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Spatial selectivity, as measured by functional magnetic
resonance imaging (fMRI) activity patterns that vary
consistently with the location of visual stimuli, has been
documented in many human brain regions, notably the
occipital visual cortex and the frontal and parietal
regions that are active during endogenous, goal-
directed attention. We hypothesized that spatial
selectivity also exists in regions that are active during
exogenous, stimulus-driven attention. To test this
hypothesis, we acquired fMRI data while subjects
maintained passive fixation. At jittered time intervals, a
briefly presented wedge-shaped array of rapidly
expanding circles appeared at one of three
contralateral or one of three ipsilateral locations.
Positive fMRI activations were identified in multiple

brain regions commonly associated with exogenous
attention, including the temporoparietal junction, the
inferior parietal lobule, and the inferior frontal sulcus.
These activations were not organized as a map across
the cortical surface. However, multivoxel pattern
analysis of the fMRI activity correctly classified every
pair of stimulus locations, demonstrating that patterns
of fMRI activity were correlated with spatial location.
These observations held for both contralateral and
ipsilateral stimulus pairs as well as for stimuli of
different textures (radial checkerboard) and shapes
(squares and rings). Permutation testing verified that
the obtained accuracies were not due to systematic
biases and demonstrated that the findings were
statistically significant.
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Introduction

Endogenous attention is attention that is goal
directed and voluntary. Many cortical regions impli-
cated in endogenous attention—including the intra-
parietal sulcus (IPS), frontal eye field, and inferior
frontal sulcus (IFS)—are spatially selective. That is, the
overall pattern of activity depends on a spatial factor
such as the location of covert attention (Hansen, Kay,
& Gallant, 2007; Silver & Kastner, 2009; Silver, Ress, &
Heeger, 2005) or the destination of a saccadic eye
movement (Hagler, Riecke, & Sereno, 2007; Kastner &
McCains, 2007; Konen & Kastner, 2008; Levy,
Schluppeck, Heeger, & Glimcher, 2007; Schluppeck,
Glimcher, & Heeger, 2005; Sereno, Pitzalis, & Marti-
nez, 2001; Silver & Kastner, 2009). In some cases,
spatial selectivity can be detected experimentally even
during passive fixation, although signals are typically
more reliable when subjects are performing spatial
attention tasks (Bressler & Silver, 2010).

These experimental demonstrations of spatial selec-
tivity imply that the underlying neural populations
have access to information about spatial location.
Hypothetically, spatial information might allow a
neural population to focus available computing re-
sources on stimuli in the relevant parts of visual space.
It is reasonable to assume that access to spatial
information would also be adaptive for regions
implicated in exogenous attention—attention that is
stimulus driven and involuntary. Therefore, it is
striking that spatial selectivity has not previously been
demonstrated in certain regions commonly associated
with exogenous attention, namely the temporoparietal
junction (TPJ) and inferior parietal lobule (IPL;
Arrington, Carr, Mayer, & Rao, 2000; Corbetta &
Shulman, 2002; Dodds, Morein-Zamir, & Robbins,
2011; Downar, Crawley, Mikulis, & Davis, 2000;
Macaluso, Frith, & Driver, 2002; Shulman et al., 2010).

We hypothesized that previous efforts to reveal
spatial selectivity in these regions failed not because
there is no spatial selectivity but rather because the
cortical locations selective for different parts of space
are overlapping and distributed (Cichy, Chen, &
Haynes, 2011; Hassabis et al., 2009). To detect the
hypothetical spatial selectivity, therefore, we used
multivoxel pattern analysis (MVPA) on functional
magnetic resonance imaging (fMRI) data acquired
while fixating subjects passively viewed brief, infre-
quently presented stimuli at various spatial locations.
Unlike traditional analysis methods, MVPA can detect
fMRI selectivity even when the functional anatomy is
overlapping and distributed (Carlson, Schrater, & He,
2003; Cichy et al., 2011; Cox & Savoy, 2003; Hanson,
Matsuka, & Haxby, 2004; Haxby et al., 2001; Haynes &
Rees, 2006; Kamitani & Tong, 2005; Kriegeskorte &

Bandettini, 2007; Liu, Hospadaruk, Zhu, & Gardner,
2011; Norman, Polyn, Detre, & Haxby, 2006).

The MVPA approach measures how accurately a
classifier algorithm can use fMRI data points from a
given region of interest (ROI) to predict which
experimental condition was present when the data
points were acquired (Mur, Bandettini, & Kriegeskorte,
2009). Accurate predictions imply that patterns of
activity across the ROI depend on experimental
condition. Our MVPA results indicated that activity in
TPJ, IFS, and IPL depended on the spatial locations of
visual stimuli. Permutation testing (Nichols & Holmes,
2001) and subsequent group-level significance testing
verified that these findings were statistically significant
and could not be ascribed to systematic biases in the
data.

Method

Twelve subjects (seven females, five males; ages 23–
54 years) were studied. They were right handed and had
normal color vision and normal or corrected-to-normal
visual acuity. All subjects gave informed consent
according to the guidelines set forth by the Laboratory
of Brain and Cognition. All procedures were approved
by the National Institute of Mental Health Institutional
Review Board.

