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Abstract
The impact of ZnO and TiO2 manufactured nanoparticles (MNPs) on soil bacterial communities for different exposure periods and

MNP doses was explored via data visualization techniques. Interrelationships between MNP treatments and responses of bacterial

taxa were illustrated by bipartite graphs, allowing fast identification of important soil bacterial taxa that are susceptible to MNPs.

Contribution biplots with subcompositional coherence property were generated via log-ratio analysis (LRA), which jointly display

the treatment distribution and the variance (contribution) of bacterial taxa. The LRA contribution biplots and nonmetric multi-

dimensional scaling (NMDS) of the dataset, along with hierarchical clustering, demonstrated that high doses of ZnO and TiO2

MNPs caused significant compositional changes in soil bacterial communities. The suitability of family level for MNP taxonomic

impact assessment was demonstrated by both the LRA biplots and simplified NMDSs with quantification provided by the distance

correlation between MNP impacts summarized at different taxonomic levels. The present study demonstrates that visual explo-

ration could potentially assist in knowledge discovery and interpretation of data on soil bacterial communities exposed to MNPs

and thus evaluate the potential for environmental impacts.
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Introduction
Manufactured nanoparticles (MNPs) are now routinely used in

numerous products and applications due to their novel func-

tional properties that arise at the nanoscale [1,2]. However, as

the applications of MNPs rapidly expand [2,3], there is an

increased public concern regarding the potential environmental

and health risks associated with MNPs [4-9] throughout their
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lifecycle [10-14]. MNPs may be released to the environment as

the result of a variety of human-related activities (air emissions

and/or direct discharge to surface water, etc.), wherein they can

move across environmental boundaries and are therefore likely

to be found in most media [13,14]. The presence of MNPs in

the environment could lead to exposures of ecological recep-

tors to MNPs via multiple pathways [13]. Although there is lack

of field monitoring data regarding environmental concentra-

tions for most MNPs, various simulations [14,15] of multi-

media environmental distributions of MNPs suggest that MNPs

tend to accumulate in soil and sediment [16,17]. Various studies

[18-22] have reported that MNPs could lead to adverse environ-

mental impacts. For example, Ag and Pt MNPs may interfere

with zebrafish embryo hatching [23]; ZnO MNPs may cause

compositional changes in soil bacterial communities [18,19];

quantum dots (QDs) were linked to DNA damage of both fresh-

water mussels and gills [24]; and carbon nanotubes have been

found to induce harmful effects to various organs (such as

aquatic animals, bacteria, and plants) [25].

MNPs in soil can cause compositional changes to soil bacterial

communities and thus may induce profound impacts on terres-

trial ecosystems [16,26]. Soil microbial communities, as one of

the most abundant and diverse groups of organisms on earth,

perform many critical ecosystem functions (e.g., element

cycling and waste decomposition) [27,28] and are important

biotic indicators of soil health [29]. Therefore, information

about MNP effects on soil microbial communities is critical for

environmental impact assessment [13]. Recently, efforts

[18,19,26,30,31] have been devoted to investigate the impacts

of various MNPs on soil bacterial communities, resulting in

large datasets of high dimensionality (e.g., over 105 soil DNA

sequences extracted for a treatment) [18,19]. Therefore, ad-

vanced data exploration/visualization approaches are required to

allow researchers to design subsequent confirmatory experi-

ments and/or perform detailed statistical analyses. Graphical

displays of multivariate (high-dimensional) ecological data can

also facilitate data comparison and interpretation (e.g.,

acquainting variables of important roles/contributions and iden-

tifying similarity/distribution among samples) [32]. In addition,

since bacterial community data are usually compositional (each

sample is profiled by a set of non-negative values that add up to

unity), it is important that their analyses are subcompositionally

coherent (i.e., the relationship between two components (vari-

ables) should be the same and not dependent on the presence/

absence of other components) [32].

