 of the supplementary material, we 

report on the simulation studies that compare SRR with several existing methods.

2. Methods

2.1. Model formulation

It is well-known that most of functional imaging data show significant fluctuations at certain 

range of frequencies. For example, resting-state fMRI data focus on spontaneous low 

frequency fluctuations below 0.1 Hz in the BOLD signal (Biswal et al. (1995)). In addition, 

EEG data have revealed oscillatory activity in specific frequency bands, including delta (1–4 

Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma (30–70 Hz). As shown 

in Figure 1, we transform the standardized time courses from brain images to the frequency 

domain, and use the power spectra rather than the raw time courses. One advantage is that 

the power spectra matrices are much sparser, since strong power is believed to distribute in a 

specific range (e.g., below 0.1 Hz) of frequencies.

Let T be the number of distinct frequencies and R be the number of regions (or voxels) of 

interest (ROI). Without loss of generality, we use ROI throughout the paper. We observe (or 

calculate) the T × R power spectra matrix  of rank q = min(T, R) for each subject s of 

group g, where s = 1, …, Ng and g = 1, …, G. For example, the (i,j)th element of  is the 
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power spectrum of the jth ROI at the ith frequency for the sth subject of the gth group. 

Group g has Ng subjects, and the total number of subjects is .

To integrate functional imaging data across subjects, we consider the following multi-group 

low-rank spatial-temporal model:

(2.1)

where U is the T × q frequency factor matrix common across groups,  is the 

corresponding q × R spatial factor matrix specific to each subject, and  is the subject-

specific error matrix. A key assumption in Model (2.1) is that there is a set of common 

frequency basis functions for all subjects. This is a reasonable assumption for most 

functional neuroimaging studies. In fMRI studies, all subjects undergo the same set of 

experimental stimuli or conditions across time, and thus it is expected that frequency basis 

functions would be shared across subjects. For instance, Bai et al. (2008) have adopted the 

frequencies of stimuli used in the block design fMRI studies for their model formulation.

A schematic overview of our SRR framework is given in Figure 2. Using the data from 

multiple groups of subjects, SRR can extract the common frequency factors, while allowing 

the spatial factors to vary across subjects. We note that the common frequency factors do not 

mean that all subjects have the same dominating frequencies, but that we can use a common 

factor incorporating all the frequency information across subjects. Furthermore, Model (2.4) 

below enables follow-up hypothesis testing of spatial differences among groups.

To estimate U and  in Model (2.1), we consider the squared loss function:

(2.2)

where ∥ · ∥F denotes the Frobenius norm. For model identifiability, we impose a set of 

orthogonality constraints on the frequency factors.

We further impose discontinuity and sparsity constraints on the frequency factors. It is 

common that the corresponding power spectra exhibit high-magnitude signals only in 

several dominating frequencies and nuisance noise elsewhere. To account for such 

characteristics in the frequency domain, we consider imposing sparsity on the frequency 

factor matrix which in turn leads to the identification of frequencies with large power 

spectra by shrinking small entries of U toward zero. One of the most popular approaches is 

to impose the L1 (or lasso) penalty (Tibshirani (1996)). For model estimation, we thus 

consider minimizing the penalized loss function

(2.3)
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where ∥ · ∥1 denotes the L1 norm, ui is the ith frequency factor, and λi ≥ 0 is the tuning 

parameter, to determine the degree of sparseness for ui, which enables sparsity level to vary 

among factors.

After estimating , we can directly model  to make comparison and integration of 

functional imaging data across groups. For instance, if spatial correspondence is reasonable 

for a given data set, we can consider the spatial factor matrix as being group-specific:

(2.4)

where Mg represents the spatial factor matrix specific to the gth group and  is the 

corresponding error matrix assuming that vec( ) have mean 0 and the qR × qR 

independent variance-covariance matrix.

Under Model (2.4), we can perform statistical tests of group differences, while preserving 

the inherent characteristics from each group. Furthermore, we can incorporate stimulus types 

or other individual characteristics, such as age or gender, to build a linear model as follows:

where  is an N × qR matrix, X is an N × p design matrix with 

p the number of covariates, B = (vec(B1), ⋯, vec(Bp))′ is a p × qR coefficient matrix with 

Bk the q × R coefficient matrix for the kth covariate, and the error 

 is an N × qR matrix.