In Experiment 1, stimuli (Figure 1) were one of six
adjacent wedge-shaped texture patterns presented on a
grayscale background. The texture was an array of
black dots whose radii increased rapidly to create a
‘‘looming’’ appearance of approaching the observer.
This dynamic texture had several virtues. First, briefly
presented, expanding circles are known to elicit
exogenous attention (Tse, 2010), similar to other types
of sudden motion (Jonides & Yantis, 1988). Second, the
texture’s presentation did not produce an afterimage.
Third, unlike the more traditional radial checkerboard
texture used in Experiment 2 (which reversed contrast
every 125 ms for a total presentation time of 500 ms),
the short frame duration permitted each expanding dot
stimulus presentation to be completed in only 132 ms.
This is not enough time to make a saccade. Thus, in
Experiment 1, even if a subject broke fixation when a
wedge appeared, the wedge would not have been
present when the eye movement was completed. Each
wedge subtended a 608 angle, was entirely within either
the left or the right visual field, and extended to
approximately 65 radial degrees from the central
fixation point. The wedges were presented one at a
time. Each of the six wedges was presented six times per
run, and five runs were collected. Each wedge
presentation consisted of four frames shown for 33 ms
each, with an average interval of 11.25 s between
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presentation onsets (SD ¼ 2.5 s; minimum¼ 7.5 s;
maximum¼ 15 s). All 12 subjects participated in
Experiment 1. In all experiments, the subjects main-
tained central fixation and passively viewed the
eccentrically presented stimuli.

In Experiment 2, stimuli (Figure 1) were one of six
adjacent wedge-shaped texture patterns presented on a
grayscale background. The spatial locations and
extents of the wedges were the same as those used in
Experiment 1. The texture was black-and-white re-
versing-contrast radial checkerboard. The wedges were
presented one at a time. Each of the six wedges was
presented six times per run, and four or five runs were
collected. Each wedge presentation consisted of four
frames shown for 125 ms each (8-Hz reversal), with an
average interval of 11.25 s between presentation onsets
(SD¼ 2.5 s; minimum¼ 7.5 s; maximum¼ 15 s). Ten of
the subjects participated in Experiment 2.

In Experiment 3, stimuli (Figure 1) were one of six
square-shaped texture patterns presented on a gray-
scale background. The texture was the same expanding
dot array used in Experiment 1. The square texture
patterns were identical to one another, varying only in
position via translation. The center of each square was
inside the space occupied by one of the Experiment 1
wedges, and no part of any square extended outside
that wedge’s space. The squares were presented one at a
time. Each of the six squares was presented six times
per run, and five runs were collected. Each square

presentation consisted of four frames shown for 33 ms
each, with an average interval of 11.25 s between
presentation onsets (SD ¼ 2.5 s; minimum¼ 7.5 s;
maximum¼ 15 s). Four of the subjects participated in
Experiment 3.

In Experiment 4, stimuli (Figure 1) were one of four
adjacent, concentric, ring-shaped texture patterns
presented on a grayscale background. The rings were of
uniform width. The set of all four rings covered the
same circular portion of the visual field that was
covered by the set of all six wedges used in Experiments
1 and 2. The texture was the same expanding dot array
used in Experiment 1. The rings were presented one at a
time. Each of the four rings was presented eight times
per run, and four runs were collected. Each ring
presentation consisted of four frames shown for 33 ms
each, with an average interval of 11.5 s between
presentation onsets (SD ¼ 2.8 s; minimum¼ 7.5 s;
maximum¼ 15 s). Nine of the subjects participated in
Experiment 4.

All magnetic resonance imaging (MRI) data were
collected on a GE (Fairfield, CT) 3-Tesla scanner with
a GE whole-head eight-channel coil. For fMRI we used
an echo-planar imaging sequence with a repetition time
of 2.5 s per shot (2.5 s per acquired brain volume), echo
time of 30 ms, field of view of 22 cm322 cm, resolution
of 643 64 voxels per slice (in-plane voxel size¼ 3.4 mm
3 3.4 mm), and slice thickness of 3.0 mm. Each fMRI
brain volume consisted of 38 axial slices. For anatom-
ical images we used a magnetization prepared rapid
acquisition gradient echo sequence with a field of view
of 24 cm 3 24 cm, 128 locations per slab, and slice
thickness of 1.2 mm. Preprocessing and subsequent
analysis of the MRI and fMRI data were performed
with the AFNI and Freesurfer software packages (Cox,
1996; Cox & Hyde, 1997; Dale et al., 1999; Fischl,
Sereno, & Dale, 1999; Fischl, Sereno, Tottell, & Dale,
1999). The anatomical images were used to create
virtual cortical surfaces for each subject. For each
experiment, the cortical surfaces of the subjects
participating in that experiment were averaged to create
a group cortical surface. The fMRI volumes for each
subject were registered to the anatomical volume used
to create that subject’s surface representation via the
bbregister function in Freesurfer. The fMRI data were
projected onto the surface representation via the
mri_vol2surf function in Freesurfer.