Accordingly, in the present work, we report on a range of visual

exploration approaches suitable for analysis of high content

dataset for bacterial communities exposed to MNPs. Bipartite

graphs [33-35] were established to illustrate interrelationships

between MNPs and responses of bacterial taxa. Log-ratio

analysis [32,36,37] that has subcompositional coherence prop-

erty was utilized to generate biplots for joint displays of sample

(treatment) separation/distribution and the contribution of bacte-

rial taxa (i.e., the variances of bacterial taxa across all the treat-

ments). In addition, the impacts of different MNPs were

projected and explored via two-dimensional (2D) maps

constructed by hierarchical clustering [32,38,39] and multidi-

mensional scaling [32,40]. Also, a recently developed distance

correlation [41] was employed to quantify the consistency

between MNP impacts summarized at a range of taxonomic

levels.

Materials and Methods
Data for soil bacterial communities exposed
to MNPs
Visual exploration was conducted for a previously reported

dataset of MNP impacts on soil bacterial communities [18]. The

dataset contained 15 treatments (i.e., different MNP exposure

tests) including TiO2 and ZnO MNPs of primary size in the

range of about 15–20 nm and about 20–30 nm [42], respective-

ly. The soil bacteria were exposed to the above MNPs for 15

and 60 days at three different doses (0.5, 1.0, and 2.0 mg/g

(soil) for TiO2 MNPs and 0.05, 0.1, and 0.5 mg/g (soil) for ZnO

MNPs) as well as 0, 15, and 60 day controls (without MNPs)

[18]. Soil DNA sequences were recovered for the above

15 treatments (in quadruplicate). The recovered DNA sequences

were clustered into 31,621 bacterial operational taxonomic units

(OTUs) [18], with the number of DNA sequences clustered into

the same OTU counted to quantify the impact of the

15 treatments on soil bacterial communities [18]. The OTUs

were further summarized/assigned into a set of hierarchical taxa

(i.e., genus (446), family (135), order (53), class (41), and

phylum (19); the total number of taxa at each taxonomic level is

given in the parentheses) [18]. For each taxonomic level

(including OTU), the total counts of sequences assigned to a

specific taxon represent its abundance, while the relative abun-

dance of the taxon in the whole community was used as a

measure of the impacts of the 15 treatments [18].

Exploration workflow
Visual exploration of the above soil bacterial community data

[18] followed a workflow summarized in Figure 1. The analysis

was conducted to identify significant MNP-bacterial taxon

interrelationships and to assess the similarity of MNP impacts

on soil bacterial communities. For each taxonomic level (from

genus to phylum), bacterial taxa that are susceptible to MNP

treatments were identified according to a threshold of inter-

percentile range. Interrelationships between the MNP treat-

ments and the identified susceptible bacterial taxa were illus-

trated using bipartite graphs [33-35]. Biplots were generated by
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log-ratio analysis [32,36,37] (of subcompositional coherence

property) to jointly display the separation (distribution) of treat-

ments and the contribution (variance) of bacterial taxa. Multidi-

mensional scaling analysis [32,40] was conducted, along with

hierarchical clustering, in order to illustrate the main under-

lying structure of the soil bacterial community dataset. In addi-

tion, distance correlation coefficients [41] were calculated to

assess the consistency of MNP impacts summarized at different

taxonomic levels.

Figure 1: Workflow for visual data exploration of soil bacteria suscep-
tible to MNP treatments.

MNP-Bacteria Interrelationships
The interrelationships between MNPs and the responses of bac-

terial taxa were explored using bipartite graphs [33-35]. It is

noted that some bacterial taxa demonstrated only marginal vari-

ance across the 15 treatments (in quadruplicate), indicating their

insusceptibility to the treatments. It is noted that the presence of

treatment insusceptible bacterial taxa will complicate bipartite

graphs without adding useful information. Therefore, in the

present work, bacterial taxa which is in the 95th–5th percentile

range in terms of relative abundance across all the 15 treatments

(in quadruplicate) less than a prescribed threshold (e.g., 10/n,

where n denotes the total number of bacterial taxa at a given

taxonomic level) were discarded as being treatment insuscep-

tible. The relative abundances of the remaining bacterial taxa

that were considered as treatment susceptible were re-scaled to

sum up to unity for each treatment. Bipartite graphs were then

established based on the averaged relative abundance of bacteri-

al taxa for each quadruplicated treatment. In an established

bipartite graph, treatments and bacterial taxa were represented

as nodes on opposite sides of the graph, with linkages between

them indicating the bacterial taxa (and their relative abundance)

identified for each treatment or vice versa.

