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Abstract

Viremia kinetics directly influence the clinical course and transmission dynamics of DENV, but 

many aspects of viral dynamics remain unknown. Non-human primates (NHP) have been used as 

a model system for DENV infection for decades. Here, we identify papers with experimentally-

infected NHP and estimate the time to- and duration of viremia as well as estimate associations 

between these and serotype, inoculating dose, viremia assay, and species of NHP. We estimate the 

time to viremia in rhesus macaques to range from 2.63 to 3.32 days for DENV-2 and -1 and the 

duration to range from 3.13 to 5.13 days for DENV-4 and -2. We find no differences between non-

human primates for time to viremia or duration, and a significant negative relationship between 

inoculating dose and duration of viremia. These results aide in understanding the transmission 

dynamics of sylvatic DENV non-human primates, an issue of growing importance as dengue 

vaccines become available.
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Introduction

Knowledge of the kinetics of dengue fever virus (DENV) within primate and non-primate 

hosts is key to understanding transmission dynamics and identifying populations at risk for 

infection [1]. Due to logistical and ethical obstacles, few studies have measured wildtype 

DENV viremia in humans over the course of an infection. Thus, non-human primates have 
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been the major model system for comparison of viral dynamics between DENV serotypes 

and strains as well as evaluation of dengue therapeutics. While non-human primates differ 

from humans in pathological responses to DENV infection, estimates of duration of viremia 

that exist appear to be similar [2, 3], albeit with lower viral replication and limitation of 

virus to a subset of those tissues infected in humans [4].

In addition to serving as a potential model for human diseases, insight in to the replication of 

DENV in non-human primates is important in its own right. Four serotypes of sylvatic 

DENV have been shown to circulate between non-human primates and arboreal Aedes 

mosquitoes in Southeast Asia [5] and sylvatic DENV serotype 2 is maintained in West 

Africa [6]. These sylvatic viruses are ancestral to the four serotypes of DENV that are 

currently transmitted between humans by domestic and peridomestic Aedes [7]. Populations 

living in areas surrounding sylvatic hotspots of DENV transmission are at risk of infection 

[8, 9] from a transmission process that is poorly understood [10]. Importantly, it has recently 

been discovered that sylvatic DENV infection in humans can produce the most severe 

manifestation of dengue disease – dengue hemorrhagic fever [8, 9]. In the light of recent 

advances in DENV vaccines [11, 12], sylvatic reservoirs may play a key role in maintaining 

transmission over long time scales and may continue to expose human populations to new, 

genetically distinct viruses after human endemic transmission is controlled [7].

Isolations of sylvatic DENV have occurred at roughly eight year intervals in Senegal over 

the past 50 years [6]. The key determinants of cycle length are largely unknown. As the 

natural history of a pathogen has direct influence on transmission dynamics [13] knowledge 

of the time to detectable viremia and the length of viremia in non-human primates will be 

useful in ecological models of transmission [14] and may generate hypotheses for the 

observed serotype-specific transmission patterns [15] and clinical manifestations [16, 17] 

observed across DENV serotypes.

It is the goal of the present study to examine the kinetics of DENV viremia in non-human 

primates through systematic review and individual pooled analysis. We conducted a 

literature review to identify experimental DENV infections of DENV-naïve monkeys. We 

find associations between time from inoculation to viremia and duration of viremia and 

several covariates of interest using mixed effects regression models. We report robust 

estimates of the time to detectable viremia and the duration of viremia using recently 

developed methods for handling doubly-interval censored data [18].

Methods

Systematic Review

We searched PubMed, Web of Science and Google scholar for articles containing the terms 

“dengue primate viremia infection”, “dengue viremia primates”, “dengue viremia monkey”, 

“dengue vaccine primates”, and “dengue infection primates”. We narrowed our focus to 

primary infections where details on the infecting virus were reported. Our inclusion criteria 

were:
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1. The non-human primate must be DENV naïve at the time of experimental infection 

(including free of exposure to experimental vaccines),

2. The challenge serotype (DENV-1–4) and the specific virus strain (with passage 

number, if applicable) must be clearly identified and the dosage of virus stated (in 

plaque forming units [PFU]), and

3. The presence of viremia must be reported on a day-by-day basis, at at least two 

time points, either in a graph or table, and not in a summary statistic. This does not 

preclude monkeys bled sporadically (e.g., every other day).