The ROIs for MVPA on the Experiment 1, 2, and 3
data were derived from the Experiment 4 data. The
ROIs for MVPA on the Experiment 4 data were
derived from the Experiment 1 data. The procedure for
ROI identification was the same in both cases. We used
a general linear model (GLM) to estimate each
subject’s fMRI responses to stimuli presented at each
spatial location and counted the number of spatial
locations evoking an fMRI response of p , 0.01

Figure 1. Stimuli. Left: Schematics showing the stimulus

locations. The lines pictured in the schematics did not appear in

the stimuli. Right: Example stimulus presentations. Numbers

indicate each frame’s duration and root mean square contrast.
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(uncorrected) at each voxel. We averaged these
numbers across subjects on the average cortical surface
and isolated clusters of contiguous nodes with positive
values. This process ensured that the ROIs represented
brain areas where stimuli evoked positive fMRI
activations, which presumably reflect overall engage-
ment of mechanisms responsive to the stimuli (Jimura
& Poldrack, 2012). If we had not ensured that every
ROI responded positively to at least one stimulus, it
might have been difficult to interpret the MVPA
results, which could conceivably have been driven
exclusively by negative activations. Such a scenario
could be problematic because negative activations often
arise in brain regions where the function is not relevant
to the experimental condition being tested. For
example, when task-relevant stimuli are visual, stimulus
presentation often results in negative activation of the
auditory cortex (Amedi et al., 2005, Haxby et al., 1994).
To create ROIs for each individual subject, the central
coordinates of each surviving cluster were first identi-
fied. Volumetric spherical masks with an 18-mm radius
(representing approximately 700 voxels) were created at
these central coordinates and converted to each
individual’s surface space. The use of fixed-radius
spherical masks ensured that the ROIs used for MVPA
were of a consistent size.

To obtain input features for the MVPA, we used a
GLM to estimate each subject’s fMRI responses to
every individual stimulus presentation. Each GLM
represented one experimental run, and each regressor in
a GLM represented the convolution of the timing of a
single stimulus presentation with a gamma function.
For example, the GLM for run 1 of Experiment 1
included 36 regressors (one for each individual wedge
presentation). The GLMs also included motion esti-
mates as regressors of no interest. In this article, the
term sample refers to one such estimate of a subject’s
fMRI response to an individual stimulus presentation.

To perform the MVPA, within each ROI the N
samples for each condition pair in an experiment—for
example, the N samples for presentations of squares
on the upper and lower right—were conceptually
represented as points in a D-dimensional space, where
D is the number of features (nodes in the ROI).
Support vector machines identified the hyperplane
that optimally divided the points into groups by
maximizing the margin between two groups (Vapnik,
1995); in this example, the groups would be upper
right versus lower right. The term training refers to
this process. During training, one sample was left out
(the leave one out cross-validation method). The sign
of the distance between the left-out sample and the
hyperplane was used to determine the class of the left-
out data. The prediction was compared with the real
left-out data to yield a single binary measurement:
Was the prediction correct or not? During cross-

validation, the whole procedure was repeated N times
such that every sample was left out once, thus
obtaining many binary measurements of prediction
accuracy. Within each subject the ratio of correct to
total predictions was calculated, producing an indi-
vidual percentage correct measurement. The individ-
ual percentage correct measurements were averaged
across subjects to obtain an overall percentage correct
for (in this example) upper right versus lower right
selectivity.

Results

ROI identification

The Experiment 1 and 4 data sets both produced
multiple clusters of activations to at least one spatial
location (see Method for the procedure for identifying
clusters and converting them to ROIs). In each case,
one very large cluster covered much of the occipital
lobe and extended into the IPS bilaterally and into the
TPJ in the right hemisphere. Spatial selectivity in the
activated occipital cortex and IPS has already been
well documented in retinotopic mapping studies
(Silver & Kastner, 2009), but spatial selectivity in the
right TPJ has not. Therefore, we used an anatomical
landmark—the fundus of the superior temporal
sulcus—to separate the large activated region into a
TPJ cluster and a non-TPJ cluster. Within the fundus,
all cortex anterior to the line running along the
deepest part of the sulcus was assigned to TPJ, and all
cortex posterior to the line was excluded from TPJ.
The non-TPJ cluster and all clusters of less than 1000
mm2 were discarded. Surviving clusters obtained from
the Experiment 4 data (Figure 2; Table 1) were located
in the right superior frontal gyrus (SFG), bilateral
IFS, right TPJ, left IPL, and left fusiform gyrus (FG).
Surviving clusters obtained from the Experiment 1
data (Figure 2; Table 2) were located in the right IFS,
right TPJ, and left IPL. Thus, both Experiment 1 and
Experiment 4 produced clusters in the right TPJ, right
IFS, and left IPL.