Log-ratio analysis
Log-ratio analysis (LRA) [32,36,37] was conducted for the bac-

terial taxa that were identified as treatment susceptible in order

to further explore and visualize the impact of TiO2 and ZnO

MNPs on the soil bacterial communities. In LRA, the relative

abundances of bacterial taxa (i.e., compositional variables) were

transformed to log-ratios to attain subcompositional coherence

[32,36,37]. For example, given a dataset of four compositional

variables (i.e., components) a, b, c, and d, a subcompositional

dataset of a’, b’, and c’ can be obtained by discarding

component d (note that the subcompositional dataset is closed

again, i.e., a’ = a / (a + b + c), b’ = b / (a + b + c), and

c’ = c / (a + b + c) so that a’ + b’ + c’ = 1). After log-transfor-

mation, the distance between the composition a’ and b’ is given

by:

(1)

where n denotes the total number of samples in the dataset. It is

noted that the log-ratio distance between two components

remains the same irrespective of the presence/absence of other

components (i.e., subcompositional coherence).

In LRA, once a compositional data matrix G (e.g., relative

abundance of bacterial taxa) is transformed into log-ratios, a

double centered matrix (i.e., row and column sums are all equal

to zero) is constructed as:

(2)

where I and 1 denotes identity matrix and vectors of ones of

appropriate size, respectively. In addition, the two vectors r and

c are the row and column sums of G relative to the grand total.

The above double centered matrix is further weighted as

follows:

(3)

where Dr and Dc are the diagonal matrices corresponding to

vectors r and c, respectively. Singular value decomposition

(SVD) [43] of the weighted matrix produces:

(4)
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From the above SVD, the following coordinate matrices can be

obtained:

(5)

Based on the coordinates provided by LRA, various biplots can

be constructed to represent treatments (samples) and bacterial

taxa (variables) together. For example, principal row and stan-

dard column coordinates can be displayed (using the first two

columns of the coordinate matrices) jointly as a row-principal

biplot, while the combination of standard row and principal

column coordinates yields a column-principal biplot. When

there are many components (e.g., bacterial taxa) a convenient

alternative is to derive a contribution biplot by combining stan-

dard row and contribution column coordinates or contribution

row and standard column coordinates [36]. It is noted that LRA

requires the compositional data matrix to be strictly positive.

However, a few zeros could remain in the compositional data

matrix even after the removal of the bacterial taxa that are iden-

tified as treatment insusceptible. In the present work, for a given

taxonomic level, the remaining vanishing relative abundances

of bacterial taxa was substituted by half of the smallest non-zero

value in the complete data (before the removal of treatment

insusceptible bacterial taxa) [36], followed by a rescaling step

to close the data again (i.e., the relative abundance sums to

unity for each treatment).

Multidimensional scaling analysis
Multidimensional scaling (MDS) analysis [32,40] was also

conducted for the soil bacterial community dataset with the

objective of representing the treatments in a two-dimensional

(2D) map while maintaining (as closely as possible) the inter-

treatment distance. Unlike LRA, MDS is not subcomposition-

ally coherent [32,36,37] and thus was conducted with the

complete dataset (i.e., no bacterial taxa removed) of each taxo-

nomic level (from OTU, genus, …, to phylum). For a given

taxonomic level, in order to conduct MDS, distances between

treatments need to be calculated first based on their relative

abundances. In the present work, Bray-Curtis dissimilarity

(BCD), as the most widely used dissimilarity metric in ecolog-

ical data analyses [32,44], was calculated to quantify the differ-

ence between the 15 treatments (in quadruplicate). For raw

OTU counts, BCD between two treatments [32] was calculated

by:

(6)

in which nik and njk represent the k-th OTU count for treatment i

and j, respectively. As the OTU counts were converted into

relative abundances (rik = nik/Σknik), the BCD reduces to the

regular L1 distance [32]:

(7)

The above L1 distance calculation resulted in a 60 × 60 matrix

for each taxonomic level since quadruplicates were used for

each of the 15 treatments.