Additional (unpublished) studies were identified through expert consultation. Abstracts were 

doubly reviewed (BMA, DATC).

Time to Event Data

A survival analytic approach was used to determine time-to-event (viremia or clearance). If 

more than one method for assessing viremia was used, the method with the higher sensitivity 

was reported (though multiple methods were compared). Data were classified as fully 

observed, single- or doubly-interval censored. Observations were fully observed if the non-

human primates were bled and found not to be viremic before and after being found viremic. 

If non-human primates were found to be viremic on the first or last sample taken, then the 

data point was assumed single-interval censored. If non-human primates were viremic on 

both the first and last sample, then the data point was assumed doubly-interval censored 

imposing left and right boundaries of inoculation and 16 days (estimates are insensitive to 

this number, see Supplementary Material). Observations missing or negative surrounded by 

two viremic samples were assumed to be viremic.

Methods for analyzing doubly-interval censored data have been developed previously [18]. 

We estimate the time to detectable viremia and the duration of viremia, both of which we 

assume are log-normally distributed (see Supplementary Material). We stratify by DENV 

serotype and compute bootstrap confidence intervals.

Associations with Time to Viremia and Duration

To explore the potential association between length of time to detectable viremia and 

duration of viremia, linear and random effects models were fit with time to viremia or 

duration as the outcome, a random effect for study and serotype, inoculating dose, viremia 

assay, and species of non-human primate as potential covariates of interest [19]. As these 

models do not directly take into account the effects of censoring, we test for differences 

censoring between covariates. Linear and mixed effects models are compared using the 

Akaike information criterion (AIC) [20].

Results

Literature

Literature searches returned 1092 unique papers (Figure 1). Of these, 117 (11%) described 

dengue infection in non-human primates, 226 (21%) described observational/naturally 

occurring dengue infection in humans and not non-human primates, 91 (8%) were about 
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another disease, 125 (11%) had no abstracts, and 533 (49%) described experimental studies 

involving humans and animal models (not involving NHP).

Fifty one published studies and three unpublished studies met the criteria for inclusion and 

were included in the analysis (Table 1). Thirty six included rhesus macaque (Macaca 

mulatta), 7 cynomolgus macaques (Macaca fascicularis), 4 each with green monkeys 

(Chlorocebus aethiops sabaeus) and owl monkeys (Aotus nancymaae), 3 chimpanzee (Pan 

troglodytes), 2 each with spider monkey (Ateles geoffroyi) and pig-tailed macaques (Macaca 

nemestrina), and 1 each with common marmoset (Callithrix jacchus), patas (Erythrocebus 

patas), squirrel monkey (Saimiri sciureus), and White Handed Gibbon (Hylobates lar). The 

bulk of the studies were vaccine trials/challenge studies (34/51, 67%) the rest were 

experimental challenge trials (18/51 35%). 59 unique DENV genotypes were represented. 72 

(10%) non-human primates were infected with DENV-4 4328S, 43 (6.1%) with DENV-2 

S16803, and 40 (5.6%) with DENV-1 WP74 (see Supplementary Material). Table 2 reports 

numbers of non-human primates by DENV serotype.

Associations with Time to Viremia and Duration

Mixed effects models were fit with a random effect for study and were universally preferred 

over linear fixed effects models by AIC (see Supplementary Material). Intraclass correlation 

coefficients indicated strong heterogeneity by study (0.48, 95% CI: 0.37, 0.60) which could 

be due to differences among laboratories and assays employed. Mixed effects models 

assume non-human primates are exchangeable within studies, and account for heterogeneity 

between studies. Mixed effects models employed here do not take into account censoring, 

however only DENV-2 (p = 0.001) and common marmoset samples (p = 0.03) were 

associated with more censoring.

