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Abstract

The emergence of digital pathology has enabled numerous quantitative analyses of histopathology 

structures. However, most pathology image analyses are limited to two-dimensional datasets, 

resulting in substantial information loss and incomplete interpretation. To address this, we have 

developed a complete framework for three-dimensional whole slide image analysis and 

demonstrated its efficacy on 3D vessel structure analysis with liver tissue sections. The proposed 

workflow includes components on image registration, vessel segmentation, vessel cross-section 

association, object interpolation, and volumetric rendering. For 3D vessel reconstruction, a cost 

function is formulated based on shape descriptors, spatial similarity and trajectory smoothness by 

taking into account four vessel association scenarios. An efficient entropy-based Relaxed Integer 

Programming (eRIP) method is proposed to identify the optimal inter-frame vessel associations. 

The reconstructed 3D vessels are both quantitatively and qualitatively validated. Evaluation results 

demonstrate high efficiency and accuracy of the proposed method, suggesting its promise to 

support further 3D vessel analysis with whole slide images.
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1. INTRODUCTION

Whole slide images scanned from high resolution digital scanners provide rich information 

about morphological and functional characteristics of biological systems. As a result, such 

image modality provides insights on the underlying mechanisms of disease onset and 

progression. Although numerous image analysis methods have been proposed to analyze 

microscopy images [1, 2], they mainly focus on 2D biological structure analysis with 

substantial information loss. This presents challenges to such applications involving 3D 

modeling and analysis. In liver disease diagnosis, for instance, 3D structural changes in liver 

vessels and their 3D spatial relationships are essential for better understanding disease 
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pathological evolution and progression [3]. A large set of approaches on vessel structure 

analysis have been proposed, ranging from vessel segmentation [4], structure tracking [5], to 

3D vasculature visualization [6]. However, these methods are developed for radiology image 

analysis. Applying them to whole slide images directly is not feasible, as pathology images 

have much higher resolutions and phenotypic variations.

In this paper, we present an automated framework for 3D vessel reconstruction with whole 

slide images of liver tissue sections. Due to the overwhelming number of vessels and large 

variations in vessel shapes, it is challenging to associate vessel cross-sections from different 

image slides in a biologically meaningful way. To address this, we formulate a cost function 

based on shape descriptors, spatial similarity and trajectory smoothness by taking into 

account four vessel association scenarios. Optimal vessel associations are achieved when the 

aggregated cost function is minimized by an entropy-based Relaxed Integer Programming 

(eRIP) algorithm that is efficient to converge to the global optimal solution. The proposed 

3D vessel analysis framework is generic and can be readily applied to studies using other 

organ tissues.

2. METHODS

We illustrate in Figure 1 the overall working schema: image acquisition, registration, 

segmentation, vessel cross-section association, interpolation, and volumetric rendering. Our 

dataset includes 12 whole slide images of liver tissue sections [3] from the University of 

Leeds. Tissue sections are stained with dual chromogen Immunohistochemistry (IHC). Each 

whole-slide image has a typical resolution of 75k × 65k pixels, with the physical resolution 

2.508e-1µm per pixel at the base level. Inter-slide physical resolution is 50 µm. We analyze 

images down-sampled from the base level by 64:1.

2.1. Image registration

In order to accurately reconstruct and characterize vessels in 3D space, we first register 

sequential microscopy images into the same reference space. The registration process 

consists of rigid and non-rigid steps. For rigid registration, the scale, 2D rotation matrix, and 

translation vector are computed by phase correlation in a log polar coordinate system [3]. 

For non-rigid registration, the whole image is partitioned into a set of evenly spaced blocks 

that are aligned separately with a rigid block matching approach. A cubic B-Spline 

transformation [7] is estimated by a regularized least squared difference minimizing method 

[3] to approximate a set of point translations derived from the rigid block registration. In 

aggregate, non-rigid spatial changes at 8 × 8 = 64 knots are computed. This non-rigid 

transform is applied to the rigidly transformed image to compensate for the non-rigid 

residual. Given these 64 pairs of displacements {k(x(i),y(j)) = (kx(x(i),y(j)),ky(x(i),y(j))), i, j = 

1,2, …,8} at locations of {(x(i),y(j))}, the non-rigid displacement at a given location (p,q) 

can be computed as , where P = (p3 p2 

p 1)T, Q = (q3 q2 q 1)T; S is a predefined 4 × 4 constant matrix [7].
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For a given point (p,q), we construct two 4 × 4 matrices  and  where 

, such that x(m = i*) < p ≤ x(m = i* + 1),y(n = j*) < q ≤ y(n = j* + 1).

The final displacement at location (p,q) is the summation of rigid and non-rigid 

displacement. Our results show the median and maximum absolute displacements in x-y 

pairs are (10.40,9.58) and (139.58,103.66) in pixels. We demonstrate the registration 

mappings of 12 images with deformed grids in Figure 2.