Coordinates for plotting the treatments in 2D maps were

derived from the L1 distance matrices via MDS [32,40] (using

the isoMDS function of R package MASS [45]). Since the L1

distance is a non-Euclidean distance, the above MDS is referred

to as nonmetric MDS (NMDS) [32,40]. The quality of the

NMDSs was then quantified by the normalized sum of squared

approximation errors known as stress [32,40]. In the NMDS

established for each taxonomic level there were 60 points,

corresponding to the 15 treatments (in quadruplicate). In order

to avoid obscureness induced by treatment replicates, reduced

NMDSs were developed by using the average-link as the metric

to measure the distance between different treatments. The

average-link between treatment Si and Sj was calculated as:

(8)

The developed NMDs were converted into biplots by adding

vectors to represent bacterial taxa [32]. For a bacterial taxon,

the relevant vector was obtained via linear regression of the

relative abundance (quadruplicates averaged for the bacterial

taxon) on the NMDS coordinates. The vector was formed by the

regression coefficients of the NMDS coordinates which then

served to indicate the direction the greatest ascent in the regres-

sion plane (i.e., gradient vector) [32].

In addition, hierarchical clustering [32,38,39] was carried out

based on the L1 distance matrices to identify treatments that

induced similar impacts on the soil bacterial communities (i.e.,

the main underlying structure of the MNP soil bacterial commu-

nity data). Hierarchical clustering successively merges together

similar treatments or treatment groups until a single cluster is

attained [38,39], providing a dendrogram of hierarchical simi-

larity among the treatments. In the hierarchical clustering,

average-link (defined as  for two

clusters Ci and Cj) was used as inter-cluster distance measure

since it is robust to outliers [38,39]. An advantage of the hierar-
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chical clustering based on the L1 distance matrix is that L1 < 0.5

represents a meaningful threshold to cut a dendrogram (hierar-

chical tree) into suitable meta-clusters, whereas a threshold

above 0.5 will lead to clustering of treatments that are more

dissimilar than similar [32].

Consistency analysis of MNP impact
A recently developed distance correlation [41] was used to

assess the consistency of MNP impacts on soil bacterial

communities summarized in different taxonomic levels. It is

noted that each taxonomic level contained a range of taxa,

representing a set of vectors where the number of components

(i.e., dimensionality) could be much larger than the total treat-

ments (e.g., there are 446 bacterial taxa in genus level and

31,624 in OTU levels). Therefore, conventional correlation

analyses such as Pearson correlation [46] and canonical correla-

tion [47] are not applicable for analyzing the consistency

between different taxonomic levels. For the above problem, dis-

tance correlation is particularly suitable, which quantifies the

similarity in treatment distance for different taxonomic levels.

In distance correlation analysis [41], a new matrix A is first

constructed from the distance matrix a that was calculated at

taxonomic level TA as , in which , 

and  are the means of the i-th row, j-column, and the entire

matrix a, respectively. Similarly, another matrix B can be

derived from the distance matrix b calculated at taxonomic level

TB. The distance variances for taxonomic level TA and TB

along with their distance covariance can be defined as:

(9)

where n identifies the dimensionality of matrix A and B.

Accordingly, the distance correlation between taxonomic level

TA and TB is given by:

(10)

An important property of the above distance correlation is that it

becomes zero if and only if the random variables (e.g., different

taxonomic levels) are statistically independent [41].

Results and Discussion
Bipartite graphs between MNP treatments
and bacteria responses
For taxonomic levels from genus to phylum, soil bacterial taxa

for which the range of 95th–5th percentile with respect to rela-

tive abundance (across all the quadruplicated treatments) was

no less than 10/n (n denotes the total number of bacterial taxa at

a given taxonomic level) were identified as treatment suscep-

tible. Interrelationships between the 15 treatments and the

responses (quantified as relative abundance) of bacterial taxa

were illustrated as the bipartite graphs [33-35] established in

Figure 2, Figure 3 and Figure 4, as well as Figure 5, Figure 6

and Figure 7. In the bipartite graphs (Figures 2–7), the relative

abundances of the soil bacterial taxa identified as treatment

susceptible were re-closed (i.e., rescaled such that the relative

abundances sums up to unity for each treatment), and then aver-

aged for the quadruplicate of each treatment. It is also noted

that, for the genus level, the threshold of 95th–5th percentile

range was increased to 50/n (where n = 446 denotes the total

number of bacterial taxa at genus level) in order to avoid clut-

tering the bipartite graph.