Tables 3 and 4 report the associations for serotype, log10 inoculating dose, assay, and 

species of non-human primate with length of time to detectable viremia and duration of 

viremia in mixed effects models. Both univariate (with only the covariate of interest 

included) and multivariate (with all covariates included) models were fit. The multivariate 

models accounting for study heterogeneity indicated the time to detectable viremia for 

DENV-1 was statistically significantly longer than for DENV-4 and DENV-2 and -3 were 

not significantly different from DENV-4. Time to detectable viremia was statistically 

significantly longer in patas monkeys and marginally significantly shorter in spider monkeys 

than rhesus macaques; and time to detectable viremia was significantly shorter in those non-

human primates assayed by Immunofluorescence assays (IFA). Increasing log dose of 

inoculum was statistically significantly associated with shorter times to detectable viremias 

(Table 3). Large study heterogeneity was present, with the variance of the random intercept 

equal to 1 day.

Duration of viremia was statistically significantly longer for DENV-1 and -2 as compared to 

DENV-4 after accounting for study heterogeneity. Duration for DENV-3 was not 

significantly different from DENV-4 (Table 4). Adjusting for study, species, assay, and dose 

increased the difference in durations between DENV-1 and -2 and DENV-4. Changing the 

reference serotype to DENV-2 shows DENV-1, -3, and -4 to have statistically significantly 

shorter durations of viremia than DENV-2 (see Supplementary Material). Significantly 
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longer durations of viremia were observed when assayed by RT-PCR and IFA compared to 

plaque-forming assays, adjusting for study, species, assay, and dose. No significant 

differences in viremia duration were observed across species, besides a significant 

shortening in patas monkeys (however, only 3 patas monkeys were tested) and a marginally 

significant shortening in green monkeys from rhesus monkeys. Duration of viremia was 

negatively associated with dose of inoculum, with durations decreasing by 0.44 days (95% 

CI: 0.18, 0.7) per log10 increase in dose. Again, the variance of the random intercept was 

quite large (2.32 days).

Estimates of Time to Detectable Viremia and Duration of Viremia

In rhesus macaques the median time to detectable viremia of DENV was 3.32 days (95% CI: 

3.01, 3.65), 2.63 days (95% CI: 2.40, 2.89), 3.02 days (95% CI: 2.71, 3.34), and 3.23 days 

(95% CI: 2.99, 3.47) for DENV-1, -2, -3, and -4, respectively (Table 5 and Figure 2). The 

median duration of viremia was 4.67 days (95% CI: 4.27, 5.12), 5.13 days (95% CI: 4.82, 

5.48), 3.22 days (95% CI: 2.83, 3.72), and 3.13 days (95% CI: 2.86, 3.46) for DENV-1, -2, 

-3, and -4, respectively. As no significant differences were observed in duration of viremia 

between species (see above), estimates of duration were pooled across all species. The 

median time to detectable viremia of DENV was 3.23 days (95% CI: 3.00, 3.45), 2.44 days 

(95% CI: 2.22, 2.65), 2.89 days (95% CI: 2.67, 3.11), and 3.17 days (95% CI: 2.98, 3.37) for 

DENV-1, -2, -3, and -4, respectively (see Supplementary Material). The median duration of 

viremia was 4.33 days (95% CI: 4.03, 4.67), 4.84 days (95% CI: 4.52, 5.15), 3.34 days (95% 

CI: 3.01, 3.68), and 3.24 days (95% CI: 3.01, 3.51) for DENV-1, -2, -3, and -4, respectively.

Discussion

The results of our meta-analysis indicate that the median time to detectable viremia and 

duration of viremia of DENV was not statistically significantly different between non-

human primate species. In rhesus macaques (Macaca mulatta), median times to detectable 

viremia ranged from 2.63 (95% CI: 2.40, 2.89) days for DENV-2 to 3.32 (95% CI: 3.01, 

3.65) days for DENV-1 and median duration of viremia from 3.13 (95% CI: 2.86, 3.46) days 

for DENV-4 to 5.13 (95% CI: 4.82, 5.48) days for DENV-2. These estimates are shorter 

than those previously reported in humans. Tricou et al. reported a median duration of 

viremia of 6.2 days (IQR 5.8 to 7.2) for all serotypes and 6.8 days (IQR 6 to 7.3) for 

DENV-1 [21]. Vaughn et al. reported a mean duration of viremia in humans of 5.5 days for 

primary DENV-1 infection and 4.6 days for primary DENV-3 infection [22]. Murgue et al. 

found a mean duration of 4.4 days for primary DENV infection in a cohort of French 

Polynesian children [23]. However, all three of these studies estimate the duration of viremia 

in individuals hospitalized with dengue, and thus likely not on the first day of viremia. This 

would tend to underestimate the true duration of viremia. Additionally, due to selection of 

dengue cases based on severity (i.e. hospitalized patients) the cases included in these studies 

may not be representative of all dengue infections. The non-human primate studies 

identified here skirt these two problems directly.