The process used to convert clusters to ROIs
ensured that the ROIs of the left FG, left IPL, right
TPJ, right IFS, left IFS, and right SFG were the same
size. We were concerned, however, that using the same
process in the occipital cortex and the parietal cortex
could result in ROIs representing arbitrarily varying
portions of retinotopic areas, which could complicate
the interpretation of the spatial selectivity measure-
ments. To simplify the presentation, therefore, we
derived a single large visual cortex (VC) ROI (Figure
2) from anatomical landmarks. The landmarks were
chosen to avoid any overlap with the other ROIs and
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to avoid omitting any part of the occipital or parietal
cortex where spatial selectivity was predicted based on
previous observations of retinotopy. The retinotopic
organization of many parts of the occipital and
parietal cortex is still somewhat controversial; for
simplicity, we chose to err on the side of inclusion. The
resulting VC ROI might have included some regions
that are not retinotopic or otherwise spatially selec-
tive, but this was not a great concern because
nonpredicting data points would tend to be ignored
during the classifier training. The VC ROI was
converted to each individual’s surface space for use
with data from all four experiments.

Multivoxel pattern analysis

A pattern classifier was trained to predict which
experimental condition was present when fMRI data
points were acquired. Results are typically presented in

percentage units that refer to the percentage of sample
class predictions that are correct. (The term samples
refers here to GLM estimates; for details, see Method.)
The accuracy percentages are computed using cross-
validation. High accuracy percentages imply that there
are robust patterns of activity across the ROI that
correlate with experimental condition.

Figures 3 through 6 present percentage correct
numbers for each experimental condition pair in each
experiment. For example, consider the data in Figure 3.
For each condition pair (e.g., a wedge presented on the
right at horizontal vs. a wedge presented on the lower
right), the percentage correct classification is shown by
the color of the corresponding matrix element. Chance
performance would be 50% (green). Predictions for all
condition pairs within all ROIs were substantially more
accurate than chance in all experiments.

The matrix format in Figures 3 through 6 allows the
viewer to identify systematic differences between
condition pairs. For example, consider the results
from the VC in the two wedge data sets (Experiments
1 and 2; Figures 3 and 4). The elements next to the
matrix diagonal tend to be orange, while the elements
away from the diagonal are red. The color difference
implies that the VC data enabled the classifier to
distinguish more easily between presentations of
nonadjacent wedges (away from the diagonal) than
adjacent wedges (next to the diagonal). This result is

Figure 2. (A) ROIs derived from Experiment 4 data and used for

MVPA analysis of data from Experiments 1 through 3. (B) ROIs

derived from Experiment 1 data and used for MVPA analysis of

data from Experiment 4. (C) VC ROI derived from anatomical

landmarks and used for MVPA analysis of data from Exper-

iments 1 through 4.

ROI name x y z

FG (LH) �43.7 �58.6 �11.7
IPL (LH) �37.0 �39.5 45.1

TPJ (RH) 46.5 �39.1 11.5

IFS (RH) 44.3 0.4 30.5

IFS (LH) �53.9 0.3 34.2

SFG (RH) 22.6 57.8 11.1

VC * * *

Table 1. Coordinates of ROIs used for MVPA analysis of
Experiment 1 through 3 data. LH¼ left hemisphere; RH¼ right
hemisphere. * The large VC ROI occupied most of the occipital
lobe and part of the parietal lobe (see text). Coordinates in this
and other tables are approximations of Talairach coordinates
derived from a nonlinear transform of MNI305 coordinates by
Freesurfer.

ROI name x y z

IPL (LH) �40.4 �39.3 39.3

TPJ (RH) 51.0 �38.6 10.2

IFS (RH) 45.3 3.7 42.7

VC * * *

Table 2. Coordinates of ROIs used for MVPA analysis of
Experiment 4 data. LH ¼ xx; RH ¼ xx. * The large VC ROI
occupied most of the occipital lobe and part of the parietal lobe
(see text).
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intuitive because representations of adjacent stimulus
locations are retinotopically adjacent in the VC (e.g.,
Tootell, Silverman, Switkes, & De Valois, 1982). The
absence of the same pattern in the squares data set
(Experiment 3; Figure 5) is also intuitive because the
squares, unlike the wedges, were not immediately
adjacent to one another (Figure 1). In the ring data set
(Experiment 4; Figure 6), the element in the upper
right corner of the matrix is red, and the element next
to the upper left corner of the matrix is light orange.
The color difference implies that the VC data enabled
the classifier to distinguish more easily between
presentations of the innermost versus outermost rings
(upper right corner) than between presentations of the
innermost versus second innermost ring (next to the
upper left corner). Like the wedges, the rings were
adjacent to one another (Figure 1), so the observed
pattern in the VC is expected. We looked for such
patterns in the percentage correct matrices from ROIs
outside the VC but did not observe them.

In all ROIs, the classifier was able to distinguish
every contralateral wedge or square from every
ipsilateral wedge or square, every contralateral wedge
or square from every other contralateral wedge or
square, and every ipsilateral wedge or square from
every other ipsilateral wedge or square. Such findings
are expected for the VC ROI, which included both
hemispheres, but they are striking for the other ROIs,
which represented data from one hemisphere only. The

findings imply that patterns of activity in the left FG,
left IPL, right TPJ, right IFS, left IFS, and right SFG
regions correlated with stimulus presentations in both
halves of space.