2.2. Image segmentation

We next segment vessels in each registered image frame. First, we deconvolve each IHC 

stain component from the original color image. Color deconvolution [8] can be realized by 

Lambert-Beer’s law on the relationship between the intensity of light entering a specimen Ii 

and that through a specimen Io as: Io = Iie(−Ab) where A and b are the amount of stain and the 

absorption factor, respectively. The resulting Optical Density (OD) is defined as: OD = 

−log(Io/Ii). We define the un-mixer  as a 3 × 3 matrix where its three 

columns have unit length and represent the OD values associated with the red, green, and 

blue channel for Hematoxylin, DAB, and Sirius Red. Given C(p,q) is a 3 × 1 vector 

representing three stain amounts at pixel (p,q), the OD levels for red, green, and blue 

channel Y would be Y = MC. As a result, an orthogonal representation of the stains can be 

written as C = M−1Y. After stain components are deconvolved from RGB image, we start the 

segmentation process with fat and lumen detection. Hysteresis thresholding is applied to 

gray-scale image with shape and size constraints [9]. Next, vessels, nuclei, and bile ducts are 

identified with deconvolved DAB, Hematoxylin, and Sirius Red stain channels using a 

morphological reconstruction operation that locally “normalizes” image background [10]. 

Three deconvolved stains are presented in Figure 3 where brown, red, dark blue, light 

purple, and light yellow colors are used to represent vessels, bile ducts, nuclei, lumens, and 

fat in liver tissues, respectively. Additionally, the green vessel boundaries are superimposed 

on the original image.

2.3. Inter-frame vessel association

After blood vessel segmentation, inter-frame vessel grouping and filtering are performed. 

Vessel grouping is done by an image dilation operation [10] to make small vessel pieces 

cohesive to their source vessels. Candidates are then chosen among the grouped vessels by 

size for further analysis. We characterize the selected vessels by shape, spatial relationship 

and vessel trajectory smoothness. For our dataset, we consider four distinct vessel 

association cases: one-to-one (growing), one-to-two (bifurcating), one-to-none 

(disappearing) and none-to-one (appearing). The resulting cost functions are formulated as 

follows:

1. One-to-one (vessel extension to the next frame):
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2. One-to-two (vessel bifurcation):

3. One-to-none (vessel disappearance):

4. None-to-one (new vessel emergence):

where  is the i-th vessel object in image frame t; functions g(·), d (·), and b(·) denote 

similarity of vessel appearance by Fourier shape descriptors [12], distance of two vessel 

objects, and change in vessel trajectory orientations, respectively.  and  are 

constant costs penalizing vessel disappearance and emergence; and {λ1,λ2,λ3} s.t.λ1+λ2 + λ3 

=1 are constant weights to control the association smoothness.

Additionally, function g(·), d(·) and b(·) are defined as:

where  is a vector of Fourier shape descriptors derived from vessel vi at frame t; 

denotes the centroid of ; and  indicates the orientation of 

the vessel vector from  to . Note that all these functions take the exponential form to 

force the resulting optimally associated vessels to have similar shape, low distance offset, 

and small orientation change in vessel trajectory.

We assume there are m1 and m2 vessel objects in frame t and t + 1 respectively, and r 

possible associations between these two frames. We solve the frame-by-frame vessel 

association problem by a Relaxed Integer Programming (RIP) framework [11]. The optimal 

vessel associations can be achieved as follows:
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where c is a r × 1 vector with each entry representing the cost of one vessel object 

association; M is a r × (m1 + m2) binary matrix with Mij = 1 if and only if the i-th object 

association involves the j-th element from the union of m1 vessel objects in frame t and m2 

in frame t + 1; (MT x)i is the i-th element of (MTx) and the constraint (MTx)i ≤ 1 guarantees 

that each vessel object in a given frame can be selected at most once in the result; A is a 

matrix composed with the first m1 columns in M; 1 is a m1 × 1 vector with all entries being 

1s.This equality constraint guarantees that the sum of association probabilities for any given 

vessel object from frame t is one. The optimal solution x is a r × 1 binary vector where xi = 

1 indicates the i-th association is included in the optimal solution.

We propose an efficient entropy-based Relaxed Integer Programming (eRIP) mechanism to 

find the best vessel association with RIP as a building block (Algorithm 1). In eRIP, we first 

solve RIP for one possible solution xRIP. If the entropy of xRIP is sufficiently low, we take it 

as the final result. Otherwise, we switch to Integer Programming (IP) by replacing the 

constraint 0 ≤ xj ≤ 1 in RIP with xj ∈ {0,1}.