We found no statistically significant differences in time to- or duration of viremia between 

the 11 species of non-human primates studied here save for patas monkeys. Patas monkeys 
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were found to have significantly longer times to detectable viremia and shorter duration of 

viremia, however, only 3 patas were infected in one study [2]. More measurements in patas 

monkeys would be an important contribution as it is one of the few species from which 

sylvatic DENV has been isolated [6]. Similarly, spider monkeys had a marginally 

significantly shorter time to detectable viremia (p = 0.04) than rhesus monkeys. 

Interestingly, the monkeys examined here included several species of old and new world 

non-human primates, otherwise expected to exhibit differing physiologic and immune 

responses [24].

Interestingly, the duration of DENV-4 viremia was significantly shorter than DENV-1 and 

-2 after adjusting for study, species, assay and dose of inoculum. There has been clear 

demonstration of differences in transmission patterns [15] and in clinical manifestations [16, 

17] across the four serotypes of DENV. Shorter duration of DENV-4 viremia may account 

for the reduced severity observed in this serotype. Fried et al. found cases of dengue 

hemorrhagic fever (DHF) to be twice as likely in secondary DENV-2 and -3 infections than 

in secondary DENV-4 [25]. Conversely, we found DENV-2 to be statistically significantly 

longer than DENV-1, and -3, and -4. Blamaseda et al. found nearly double the odds of shock 

and internal hemorrhage with DENV-2 infection in outbreaks of DENV in Nicaragua [16]. 

Nisalak et al. found DENV-3 to be associated with severe outbreaks of dengue in 

hospitalized cases in Bangkok, Thailand [15]. Fox et al. found time to undetectable DENV-2 

NS1 protein to be significantly longer than DENV-1 [26]. Extended durations of viremia for 

DENV-2 and -3 may be the cause of the increased severity of these infections and may be 

the reason sylvatic DENV-2 is the only serotype to have emerged in Africa from southeast 

Asia.

We found significantly longer durations of viremia when assayed using RT-PCR or 

immunofluorescence as compared to plaque-forming assays. This is most likely due to a 

higher sensitivity of RT-PCR as compared to other, older methods for determining viremia 

such as plaque counting and inoculation of suckling mice. Though some of this may be due 

to detection of viral RNA, and not actively replicating virus. More modern methods such as 

ELISA and focus-forming assays were not found to be significantly different from plaque-

forming assays, but this could be due to small sample sizes. The effect estimates for ELISA 

and FFA were 1.34 and 0.27 days longer, respectively, adjusting for study heterogeneity, 

serotype, species, and inoculating dose. Importantly, these differences in detection of 

viremia were robust to adjustment for study heterogeneity, which was considerable. 

Intraclass correlation coefficients indicated nearly half of the observed variance was due to 

differences between studies. This underlines the importance of using random effects models 

to account for differences between studies, and using care when interpreting results of 

viremia assays.

Surprisingly, increasing doses were associated with both shorter times to detectable viremia 

and shorter durations of viremia. This phenomenon was observed by Martin et al. in green 

monkeys [27], in yellow fever virus (YFV) infections in rhesus monkeys [28], chimeric YF-

DENV vaccine in cynomolgus macaques [29] and in humans receiving a live, attenuated 

Japanese Encephalitis vaccine (ChimeriVax-JE) [30, 31] and a live, attenuated West Nile 

virus vaccine [32]. It could be that a large inoculating dose causes a rapid initial rise in 
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viremia inducing a stronger innate immune response leading to quicker clearance. Studies in 

humans have found that higher peak viremia titers were positively associated with more 

severe disease [21, 22, 33]; however the evidence for an association between the magnitude 

and duration of viremia remains inconclusive. Vaughn et al. found the time from peak 

viremia to clearance was more rapid in DHF cases than in DF cases [22], while Fox et al. 

found no difference in rate of clearance between DHF and DF [26].