2.2. Model estimation

The high-dimensionality of the problem makes it challenging to directly minimize the 

objective function in (2.3). To begin with, we horizontally concatenate the matrices  and 

, respectively, for all subjects and denote the resulting matrices as Y and M. The 

concatenated matrix Y can be written by

where ⊗ is the Kronecker product and  is a 1 × N vector of zeros, with the exception that 

the ( )-th element is 1, where N0 = 0. Note that  corresponds to the 

location of the subject s within the group g when the N subjects are first ordered according 

to group and then within each group.
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Similarly, we have . Instead of 

simultaneously minimizing the loss function (2.3) with respect to U and M, we describe 

below an iterative estimation algorithm that alternates the optimization with respect to U and 

M, while performing data-driven selection of the tuning parameters λi's as well as the 

underlying rank r.

2.2.1. Initial estimation—To initialize, we minimize the un-penalized loss function (2.2) 

that can be rewritten as

(2.5)

where Y is the T × RN matrix and M is the q × RN matrix. Assuming that U is given, the 

minimizer is  obtained by taking the derivative of (2.5) with respect to M. Plugging 

this into (2.5), we have

where tr(A) denotes the trace of the matrix A. It suggests that the minimization of (2.5) with 

respect to U is equivalent to finding

(2.6)

As shown in Jolliffe (2002, Chap. 2), the solution  in (2.6) is given by the first q 

eigenvectors of YY′. It then follows that . We refer to  and  as the initial 

estimators.

2.2.2. Sparse Estimation for U and M—We can further express (2.3) in a concatenated 

form as

(2.7)

We first present how to solve the above optimization problem without the non-negative 

constraints on the factors ui then discuss ways of incorporating those constraints.

Given M, the optimization of (2.7) with respect to U is essentially a quadratic programming 

problem. However, direct minimization is computationally intensive given a large number of 

ROIs in neuroimaging data. We can rewrite (2.7) as a form of linear regression model: 

, where y = vec(Y) is a TRN × 1 vector, X = M′ ⊗ IT is a TRN × 

T2 matrix, and β = (vec(u1)′,…, vec(uq)′)′ is a T2 × 1 vector. For the ADHD-200 sample 

with R = 954, T = 24, and N = 178 in Section 3, the design matrix X has dimension 4, 075, 

488 × 576, which requires a large amount of memory and tedious computation time. 

Therefore, we propose to sequentially estimate each component of U and M. The sequential 
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extraction also makes it feasible to incorporate factor-specific sparsity through selecting a 

factor-specific tuning parameter. Simultaneous data-driven selection of multiple tuning 

parameters is computationally too costly.

For sequential estimation, we first express UM as the sum of q rank-one matrices given by 

, where ui is the ith column vector of U and mi is the ith row vector of M.

For the first rank-one term (i = 1), we consider minimizing

(2.8)

Given the initial estimate  obtained in the initialization step, we estimate u1 by 

minimizing

(2.9)

It can be shown that the minimizer  of (2.9) has the explicit form

(2.10)

Here sgn(·) is the sign function, the subscript “+” indicates the nonnegative part, and 

 is the ordinary least squares (OLS) estimate of uj1 when setting 

λ1 = 0 in (2.9), with < ·, · > denoting the inner product between two vectors, and yj being the 

jth row of the matrix Y. The proof is given in Section S2 of the supplementary material.

Given the sparse estimate , m1 can be updated by minimizing

which yields . After estimating the first rank-one term as , we 

consider the residual matrix . To find the second rank-one term, we modify 

the optimization criterion in (2.8) with

which can be minimized with respect to u2 and m2 in a similar alternating way. The rest of 

the rank-one terms, uimi, i = 3, …, q, can be obtained sequentially in a similar manner by 

using the residual matrices from the lower-rank approximations, denoted as 

, with K1 = Y.