In the bipartite graphs (Figures 2–7), soil bacterial taxa identi-

fied as treatment susceptible are denoted by the bars (nodes) on

the right side, with the bar height proportional to their total rela-

tive abundance over the 15 treatments. For example, Actinomy-

cetales is abundant in all the 15 treatments with an average rela-

tive abundance of 52% (Figure 2), while, for a specific treat-

ment with ZnO MNPs at the dose of 0.1 mg/g (soil) and expo-

sure time of 60 days, its relative abundance is 50% (Figure 4).

Each taxon bar is further split into sub-bars representing its

distribution (in terms of relative abundance) across the

15 treatments. The bars on the left side of the bipartite graphs

(Figures 2–7) identify the 15 treatments with the bar height

indicating the total relative abundance of the taxa identified for

the treatments. In the present work, such total relative abun-

dance was 100% for each treatment since the soil bacterial taxa

identified as treatment susceptible were re-closed.

The established bipartite graphs can be useful for inspecting soil

bacterial taxa that are susceptible to MNPs along with their rela-

tive abundance for each treatment. For example, the bipartite

graph (Figure 2) for order level shows that only 14 of the 53

bacterial taxa were identified as treatment susceptible, based on

the threshold of 95th–5th percentile range ≥ 10/n in relative

abundance. It is also noted that relative abundances of the above

order bacterial taxa vary significantly from 1% to 52%. More-

over, bipartite graphs (Figures 2–7) allow bidirectional explo-

ration of the soil bacterial community data for detailed informa-

tion about a specific treatment (i.e., bacterial taxon → treat-

ment) or a taxon at different taxonomic levels (i.e., treatment →
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Figure 2: Bipartite graph for MNP-bacteria interrelationships at order level. Soil bacteria taxa identified for the above graph are for the 95th–5th
percentile range ≥ 10/n (n denotes the total number of bacterial taxa at a given taxonomic level) in relative abundance. TRA denotes total relative
abundance. The treatments are labelled as “--.##d.##c”, where “--” identifies the treatment type (i.e., TiO2 MNP, ZnO MNP, or control), “##d” denotes
exposure time of ## day, and “##c” represents exposure dose of ##×10−2 mg/g (soil).

bacterial taxon). For example, in the direction of bacterial taxon

→ treatment, focusing the bipartite graph of order level on

Rhizobiales (Figure 3) revealed that, compared to the controls,

the exposure to high TiO2 (2.0 mg/g (soil)) or ZnO (0.5 mg/g

(soil)) MNP doses for 15 and 60 days reduced the relative abun-

dance of Rhizobiales by up to 32% and 35%, respectively. Such

relative abundance reductions of Rhizobiales indicate that the

two MNPs at high dose could stress the Rhizobiales. Studies

have reported that Rhizobiales is an important order taxon

containing N2-fixing bacteria that are able to symbiotically as-

sociate with legume roots to fix atmospheric N2 into ammoni-

um for plant growth [48]. One can also explore the effect of

treatment on bacterial taxa (treatment → bacterial taxon). For

example, the relative abundances of the 14 order taxa displayed

in Figure 4 illustrates treatment with ZnO MNPs at the dose of

0.1 mg/g (soil) and exposure time of 60 days, showing that

Actinomycetales and Caulobacterales are the bacterial taxa of

the highest (49.7%) and lowest (0.5%) relative abundance, res-

pectively. The above bidirectional exploration using bipartite

graphs can be conducted along the taxonomic hierarchy

(Figures 5–7) to identify informative MNP-bacteria interrela-

tionships at different levels (e.g., drill down to genus level or

roll up to phylum level).