To investigate laterality for each ROI quantitatively,
we used the MVPA results from Experiments 1 through
3 to perform a one-tailed t test of the hypothesis that
accuracies were higher on average for predictions about
condition pairs representing two contralateral wedges
(or squares) compared with two ipsilateral wedges (or
squares). The t test had 74 df; and input consisted of
within-ROI accuracy percentages for every pair of
contralateral or ipsilateral stimuli in Experiments 1, 2,
and 3 for every ROI in every individual subject. (For
this laterality analysis, we divided VC into separate left-
and right-hemisphere ROIs.) A positive result would
indicate that the classifier distinguished more easily
between contralateral stimulus locations than between
ipsilateral stimulus locations. Results were positive in
the left VC (p , 0.01, t¼ 3.183), right VC (p ,
0.00001, t¼ 4.777), and left IPL (p , 0.001, t¼ 3.171)
and null in the remaining ROIs (Table 3; p . 0.5 in
each ROI).

Note that despite the VC prediction advantage for
contralateral versus contralateral over ipsilateral versus
ipsilateral stimulus pairs, the ipsilateral versus ipsilat-
eral predictions themselves were better than chance. In
fact, the mean ipsilateral versus ipsilateral prediction in
the VC exceeded 75%. This is a useful demonstration of

Figure 3. MVPA prediction accuracies, Experiment 1. Each matrix provides accuracy predictions derived from one ROI. The color of

each element in a matrix represents the mean percentage correct, averaged across subjects, of a particular condition pair’s MVPA

predictions. For example, the element in the top right corner of each matrix represents the percentage of correct classifications of

wedges presented on the right at horizontal versus on the lower right. Chance performance would be 50% (green). Predictions for all

condition pairs were substantially more accurate than chance.
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Figure 4. MVPA prediction accuracies, Experiment 2. Each matrix provides accuracy predictions derived from one ROI. The color of

each element in a matrix represents the mean percentage correct, averaged across subjects, of a particular condition pair’s MVPA

predictions. For example, the element in the top right corner of each matrix represents the percentage of correct classifications of

wedges presented on the right at horizontal versus on the lower right. Chance performance would be 50% (green). Predictions for all

condition pairs were substantially more accurate than chance.

Figure 5. MVPA prediction accuracies, Experiment 3. Each matrix provides accuracy predictions derived from one ROI. The color of

each element in a matrix represents the mean percentage correct, averaged across subjects, of a particular condition pair’s MVPA

predictions. For example, the element in the top right corner of each matrix represents the percentage of correct classifications of

squares presented on the right at horizontal versus on the lower right. Chance performance would be 50% (green). Predictions for all

condition pairs were substantially more accurate than chance.
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a point that is important to state clearly: The ability of
an ROI to differentiate between ipsilateral (or contra-
lateral) locations does not constitute evidence that
every cortical location inside these ROIs is selective for
different ipsilateral (or contralateral) locations. Rather,
the ipsilateral (or contralateral) predictions constitute
evidence that information about ipsilateral (or contra-
lateral) locations is present in the set of data points
across the ROI.

Figure 7 summarizes our main findings by present-
ing the accuracy percentages, averaged across subjects
and condition pairs, for all ROIs and experiments.
Chance performance would be 50%. In all cases the
accuracy percentages were substantially greater than
chance, demonstrating that patterns of activity in all
ROIs depended on the spatial location of the stimulus.
Because the four experiments used stimuli of different
textures (expanding dots and radial checkerboard)
and shapes (wedges, squares, and rings), the demon-
stration of spatial selectivity generalized across stim-
ulus classes.

Permutation testing and group-level significance
testing

We also performed nonparametric permutation
testing (Nichols & Holmes, 2001) and subsequent

group-level significance testing on the obtained accu-
racy percentages. In the permutation testing, for each
training sample pair a 50% random choice was made of
whether to switch the sample labels. The cross-
validation was redone with the randomly labeled
samples. This process was repeated 200 times to derive
a distribution of accuracy percentages expected to
occur by chance (i.e., the null distribution). The actual
observed percentage was compared with the derived
null distribution to yield a p value estimate for one
condition pair prediction in one ROI in one subject
during one experiment. We refer to this p value estimate
as an individual p value. In every ROI and experiment,
the most commonly obtained individual p value was
0.005. Note that a p value of 0.005 is not only low but is
actually the lowest possible output of a cross-validation
procedure with 200 repeats. Thus, very high levels of
significance, even at the individual subject level, were
the norm in our data set.

For group-level significance testing, the individual p
values were converted to z scores. Simple one-sample t
tests on the individual z scores, within experiment and
ROI and across subjects and condition pairs, provided
group p values. In every experiment and ROI, the
group p values were less than 10�18 (Figure 7,
asterisks), demonstrating that the findings were highly
significant. Since the t tests were performed on the
output of permutation testing with cross-validation, the

Figure 6. MVPA prediction accuracies, Experiment 4. Each matrix provides accuracy predictions derived from one ROI. The color of

each element in a matrix represents the mean percentage correct, averaged across subjects, of a particular condition pair’s MVPA

predictions. For example, the element in the top right corner of each matrix represents the percentage of correct classifications of

rings presented closest to versus farthest from the fixation point. Chance performance would be 50% (green). Predictions for all

condition pairs were substantially more accurate than chance.