Thus, given the initial estimate , the minimization criterion for estimating ui can be 

written as

Ahn et al. Page 7

Stat Sin. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(2.11)

Setting λi = 0, the OLS estimator for ui can be obtained as

(2.12)

where ki,j is the jth row vector of the matrix Ki. Then the minimizer of (2.11) with respect to 

ui can be explicitly given as

(2.13)

The proof is given in Section S2 of the supplementary material.

Given the updated estimate , we minimize the objective function

(2.14)

whose minimizer is . If  is a zero vector, we also set  to be a zero 

vector.

Finally, we comment that the estimated frequency basis functions  might be negative. 

Even though the proposed method has an explicit solution which reveals the dominating 

frequencies quite well, we can consider another approach that implicitly imposes the non-

negativity constraints when estimating the frequency basis functions, in addition to the 

orthogonality or sparsity constraints. Each optimization can be solved via multiplicative 

iterative algorithm or alternating least squares algorithm for a semi-nonnegative matrix 

factorization problem (Cichocki et al. (2009)). However, such method is computationally 

extensive since the two estimation steps need to be iteratively updated. We leave this 

approach for future research.

2.2.3. Data-driven parameter selection—Our estimation algorithm involves a set of 

tuning parameters that needs to be selected in a data-driven fashion, including the sparsity 

tuning parameters λi, i = 1, …, q, and the model rank r. For tuning parameter selection, 

many criteria have been proposed and studied in the literature, such as the Akaike 

information criterion (Akaike (1973)), Bayesian information criterion (BIC) (Schwarz 

(1978)), and (generalized) cross-validation (Craven and Wahba (1979)). In linear model 

settings, it is well-known that BIC gives consistent model selection. We propose two BIC-

type criteria for selecting the tuning parameters in our algorithm and illustrate the nice 

performance of the criteria in Section S1 of the supplementary material.

Following Lee et al. (2010), we are tempted to use a natural BIC for selecting the sparsity 

tuning parameter λi,
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(2.15)

where df is the number of nonzero elements in . However, this naive criterion failed to 

generate reasonable models in our study. For a large number of ROIs, this BIC imposes very 

small penalties on bigger models, and hence has the tendency to select the full model. Such 

a problem is caused by the intrinsic dependence in our data, suggesting that the effective 

sample size should be smaller than NTR used in the naive BIC (2.15).

To adjust for the dependence, we treat each frequency as a cluster because different 

frequencies illustrate different variabilities, and define the intra-cluster correlation 

coefficient (Killip, Mahfoud, and Pearce (2004); Faes et al. (2009)) as , 

where  is the between-cluster variability and  is the within-cluster variability. The setup 

is analogous to one-way analysis of variance (ANOVA), in which each frequency 

corresponds to one level of the factor, and the response variable is Y. We can then estimate 

the between-frequency and within-frequency variabilities using ANOVA. It follows that the 

effective sample size is

(2.16)

If ρ = 0, the effective sample size remains NTR. As ρ increases, the effective sample size 

becomes closer and closer to T , the number of frequencies (i.e. clusters). Using the effective 

sample size, we revise the naive BIC as

(2.17)

where the subscript S indicates that this BIC is used for selecting the sparsity tuning 

parameter. For each component i = 1, …, q, we choose the optimal value of λi at which the 

minimum BICS is achieved.

Given the final estimates  and , we choose the “optimal” rank using the following BIC-

type statistic. For r = 1, …, q,

(2.18)

where dfR is the effective number of parameters in the rank-r approximation . 

Under the independence assumption, the degrees of freedom in (2.18) should be (T + NR) × 

r for the rank-r model. Given the above discussion of intra-cluster-dependence, we adjust 
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NR to NR/(1 + ρ(NR − 1)), where ρ is obtained from the ANOVA model with the response 

variable . It then suggests that the effective degrees of freedom should be

Algorithm 1 summarizes the key steps of the estimation procedure derived. We note that the 

resulting estimate  might not be orthogonal. Adding the

Algorithm 1 Estimation for U and M

Step 1: Initial Estimation for U and M

  Minimize the un-penalized loss function in (2.5) to obtain the initial estimates  and ;

Step 2: Sparse Estimation for U and M:

  For i = 1, …, q,

    For each λi, obtain  by minimizing (2.11);

    Then, select the optimal  that minimizes BICS(λi) in (2.17);

    Given , obtain  by minimizing (2.14);

Step 3: Rank Determination:

  For r = 1, …, q, compute BICR(r) in (2.18);

    Then, choose the optimal rank  that minimizes BICR(r);

    Obtain the estimates  and  for the rank-  model.

orthogonalization after Step 2 could make  lose sparsity. Even though we do not enforce 

orthogonality, our estimate is quite close to orthogonal in that  is close to an identity 

matrix and the off-diagonal elements are almost zero, based on our experience.