Contribution biplots generated by log-ratio
analyses
Results of the log-ratio analysis (LRA) [32,36,37] for the soil

bacterial community dataset are illustrated in the contribution
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Figure 3: Bipartite graph for bacterial taxon → MNP treatment at order level. Soil bacteria taxa identified for the above graph are for the 95th–5th
percentile range ≥ 10/n (n denotes the total number of bacterial taxa at a given taxonomic level) in relative abundance. TRA denotes total relative
abundance. The treatments are labelled as in Figure 2.

biplots [32,36] given in Figure 8, which display treatments and

bacterial taxa jointly in the same maps. In a contribution biplot

(Figure 8), the treatments (samples) are displayed as scatter

points using the first two principal row coordinates (i.e., dim1

and dim2) provided by LRA, while the bacterial taxa contribu-

tions (variables) were added as vectors (from the origin) scaled

to fit into the same range of the principal row coordinates. The

scatter plots maintain the distance between different treatments

in the complete datasets to a reasonable approximation. The

vectors, on the other hand, are indicative of both the contribu-

tion (variance across all the treatments) of the bacterial taxa (via

vector length) and the correlations between them (via angles

between the vectors).

The above configuration of biplots (Figure 8) that display bacte-

rial taxa according to their contributions (variances) to the prin-

cipal row coordinates allows a visual separation of determinant

ones from the large number of bacterial taxa. The correlations

between bacterial taxa can be readily inferred from the biplots

(Figure 8) along with their contribution to treatment separation.

For example, a number of bacterial taxa of significant contribu-

tion (vectors of large length) to treatment separation are

outlined in each biplot (Figure 8). It is noted that, for order

level, Rhizobiales is a primary bacterial taxon that separates

TiO2 and ZnO MNPs from the controls at the high dose. The

biplot for order level (Figure 8d) demonstrate that the MNP

treatments at high dose had lower relative abundances of Rhizo-
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Figure 4: Bipartite graph for MNP treatment → bacterial taxon at order level. Soil bacteria taxa identified for the above graph are for the 95th–5th
percentile range ≥ 10/n (n denotes the total number of bacterial taxa at a given taxonomic level) in relative abundance. TRA denotes total relative
abundance. The treatments are labelled as in Figure 2.

biales compared to controls. The above observation (Figure 8d)

is consistent with the bipartite exploration result of order level

(Figure 3). Moreover, due to the subcompositional coherence

property of LRA [32,36,37], the removal of some bacterial taxa

will not change the correlations between the remaining bacteri-

al taxa. For example, the biplot for phylum level remains essen-

tially the same with (Figure 8f) or without (Figure 9) the

Gemmatimonadetes.

The biplots given in Figure 8 also provide useful information

regarding the main underlying structures in the soil bacterial

community dataset. For example, the biplots for OTU, genus,

and family levels (Figure 8a–c) demonstrate that there are two

groups of MNP treatments (corresponding primarily to 15 days

and 60 days exposure, respectively) separated from the controls.