ROI Experiment 1 Experiment 2 Experiments 1 through 3 combined

VC (RH) ,0.01, 2.579, 35 ,0.001, 3.896, 26 ,0.00001, 4.777, 74

VC (LH) 0.055, 1.640, 35 ,0.01, 2.959, 26 ,0.01, 3.183, 74

FG (LH) ns (.0.2), �0.950, 35 ns (.0.2), �1.274, 26 ns (.0.5), �1.611, 74
IPL (LH) ,0.05, 2.152, 35 ,0.01, 2.669, 26 ,0.01, 3.171, 74

TPJ (RH) ns (.0.2), �0.971, 35 ns (.0.2), �0.764, 26 ns (.0.5), �0.331, 74
IFS (RH) ns (.0.2), �2.113, 35 ns (.0.2), �1.824, 26 ns (.0.5), �3.170, 74
IFS (LH) ns (.0.2), �0.879, 35 ns (.0.2), �0.162, 26 ns (.0.5), �0.032, 74
SFG (RH) ns (.0.2), �0.732, 35 ns (.0.2), �1.057, 26 ns (.0.5), �1.236, 74

Table 3. Contralaterality. Results ( p, t, and df) of a one-tailed t test testing the hypothesis that the predictions of contralateral versus
contralateral stimuli were more accurate than the predictions of ipsilateral versus ipsilateral stimuli.
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very low group p values also ruled out systematic bias
in the data (e.g., bias caused by within-run trends in the
fMRI signal) as an explanation for the finding that the
observed prediction accuracies exceeded chance (Chen
et al., 2011).

The prediction accuracies obtained in the anatomi-
cally defined VC ROI were higher than those obtained
in the cluster-defined ROIs (Figures 3 through 6;
compare red–orange in the VC with light orange–
yellow elsewhere). This was not surprising because the
VC ROI included the cortex already known to be
organized retinotopically across the cortical surface.
However, the higher prediction accuracies could
conceivably have resulted from the fact that the VC
ROI was considerably larger than the other ROIs
(Figure 2) and so provided the MVPA with more
training data. To check this possibility, we randomly
sampled a subset of data points from the VC ROI such
that the downsampled VC ROI and the other ROIs
were the same size. Prediction accuracies in the
downsampled VC ROI were still higher than those
obtained in the cluster-defined ROIs (compare red–
orange in Figure 8 with light orange–yellow in Figures
3 through 6).

Nonadjacent versus adjacent stimulus pairs

By inspection, the color matrices in Figures 3
through 6 show that, in the VC, the accuracy for

decoding stimulus position from the pattern of blood-
oxygen-level dependent (BOLD) activity was higher
for nonadjacent stimuli than for adjacent stimuli. This
result was expected from the retinotopic organization
known to be present in the VC ROI. Conversely, this
tendency was not observed in the other ROIs. The
lack of a prediction advantage for nonadjacent over
adjacent stimulus pairs outside VC implies either that
selectivity for stimulus location in these regions is not
organized retinotopically across the cortical surface or
that any existing retinotopic organization is too coarse
to be detectable in our data set. Given the importance
of this observation, it seemed desirable to show it
quantitatively. Figure 9 plots the difference in mean
prediction accuracies between nonadjacent versus
adjacent stimulus pairs across all four experiments;
stars indicate a difference significantly ( p , 0.05)
greater than zero, as measured by a one-tailed t test
across subjects and stimulus pairs. In the VC, but not
in the remaining ROIs, nonadjacent stimulus pairs
predicted better than adjacent stimulus pairs in
Experiments 1, 2, and 4. (Note that in Experiment 3
none of the stimuli were literally adjacent, so a
reduced prediction advantage in the VC for Experi-
ment 3 relative to Experiment 1 is expected.) These
results confirm the apparent absence of retinotopic
organization for stimulus selectivity in the ROIs
outside VC.

To further document the apparent lack of topogra-
phy in the ROIs outside the VC, we converted each

Figure 7. Mean MVPA prediction accuracies, all experiments. (A) Accuracies of predictions derived from the data in Experiments 1

through 3 within the ROIs derived from the Experiment 4 data. The height of each bar represents the mean percentage correct,

averaged across subjects and condition pairs, of the MVPA predictions; error bars represent 61 SD across condition pairs. Chance

performance would be 50%. In all cases prediction accuracy was significantly greater than chance. Asterisks indicate p , 10�18; p

values were obtained by performing a one-sample t test on the results of the within-subject, within-condition-pair permutation tests.

(B) Accuracies of predictions derived from the data in Experiment 4 within the ROIs derived from the Experiment 1 data.
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voxel’s GLM activations to the various Experiment 1

(wedge) and Experiment 4 (ring) stimuli to estimates of

preferred angle and eccentricity using the polar average

for the angle and the center of mass for the eccentricity

estimates. When these estimates were projected onto

the cortical surface the familiar topographic maps in

the early VC were apparent, but we could not detect

topographic organization in the other ROIs. Surface

Figure 8. MVPA prediction accuracies in the downsampled VC ROI. A subset of data points was randomly sampled from the VC ROI

such that the downsampled VC ROI and the other ROIs were the same size. In this figure, each matrix provides accuracy predictions

derived from the downsampled VC ROI in one experiment. The color of each element in a matrix represents the mean percentage

correct, averaged across subjects, of a particular condition pair’s MVPA predictions. For example, the element in the top right corner

of the Experiment 1 matrix represents the percentage of correct classifications of wedges presented on the right at horizontal versus

on the lower right. Chance performance would be 50% (green). Predictions for all condition pairs were substantially more accurate

than chance.