Not all studies included in this meta-analysis reported daily levels of viremia. Additional 

studies examining directly the relationship between inoculating dose, peak viremia and 

duration of viremia are necessary, as well as studies investigating the effects of preexisting 

immunity on time to viremia and duration.

Our methods separately accounted for the two largest potential sources of bias: random 

effects models accounted for study heterogeneity and doubly-interval censored survival 

analysis accounted for the large amount of censoring (right-, left- and both) present in 

reported days of non-human primate viremia. While the random effects model did not take 

into account the effects of censoring, the amount of censoring only differed in DENV-2 and 

common marmoset samples, and inferences drawn from them are useful for examining 

associations between covariates of interest and the time to detectable viremia and duration of 

viremia. Even though the random effects model accounts for most of the heterogeneity 

between studies, some caution must still be used when interpreting the results of the 

associations as some residual confounding may exist from remaining heterogeneity between 

studies. Finally, while all efforts were made to find all studies reporting non-human primate 

viremia, it is possible that some studies were missed, or that some data were not published 

[34].

Our study provides estimates of the times to detectable viremia and durations of DENV-1–4 

viremia in multiple non-human primate species, both Old World and New World, and 

identifies how these differ across serotype, viremia assay, non-human primate species and 

inoculating dose. Few if any studies have directly compared DENV infection in multiple 

non-human primates. Our results further understanding of within host DENV replication 

kinetics which are especially important in how they influence transmission dynamics. In the 

light of new dengue vaccine trials [35, 36], sylvatic DENV infection in non-human primates 

could provide a source of infectious introductions. An accurate and thorough understanding 

of the sylvatic cycle of dengue, including the roles of the various non-human primate species 

in transmission, may allow prediction of epidemics within non-human primates and thereby 

lessen the impact of spillover on humans living in areas of overlap with non-human primate 

hosts. Our results also are important in parameterizing dynamic models of dengue [14], and 

further understanding of DENV transmission dynamics in general, including differences in 

serotype-specific cycles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow Chart of Systematic Review
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Figure 2. Days of Viremia for Primates
Figure shows the days of viremia for each non-human primate stratified by DENV serotype. 

Blue bars indicate DENV negative blood samples and red indicates positive samples. White 

indicates no samples. Data were sorted by DENV serotype, then by days of viremia.
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Figure 3. Time to Detectable Viremia for DENV in Rhesus Macaque
Figure shows estimates of the time to detectable viremia for DENV-1–4 in Rhesus primates. 

Black lines indicate estimates from full dataset and light colored lines indicate bootstrap 

replicates. Grey lines indicate the 5th, 25th, 50th, 75th and 95th quantiles.
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Figure 4. Duration of DENV Infection in Rhesus Macaque
Figure shows estimates of the duration of infection for DENV-1–4 in Rhesus primates. 

Black lines indicate estimates from full dataset and light colored lines indicate bootstrap 

replicates. Grey lines indicate the 5th, 25th, 50th, 75th and 95th quantiles.

Althouse et al. Page 17

Virology. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 18

Table 1

Summary of included studies. In table, primates studied are: rhesus macaque (Macaca mulatta), cynomolgus 

macaques (Macaca fascicularis), green monkeys (Chlorocebus aethiops sabaeus), owl monkeys (Aotus 

nancymaae), chimpanzee (Pan troglodytes), spider monkey (Ateles geoffroyi), pig-tailed macaques (Macaca 

nemestrina), common marmoset (Callithrix jacchus), patas (Erythrocebus patas), squirrel monkey (Saimiri 

sciureus), and White Handed Gibbon (Hylobates lar).

Study No. of primates Species Serotype Ref.

Anez (2009) 4 Rhesus macaque 4 Anez et al. (2009)

Angsubhakorn (1988) 4 Cynomolgus macaques, rhesus macaque 4 Angsubhakorn et al. (1988)

Bernardo (2008) 4 Cynomolgus macaques, rhesus macaque 1 Bernardo et al. (2008)

Bray (1996) 16 Rhesus macaque 1, 2, 4 Bray et al. (1996)

Butrapet (2002) 2 Cynomolgus macaques 1 Butrapet et al. (2002)

Chen (2007) 3 Cynomolgus macaques 1 Chen et al. (2007)

Clements (2010) 3 Rhesus macaque 2 Clements et al. (2010)

Durbin (2006), Unpub.a 6 Rhesus macaque 1, 2 Unpub.