3. Application to the ADHD-200 Data

3.1. Data acquisition and preprocessing

We used the resting-state fMRI data from the ADHD-200 sample which is available from 

http://fcon_1000.projects.nitrc.org/indi/adhd200. The data were collected from eight sites of 

the ADHD-200 consortium. In this study, we only analyzed the data from NYU with the 

largest number of subjects. At NYU, a Siemens Allegra 3T scanner was used to acquire the 

6-min resting-state fMRI scans. The scan parameters are the following: voxel size = 3 × 3 × 

4 mm, slice thickness = 4 mm, number of slices=33, TR (repetition time) = 2 s, TE (echo 

time) = 15 ms, flip angle = 90°, and field of view = 240 mm. One or two resting-state fMRI 

scans were acquired for each subject in the NYU data. During acquisition, each subject was 

asked to be awake and not to think about anything under a black screen.

Ahn et al. Page 10

Stat Sin. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fcon_1000.projects.nitrc.org/indi/adhd200


Table 1 shows the demographic information for the NYU sample. We excluded the ADHD 

hyperactive/impulsive subtype group which only has two subjects. Based on the quality 

control (QC) performance given in the phenotypic data, we deleted the scans showing 

artifacts and then chose one of the scans for each subject. If no scans passed QC, we 

removed the subject from our study. We also excluded subjects with the same values at all 

time points. In Table 1, the last column shows the number of subjects for each group used in 

our study.

The ADHD-200 sample provides various types of time course data that were extracted using 

different atlases and pipelines. Among them, we used the `1,000 ROI extracted time courses' 

that were preprocessed by the Neuroimaging Analysis Kit (NIAK) (Lavoie-Courchesne et 

al. (2012)). To check the existence of frequency coherence, we examined the ROIs 

consisting of 30+ voxels, and computed the Moran's I statistic and its Z-score. Averaged 

across all subjects, 99.2% of ROIs had the Z-scores greater than 1.96, indicating that there 

exist frequency coherence within each ROI. Before analyzing the data, we standardized the 

time course data in order to have zero mean and unit variance. A band-pass filter is usually 

applied during preprocessing to eliminate some frequencies that are assumed to have 

nuisance noise, such as slow drift or physiological effects. Even though the NIAK applied a 

high-pass filter at 0.01 Hz to correct slow time drifts, some data still exhibit high power 

spectra below 0.01 Hz. Therefore, we additionally applied a band-pass Fourier filter (0.009–

0.08 Hz) which is used in the Athena pipeline to remove frequencies not related to resting-

state brain activity. We then focused on this frequency band, and thereby the number of 

distinct frequencies within this range is 24. Using the filtered data, we computed the power 

spectra matrices to be used for finding the group differences.

3.2. Results

Figure S8 in the supplementary material shows the BICR curve for selecting the model rank 

. Note that the full rank is 24, the number of frequencies within the filtered frequency band. 

The minimum of BICR was achieved at . For applying SRR, we thus used the first 14 

components instead of the whole 24 components.

Figure S9 in the supplementary material displays the estimated U matrices as heat maps. The 

left panel displays the initial  matrix obtained from Step 1. The first column of each matrix 

tends to represent the average over all the frequencies. The first few elements at low 

frequencies are large and the rest are close to zero. We expect that the small noisy elements 

will be shrunken toward zero or become zero after penalization in Step 2. The right panel 

presents the sparse  matrix obtained from Step 2. As expected, only a few large elements 

remain and the rest are estimated to be zero after penalization. The red square shows the 

final  matrices after rank selection by BICR.

From Model (2.4), we tested whether there exist group differences in any specific ROI. We 

state a null hypothesis to test whether at least one group is different from the others. 