However, as the taxonomic hierarchy increases to order, class,

and phylum levels (Figure 8d–f), the treatments are more

dispersed (less separable). This indicates that the above taxo-

nomic levels are too high to differentiate the impact of MNPs

on soil bacterial communities. In other words, family, as the

highest taxonomic level that maintains the main underlying

structure of the soil bacterial community data, could be a suit-

able taxonomic level for MNP impact assessment. Indeed, the

distance correlation (Figure 10a) calculated between log-trans-

formed relative abundance of bacterial taxa at different taxo-

nomic levels revealed that the six bacterial taxonomic levels can
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Figure 5: Bipartite graphs for MNP-bacteria interrelationships at genus levels. At genus level, soil bacteria taxa were identified according to an
increased threshold of 95th–5th percentile range ≥ 50/n (n denotes the total number of bacterial taxa at genus level) to avoid cluttering the bipartite
graph. TRA denotes total relative abundance. The treatments are labelled as in Figure 2.
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Figure 6: Bipartite graphs for MNP-bacteria interrelationships at family levels. Soil bacteria taxa identified for the above graph are for the 95th–5th
percentile range ≥ 10/n (n denotes the total number of bacterial taxa at a given taxonomic level) in relative abundance. TRA denotes total relative
abundance. The treatments are labelled as in Figure 2.
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Figure 7: Bipartite graphs for MNP-bacteria interrelationships at (a). class, and (b). phylum levels. Soil bacteria taxa identified for the above graph are
for the 95th–5th percentile range ≥ 10/n (n denotes the total number of bacterial taxa at a given taxonomic level) in relative abundance. TRA denotes
total relative abundance. The treatments are labelled as in Figure 2.
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Figure 8: Contribution biplots generated by log-ratio analyses for taxonomic levels from OTU to phylum. The total variance in the complete datasets
as accounted by the two principal row coordinates (dim1 and dim2) is provided in the appended parentheses. The contribution vectors (bacterial taxa)
were scaled to fit into the scatter plots of the treatments. For the treatments (TiO2 and ZnO MNPs and controls (Ctrl)), the exposure time is denoted
by “##d” with “L”, “M”, “H” corresponding to doses of 0.5, 1.0, 2.0 mg/g (soil) and 0.05, 0.1, and 0.5 mg/g (soil) for TiO2 and ZnO MNPs, respectively.
The contribution vectors are omitted for the plot of OTU level to avoid cluttering the plot.
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Figure 9: Contribution biplot for phylum level with Gemmatimon-
adetes removed. The treatments are labelled as in Figure 8.

Figure 10: Distance correlation between taxonomic levels from OTU to
phylum using (a) log-ratio (LR) distance and (b) L1 distance.

be divided into two groups of high consistency. The first group

contains phylum, class, and order levels with average distance

correlation of 0.96, while family, genus, and OTU formed a

second group of average distance correlation of 0.92. Compared

to the high intra-group consistencies, the average distance

correlation between the two groups dropped to 0.78. The above

distance correlation analysis again suggests that family could be

a suitable taxonomic level for MNP impact assessment as it is

the highest taxonomic level of good consistency to the OTU

level. The distance correlation analysis (Figure 10a) also indi-

cates that, in general, levels closer in the taxonomic hierarchy

are more consistent with each other. Finally, it is also noted

that, the two principal row coordinates (i.e., dim1 and dim2) of

the biplots for OTU, genus, and family levels (Figure 8a–c)

account for <80% of the total variance in the complete datasets

(which can be considered as the information preserved by the

biplots). The above explained variance increased to >80% in the

biplots for order, class, and phylum levels, indicating that the

inter-treatment distances were closely maintained in these

biplots [32].

Multidimensional scaling maps
The L1 distance matrix calculated for the 15 treatments (in

quadruplicate) at the OTU level is illustrated in Figure 11 as a

hierarchically clustered heatmap [32,38,39] established using

average-link [32,38,39]. According to the recommended

threshold of L1 < 0.5 [32], three meta-clusters were identified

from the heatmap with Cluster II and III mainly comprised of

MNPs exposed for 15 and 60 days and Cluster I formed by the

remainder (Figure 11). Characterization of Cluster II and III by

exposure time is consistent with the contribution biplot for OTU

level (Figure 8a) and previous studies [18,19] that also demon-

strated significant impact of exposure period on soil bacterial

communities. In addition, all high doses of TiO2 (2.0 mg/g

(soil)) and ZnO (0.5 mg/g (soil)) MNPs are found in Cluster II

and III, while all controls are found in Cluster I (Figure 8), indi-

cating that both MNPs altered soil bacterial communities at

relatively high dose.

Based on the distance matrix calculated for the OTU level, a 2D

map (Figure 12) was established using nonmetric multidimen-

sional scaling (NMDS) for direct presentation of inter-treat-

ment (in quadruplicate) distances. The NMDS established for

the OTU level (Figure 12) agrees well with the hierarchical

clustering result (Figure 11) with the treatments in Cluster II

and III located mainly in the first and fourth quadrants, while

the treatments contained in Cluster I are scattered in the second

and third quadrants. In addition, the NMDS (Figure 12) further

demonstrates that there is large variance within the replicates of

each treatment, which obscures the inter-treatment distance

relationships. The NMDS for OTU level (Figure 12) is also

similar to the contribution biplot (Figure 8a) generated for the

same level. Although the above NMDS (Figure 12) had a good

stress of 14.85% [49]; however, stress is usually an over-opti-

mistic measure of preserved/lost information [32] compared to

the percent of explained variance (which is not defined for

NMDS).