Figure 9. Mean MVPA prediction accuracy differences for nonadjacent versus adjacent stimulus pairs, all experiments. Stars indicate a

difference significantly ( p , 0.05) greater than zero as measured by a one-tailed t test across subjects and stimulus pairs. In the VC,

but not in the remaining ROIs, nonadjacent stimulus pairs predicted better than adjacent stimulus pairs in Experiments 1, 2, and 4.

(Note that in Experiment 3, none of the stimuli were literally adjacent, so a reduced prediction advantage in the VC for Experiment 3

relative to Experiment 1 is expected.)
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maps of preferred angle and eccentricity estimates from
an example subject are shown in Figure 10. One caveat
here is that in order to obtain whole-brain coverage in
this study, we chose to use a sampling resolution
coarser than what is typically used in retinotopic
mapping studies. It might be interesting to repeat these
experiments at increased spatial resolution in hopes of
detecting existing topographic organization, if any.

Responses to squares at the ipsilateral
horizontal meridian

As mentioned earlier, the mean ipsilateral versus
ipsilateral predictions were better than chance. Con-
ceivably, these results could have occurred given a
scenario that would not reflect what is generally meant
by ipsilateral selectivity. Namely, stimuli at the
ipsilateral horizontal meridian might have elicited no or
only negative activations, while ipsilateral stimuli near
the vertical meridian might have elicited positive
responses in neurons with large receptive fields centered
contralaterally but extending across the vertical me-
ridian. Therefore, we asked whether there actually were
positive responses (as assessed by a GLM) to ipsilateral
stimuli at the horizontal meridian. Simply averaging
the GLM responses across the ROI to test whether the
mean is positive would not be the best way to answer

this question because true positive responses in some
voxels could be washed out by negative responses in
other voxels. Simply demonstrating that there are some
positive GLM responses would not be the best way
either because some positive responses could occur by
chance. To circumvent these problems, we introduced
an assumption—that there were true positive GLM
responses to contralateral stimuli at the horizontal
meridian—and tested the hypothesis that positive
contralateral horizontal responses were greater than
positive ipsilateral horizontal responses. A null result
here would imply that there are positive GLM
responses to stimuli at the ipsilateral horizontal
meridian. To avoid selection bias in this analysis,
responses from voxels with a positive response to
contralateral squares were averaged for the contralat-
eral mean, and responses from voxels with a positive
response to ipsilateral squares were averaged for the
ipsilateral mean. The two voxel sets were partially but
not entirely overlapping. For this analysis, we used
Experiment 3 data because no part of the square stimuli
approached the vertical meridian. The activations used
in the calculations were the outputs of a GLM in which
regressors represented model responses to the entire
series of stimulus presentations at each location. The
results are shown in Figure 11. The only regions with a
contralateral preference were the VC and the FG.

Figure 10. Voxelwise preferred angle and eccentricity estimates in an example subject. Preferred angles were calculated using the

polar mean on the GLM activations from Experiment 1; preferred eccentricities were calculated using the center of mass on the GLM

activations from Experiment 4. Despite the coarse spatial resolution used in our whole-brain design, topographic organization was

evident in the early VC. We did not observe topographic organization in the other ROIs.
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Discussion

This study produced four main findings. First, visual
stimuli, presented briefly and infrequently to fixating
subjects, elicited fMRI activations in brain regions
previously implicated in exogenous attention, namely
the TPJ, IPL, and IFS. Second, MVPA showed that a
classifier trained on data from these regions could
distinguish between data points acquired when visual
stimuli were presented in different parts of visual space.
This finding demonstrates that the patterns of fMRI
activity in the ROIs depended on the spatial location of
the stimuli. Third, similar results were obtained using
stimuli of different textures (expanding dots and radial
checkerboard) and shapes (wedges, squares, and rings).
These findings demonstrate that the spatial selectivity
generalized across stimulus classes. Last, in the VC but

not in the remaining ROIs, prediction accuracies were
higher for spatially nonadjacent stimulus pairs than for
adjacent stimulus pairs. The finding in the VC reflects
the retinotopic organization known to exist there. The
null results elsewhere indicate either that stimulus
selectivity in these ROIs, as measured by our paradigm,
is not organized retinotopically or that any existing
organization is too coarse to be detectable by this
method.

In the ROIs outside the VC, spatially selective voxels
did not appear to be organized in retinotopic maps
across the cortical surface. Instead, the sets of voxels
active when stimuli appeared at different locations were
distributed and overlapping, as in the spatial coding
that has been described in the hippocampus and
entorhinal cortex of the rat (O’Keefe, 2006). The
distributed organization of spatial selectivity in the
exogenous attention system, as measured with fMRI, is
in contrast to the coarse retinotopy seen in the
endogenous attention system (Silver & Kastner, 2009)
and the relatively fine retinotopy seen in the early visual
areas (DeYoe, Bandettini, Neitz, Miller, & Winans,
1994).