Specifically, for each i and j, we have

(3.1)
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where Mg(i, j) is the (i, j)th element of Mg. To test this hypothesis, we considered a 

conditional inference procedure assuming  fixed, and then carried out an F-test under a 

linear regression setting. Unfortunately, we found no group differences in any ROIs under 

the significance level of 0.10 after the false discovery rate (FDR) correction (Benjamini and 

Hochberg (1995)). We also applied FastICA and K-SVD, which found no significant 

difference either.

Next we tested group differences between a pair of two groups. For groups g1 and g2, the 

null hypothesis is

(3.2)

For each of the three pairwise comparisons, Table 2 lists the ROIs detected as significantly 

different between the groups, providing FDR-corrected p-values less than 0.10. Most of the 

ROIs were located in the frontal and temporal lobes. These findings are displayed in Figure 

S10 of the supplementary material, where – log10(p-values) are superimposed on a brain 

anatomical image.

The top panel plots the ROIs showing the differences between TDC and ADHD combined 

subtype groups. The significant ROIs are included in the temporal lobe, right parietal lobe, 

right frontal lobe (precentral gyrus), and right insula. In the middle panel, we compared 

TDC with ADHD inattentive subtype group. We found significantly different activation in 

the left insula, right cerebellum, right temporal, right frontal and left parietal lobes. In the 

bottom panel, we compared two ADHD subtype groups and found different activations in 

the left and right frontal lobes, left limbic and right parietal lobes, and right insula.

The significant ROIs identified are consistent with existing clinical findings of ADHD 

patients. Both resting-state and task-based fMRI studies have been used for investigating 

brain activation patterns in ADHD patients (Teicher et al. (2000); Tian et al. (2008)). It is 

well known that the prefrontal cortex is an important brain region in ADHD studies. 

Moreover, it has been recently reported that ADHD patients show different activation 

pattern in the temporal lobe (Cherkasova and Hechtman (2009)). The temporal lobe is 

mainly associated with language and verbal memory. The cerebellum has been known to be 

responsible for motor control and cognitive functions. There are several papers which 

reported dysfunction in the cerebellum for ADHD patients (Toplak, Dockstader, and 

Tannock (2006)). In addition, the parietal lobe is related to attention, memory, and cognitive 

process. Different brain activations in the parietal lobe for ADHD patients have been 

reported in the literature (Tamm, Menon, and Reiss (2006)). Interestingly, functional 

relationship between the insula and cingulate gyrus has received a lot of attention in the 

literature (Taylor, Seminowicz, and Davis (2009); Medford and Critchley (2010)). The 

insula plays a role in consciousness related to emotions as well as perception, motor control, 

and self-awareness. The dysfunction in the insula has been observed in ADHD patients 

across a variety of task-related studies such as timing and error processing (Spinelli et al. 

(2011)). The cingulate gyrus is mainly associated with cognitive process that is linked to the 

signs of ADHD. There is growing evidence that suggests the anterior cingulate cortex 

dysfunctions in ADHD patients (Bush, Valera, and Seidman (2005)).
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We present the boxplots to depict the groups showing different power spectra with the 

others in Figure S11 of the supplementary material. For each pair of groups, we display the 

boxplots of  for the ith frequency component and the jth ROI, where significant group 

difference is detected, as shown in Table 2 and Figure S10 in the supplementary material. 

Due to sparsity on the , the ith frequency component has nonzero values at a few distinct 

frequencies. Therefore,  has the same number of nonzero components. For simplicity, 

we only consider the frequency corresponding to the largest absolute value of . The 

corresponding frequencies are shown on the x-axis of each plot. Within each panel, the 

horizontal line is drawn at zero. These boxplots help us to interpret the results from our 

analysis. For example, on the top-left panel we can see that the ADHD combined subtype 

group shows higher power spectra than the control group at f = 0.043 in the 221st ROI (right 

transverse temporal gyrus, insula, postcentral and precentral gyri); on the other hand, the 

top-right panel shows that the ADHD combined subtype group has lower power spectra than 

the control group at f = 0.046 in the 775th ROI (left middle temporal gyrus).