The obscureness caused by the quadruplicate of each treatment

is avoided in the NMDS using the average-link of L1 distance

between different treatments (Figure 13). Without the interfer-

ence of replicates, the simplified NMDS clearly shows that the

high dose of ZnO (0.5 mg/g (soil)) and TiO2 MNPs (2.0 mg/g
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Figure 11: Clusters of treatments obtained via hierarchical clustering based on their L1 distances calculated at OTU level. Three meta-clusters were
identified according to the recommended threshold of L1 < 0.5 [34]. The treatments are labelled as in Figure 2 with an additional “.r#” identifying
different replicates.

Figure 12: Nonmetric multidimensional scaling (NMDS) for OTU level
(stress = 14.85%). The treatments are labelled as in Figure 8.

(soil)) have significant impacts on soil bacterial communities at

the OTU level (Figure 13a) as they are distant from the controls.

Similar behavior of the ZnO and TiO2 MNPs is also observed in

the simplified NMDSs (Figure 13b,c) established for the genus

and family levels. However, as the taxonomic hierarchy

increased to order, class, and phylum levels, the treatments

(controls and MNPs) disperse and mix with each other on the

NMDSs (Figure 13d–f), signifying that the taxonomic levels are

too high to differentiate the impact of MNPs on soil bacterial

communities. The above observations with the NMDSs are

consistent with those from the contribution biplots (Figure 8)

generated by LRA. In addition, the distance correlations calcu-

lated between the six different taxonomic levels based on L1

distance (Figure 10b) are also similar to those obtained based on

the log-transformed relative abundance of bacterial taxa. In the

NMDSs, a number of bacterial taxa of significant gradients

(vectors of large length) are outlined (Figure 13), indicating that
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Figure 13: Simplified nonmetric multidimensional scaling (NMDS) for taxonomic levels from OTU to phylum. The gradient vectors of bacterial taxa
were scaled to fit into the scatter plots of the treatments. The gradient vectors are omitted for the plot of OTU level to avoid cluttering the plot.
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their relative abundance varies significantly across the treat-

ments [32]. However, these gradient vectors are not directly

related to the contributions of the corresponding bacterial taxa

to treatment separation and the NMDSs are not subcomposition-

ally coherent [32,36,37].

Conclusion
The impact of manufactured nanoparticles (MNPs) on soil bac-

terial communities was analyzed using a series of visual explo-

ration approaches. The analyzed soil bacterial community

dataset contained the counts/relative abundance of a set of hier-

archical taxa (at operational taxonomic unit (OTU), genus,

family, order, class, and phylum levels) measured for 15 soil

treatments with exposure to TiO2 (at dose of 0.5, 1.0, and

2.0 mg/g (soil)) and ZnO (at dose of 0.05, 0.1, and 0.5 mg/g

(soil)) MNPs for periods of 15 and 60 days or 0, 15, and

60 days without exposure to MNPs (i.e., controls). Bipartite

graphs were established to illustrate the inter-relationships

between MNPs and responses of bacterial taxa. The bipartite

graphs were shown to be useful for identifying, from numerous

MNP-bacteria interrelationships, those that reflect significant

change in relative abundance of bacterial taxa. Contribution

biplots of subcompositional coherence property were generated

by log-ratio analysis (LRA) [32,36,37], providing joint displays

for the separation (distribution) of treatments and the contribu-

tion (variance) of bacterial taxa. The LRA contribution biplots

and two-dimensional maps, constructed from the dataset using

hierarchical clustering and nonmetric multi-dimensional scaling

(NMDS), also demonstrated that high doses of ZnO and TiO2

MNPs caused significant compositional changes in soil bacteri-

al communities. The LRA contribution biplots and the simpli-

fied NMDSs, together with the distance correlation analysis for

the consistency between MNP impacts summarized at taxo-

nomic levels, suggest that family could be a suitable taxonomic

level for MNP impact assessment. Utilization of the above

visual data exploration approaches can be particularly useful if

deployed as a web-based platform for rapid assessment of the

impact of MNPs on bacterial soil communities, as well as other

ecological systems to guide the development of safe-by-design

nanomaterials.
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