Algorithm 1

Description of entropy-based Relaxed Integer Programming (eRIP) for Vessel Association

1 Solve the Relaxed Integer Programming (RIP) problem;

2 Compute the entropy ex of the solution xRIP from RIP;

3 if ex ≤ e* then

  /* e* is a threshold (0 ≤ e* ≤ 1) */

4   x ← xRIP;

5 else

6   Replace the constraint of 0 ≤ xj ≤ 1 with xj ∈ {0,1};

7   Solve the corresponding Integer Programming (IP) problem for xIP with the updated constraint xj ∈ {0,1};

8   x ← xIP;

9 end

10 return x;

3. EXPERIMENTS AND RESULTS

For vessel association, eRIP is proposed to identify the optimal vessel association between 

adjacent frames. We focus on the largest 25 vessel candidates by size on each slide. Of these 

candidates, the smallest vessel size is 304.25 ± 104.34 in pixels. At this stage, our working 

pipeline primarily deals with macro-vessels. The parameters are empirically set as λ1 = 0.58, 
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λ2 = 0.33,  and  . The median and 

maximum absolute displacements for these associated vessels in x-y pairs are (91.41,67.63) 

and (700.59,586.30) in pixels. Given the limited number of whole slide images in our 

dataset (n = 12), we perform B-Spline interpolation between associated vessel objects and 

volumetrically render 3D vessel structure with mesh representation [13]. In Figure 4 (Left), 

we present 3D visualization result of nine primary vessels from our dataset, with a close-up 

view of a representative vessel (blue) illustrated in Figure 5 (Left).

We extensively evaluate our approach with human annotations quantitatively and 

qualitatively. Table 1 presents the validation results measured by Jaccard coefficient (Jac), 

precision (Pre), recall (Rec), F1 score (F1) and Hausdorff distance (Haus). The first column 

shows distinct vessels with their colors identically coded in Figure 4. The best performance 

assessed by each measure is in bold. Note Vessels in red and yellow are more regular in 

shape, leading to better agreement between the proposed method and human annotations. 3D 

vessel rendering results from human annotations in Figure 4 (Right) are used for qualitative 

assessments. By visual comparisons, 3D vessel structures in Figure 4 (Left) and (Right) are 

similar. Human annotated vessels are more regular and smooth in shape, whereas machine 

generated vessels tend to preserve more structural details. Overall, both quantitative 

measurements and qualitative comparisons suggest a satisfactory concordance between our 

method and human annotations.

In our tests, eRIP and IP produce identical vessel association results. We present the 

execution time for these two approaches in Figure 5 (Right). The green bars show eRIP 

execution time, with all values except the fourth less than 0.5 seconds and the majority 

around 0.3 seconds. By contrast, IP execution time is much longer, with majority around 1.5 

seconds (yellow bars). Note that eRIP takes more time than IP for the fourth frame-pair (red 

bar), as entropy of the solution from RIP is greater than the threshold e* = 0.3. In this case, 

eRIP automatically switches to IP method. Most xjs from RIP are 0s or 1s in our tests, 

resulting in less execution time by eRIP overall.

4. CONCLUSIONS

In this paper, we present a framework for 3D vessel structure analysis on whole slide images 

of liver tissue sections. To identify vessel associations, we formulate a cost function with 

vessel shape descriptors, spatial similarity and trajectory smoothness for four vessel 

association scenarios. We also propose an eRIP optimization method to efficiently associate 

vessel objects between adjacent slides. Both quantitative and qualitative evaluation results 

demonstrate the effectiveness of our 3D vessel reconstruction framework and its promise as 

a platform for further 3D vessel analysis.
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Fig. 1. 
The overall workflow of 3D vessel analysis with whole slide imaging data.
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Fig. 2. 
Registration results demonstrated by deformed grids.
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Fig. 3. 
Liver microscopy image segmentation. (Left): A color image deconvolved into three stain 

components; (Right): a close-up view of segmentation result.
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Fig. 4. 
3D vessels reconstructed by (Left) our method; and (Right) human annotations.
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Fig. 5. 
(Left) A 3D close-up view of a representative vessel object; (Right) Time cost comparison 

between eRIP and IP.
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Table 1

Evaluation of the segmentation results (mean, Relative Standard Deviation%). The first column shows vessel 

color in Figure 4.

Jac Pre Rec F1 Haus

R 0.91,64.73 0.94,36.72 0.94,36.81 0.94,36.69 2.81,3.25

Y 0.92,60.40 0.92,37.41 0.92,37.53 0.92,37.41 2.72,3.02

G 0.80,125.13 0.86,41.10 0.86,41.06 0.86,40.91 4.10,5.88

B 0.80,109.28 0.85,41.90 0.85,41.69 0.85,41.62 4.10,5.81

P 0.84,79.79 0.84,39.95 0.84,39.82 0.84,39.75 4.10,5.78

M 0.81,86.55 0.81,40.58 0.81,40.45 0.81,40.35 4.09,6.00

W 0.87,57.26 0.88,35.40 0.88,35.52 0.88,35.35 3.81,3.96

C 0.81,81.88 0.82,37.69 0.82,37.80 0.82,37.69 4.22,3.13

O 0.86,61.80 0.85,37.22 0.86,37.33 0.86,37.21 3.92,3.11
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