Among the regions where we documented selectivity
for both contralateral and ipsilateral locations, orga-
nized in a distributed rather than topographic manner
across the cortex, was the IFS. Our findings in the IFS
differed from observations seen in previous studies,
which documented contralateral selectivity organized
as a rough topographic map across the region (Hagler
& Sereno, 2006; Kastner & McCains, 2007). Note,
however, that the stimuli and tasks in the earlier and
current studies were very different. The earlier studies
asked subjects to perform memory-guided saccades and
working memory tasks using stimuli that were perfectly
periodic and thus completely predictable. The current
study used passive viewing of infrequently presented,
unpredictable stimuli. Thus, the earlier studies implic-
itly encouraged the subjects to make use of goal-
directed, endogenous attention, while the current study
should have captured stimulus-driven, exogenous
attention due to the stimulus unpredictability and rapid
onset. We believe that this basic difference in experi-
mental design is the likeliest explanation for the
difference in results. We should note that the stimuli
also evoked basic visual responses, and the stimuli
conceivably may have caused subjects to endogenously
or overtly attend to the locations of the stimuli given
that the subjects were not performing a task at fixation.
However, if endogenous attention or eye movements
were consistently elicited by the stimuli, we would
expect to see activations in brain regions implicated in
endogenous attention and eye movements, namely the
frontal eye field and (in humans) the medial bank of the
IPS (Schluppeck et al., 2005; Sereno et al., 2001; Silver
et al., 2005). Since we did not observe activations in

Figure 11. Activation levels in response to ipsilateral horizontal

stimuli in Experiment 3. The height of each bar indicates the

mean activity level of fMRI responses to contralateral and

ipsilateral squares at the horizontal meridian. The means were

calculated within ROI across subjects on positive fMRI

activations only. That is, voxels with a positive response to

contralateral squares were averaged for the contralateral mean,

and voxels with a positive response to ipsilateral squares were

averaged for the ipsilateral mean. Stars indicate a contralateral

versus ipsilateral difference significantly ( p , 0.05) greater than

zero as measured by a one-tailed t test across voxels in all

subjects. The activations used in the calculations were the

outputs of a GLM in which regressors represented model

responses to the entire series of stimulus presentations at each

location. A contralateral preference was evident in the VC and

FG only. In the remaining ROIs, positive activations to the

ipsilateral horizontal meridian were roughly equal in magnitude

to positive activations to the contralateral horizontal meridian.

Journal of Vision (2015) 15(13):15, 1–15 Hansen et al. 12



these brain regions, we conclude that it is unlikely that
our observations elsewhere in the brain were driven by
uncontrolled endogenous attention or eye movements.

The activation of the IFS by both the prior
paradigms and our paradigm is consistent with the idea
that this region acts as a transfer point between the
stimulus-driven and goal-directed attention networks,
participating in either network according to task
demands (Serences et al., 2005). We suggest that
anatomical connectivity between the IFS and the goal-
directed attention network is organized differently from
that between the IFS and the stimulus-driven attention
network, producing differences in measured spatial
selectivity in the IFS when one network or the other is
preferentially activated.

The ROIs emerging from this study, like those in
other studies manipulating exogenous attention, over-
lap substantially with regions where lesions often lead
to persistent and severe spatial neglect—in particular,
the right TPJ, IFS, and IPL (Behrmann & Tipper, 1999;
Corbetta & Shulman, 2011; Karnath, 1997). Therefore,
we were interested in evaluating our findings in the light
of the spatial neglect literature. Spatial neglect is the
failure to report, respond, or orient to novel or
meaningful stimuli presented to the side of space
opposite a brain lesion when this failure cannot be
attributed to either elemental sensory or motor defects
(Heilman, 1979; Heilman, Watson, & Valenstein,
2002). Typically, persistent and severe neglect is caused
by damage to the right hemisphere. One neuroana-
tomical model of spatial neglect (Kinsbourne, 1977,
1993) proposes that the disorder arises because spatial
representation in the damaged brain regions is contra-
lateral in the left hemisphere and both contralateral
and ipsilateral in the right hemisphere. In contrast to
this model, we did not find that spatial selectivity in the
left-hemisphere ROIs was limited to contralateral
space. In fact, our classifier successfully distinguished
every ipsilateral wedge or square from every other
ipsilateral wedge or square in every ROI outside the
VC, including (in the left hemisphere) the FG, IPL, and
IFS. What did appear to be lateralized, however, was
the overall level of activity in the TPJ: The right TPJ
emerged as an ROI, but the left TPJ did not. This
observation is consistent with several previous obser-
vations of right-hemisphere laterality in exogenous
attention (Arrington et al., 2000; Downar et al., 2000;
Shulman et al., 2010). Thus, our findings support the
argument of Corbetta and Shulman (2011) that
hemispheric asymmetry occurs in spatial neglect not
because of an asymmetry in spatial attention per se but
because the exogenous attention system is right
lateralized and interconnected with a bilateral endog-
enous attention system that represents space contral-
aterally.

Keywords: exogenous, stimulus driven, involuntary,
attention, spatial
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