For the purpose of comparison, we also analyzed the data using K-SVD and FastICA. (Note 

that GIFT cannot be used for ROI analysis.) First of all, both methods yielded very unstable 

results even for the same dataset. Therefore, we repeated the analysis 10 times for each 

method, and then examined the ROIs found to be significant in all repetitions. Since both 

methods assume a given model rank, we considered  as suggested by BICR. We tested 

the group difference by using the simultaneous test in (3.1) and pairwise tests in (3.2). As a 

result, both methods failed to find any significant difference.

4. Discussion

We have presented a novel sparse reduced rank modeling framework for group analysis of 

functional imaging data in the frequency domain. The key assumption of SRR is that the 

power spectra matrix of functional imaging data can be well approximated by a sparse 

representation of a set of common frequency factors. We have proposed a sequential 

penalization approach to learn the common frequency factors and the spatial factor matrix. 

Our method does not suffer from lack of memory or heavy computation even for a large 

number of ROIs. For testing the computation time of SRR algorithm, we have run the voxel-

level whole brain images of ADHD-200 data with 48,472 voxels, and compared it with the 

ROI-based data used in Section 3. The computation times for the ROI- and voxel-based data 

were 51 seconds (0.01 hours) and 5113 seconds (1.42 hours), respectively. Considering a 

large number of subjects, it seems to run reasonably fast.

We have also proposed two novel BIC-type selection criteria for choosing the tuning 

parameters and for selecting the best model rank. We have demonstrated the promising 

performance of SRR using both the simulated data and ADHD-200 sample. In data 

application, we have performed F-tests based on the estimated spatial factors for group 

comparisons, and found significant group differences in some brain regions, such as the 

prefrontal cortex, temporal cortex, and cerebellum. These findings are consistent with 

existing clinical findings of ADHD studies.
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The SRR framework in the frequency domain can be suitable for analyzing the resting-state 

neuroimaging data, as considered in this paper. However, it still has potential applicability 

for other fMRI studies with specific experimental designs. Bai et al. (2008) have applied the 

frequencies of stimuli used in the block design fMRI studies to the SVD model framework. 

In case of event-related design, it might be inappropriate to apply the frequency domain 

analysis. However, it would be possible to consider time domain analysis with smoothing 

penalty as a modified version of the SRR algorithm. We leave this extension for future 

research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of data structures from time course measurements of brain activities to power 

spectra matrices.
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Figure 2. 
Illustration of the SRR model framework for incorporating multiple subjects across groups.
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Table 1

Demographic information for the NYU sample of the ADHD-200 data. The number of females, males, and 

subjects with gender missing data are given in parentheses.

Diagnostic status Frequency (female/male/missing) Mean age (min/max) No. used of subjects in our study

TDC 99 (52/47/0) 12.2 (7.2/18.0) 86 (44/42/0)

ADHD combined 77 (12/64/1) 10.7 (7.2/17.4) 61 (10/50/1)

ADHD hyperactive/impulsive 2 (0/2/0) 10.6 (9.2/11.9) -

ADHD inattentive 44 (15/29/0) 12.0 (7.4/17.6) 31 (13/18/0)

Total 222 (79/142/1) 11.6 (7.2/18.0) 178 (67/110/1)
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Table 2

Comparison of spatial maps between two groups. The p-values are adjusted by FDR correction.

Component ROI ID (regions) p-value

TDC vs ADHD combined 13 221 (R Transverse TG, Insula, Post- & Precentral G) 0.0906

13 726 (R Superior TG, Insula, Transverse TG) 0.0906

14 775 (L Middle TG) 0.0727

TDC vs ADHD inattentive 2 847 (R Tuber, Culmen, Fusiform G) 0.0050

3 215 (L Insula) 0.0530

12 116 (R Middle and Superior FG) 0.0706

12 598 (L Inferior Parietal Lobule) 0.0319

ADHD combined vs ADHD inattentive 3 231 (L Medial FG) 0.0779

3 257 (L Medial FG, Cingulate Gyrus) 0.0627

3 300 (R Insula) 0.0627

3 626 (R Postcentral G) 0.0779

7 203 (R Middle and Inferior FG) 0.0789

L: left, R: right, G: gyrus, TG: temporal gyrus, FG: frontal gyrus
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