Durbin (2007), Unpub.a 6 Rhesus macaque 1, 2 Unpub.

Durbin (2008), Unpub.a 6 Rhesus macaque 1, 2 Unpub.

Freire (2007) 26 Rhesus macaque 1, 2, 3 Freire et al. (2007)

Galler (2005) 5 Rhesus macaque 2 Galler et al. (2005)

Goncalvez (2007) 3 Rhesus macaque 4 Goncalvez et al. (2007)

Guirakhoo (2000) 8 Rhesus macaque 2 Guirakhoo et al. (2000)

Guzman (2003) 3 Cynomolgus macaques 4 Guzman et al. (2003)

Halstead (1973) 119 Green monkey, patas, rhesus macaque 1, 2, 3, 4 Halstead et al. (1973)

Hanley (2004) 2 Rhesus macaque 4 Hanley et al. (2004)

Harrison (1977) 6 Chimpanzee, rhesus macaque 2 Harrison et al. (1977)

Hermida (2006) 3 Rhesus macaque 2 Hermida et al. (2006)

Houng (2000) 3 Rhesus macaque 2 Houng et al. (2000)

Kochel (2000) 5 Aotus 1 Kochel et al. (2000)

Kochel (2005) 18 Aotus 1 Kochel et al. (2005)

Lai (2007) 2 Rhesus macaque 4 Lai et al. (2007)

Marchette (1973) 27 Rhesus macaque 1, 2, 3, 4 Marchett et al. (1973)

Markoff (2002) 9 Rhesus macaque 1 Markoff et al. (2002)

Martin (2009) 12 Green monkey 2 Martin et al. (2009b)

Martin (2009) 6 Green monkey 2 Martin et al. (2009a)

Maves (2011) 6 Aotus 1 Maves et al. (2011)

Men (1996) 12 Rhesus macaque 4 Men et al. (1996)

Men (2000) 4 Rhesus macaque 2 Men et al. (2000)

Omatsu (2011) 20 Common marmoset 1, 2, 3, 4 Omatsu et al. (2011)

Onlamoon (2010) 6 Rhesus macaque 2 Onlamoon et al. (2010)

Pamungkas (2011) 14 Pig-tailed macaques (Macaca nemestrina) 3 Pamungkas et al. (2011)
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Study No. of primates Species Serotype Ref.

Pletnev (2001) 4 Rhesus macaque 4 Pletnev et al. (2001)

Price (1968) 17 Spider monkey 1, 3, 4 Price et al. (1968)

Price (1973) 20 Spider monkey 1, 2, 3, 4 Price et al. (1973)

Price (1974) 25 Chimpanzee, cynomolgus macaques, 1, 4 Price et al. (1974)

Rhesus macaque, squirrel monkey

Putnak (1996) 3 Rhesus macaque 2 Putnak et al. (1996)

Putnak (2003) 9 Rhesus macaque 2 Putnak et al. (2003)

Raviprakash (2000) 5 Rhesus macaque 1 Raviprakash et al. (2000)

Raviprakash (2006) 5 Rhesus macaque 1, 2 Raviprakash et al. (2006)

Raviprakash (2008) 24 Rhesus macaque 1, 2, 3, 4 Raviprakash et al. (2008)

Rumyantsev (2006) 8 Rhesus macaque 4 Rumyantsev et al. (2006)

Scherer (1978) 10 Chimpanzee 1, 2, 3, 4 Scherer et al. (1978)

Schiavetta (2003) 15 Aotus 1, 2, 3, 4 Schiavetta et al. (2003)

Simmons (2006) 4 Rhesus macaque 2 Simmons et al. (2006)

Simmons (2010) 20 Rhesus macaque 1, 2, 3, 4 Simmons et al. (2010)

Sun (2006) 20 Rhesus macaque 1, 2, 3, 4 Sun et al. (2006)

Tarr (1976) 4 Rhesus macaque 2 Tarr and Lubiniecki (1976)

Valdes (2009) 3 Green monkey 2 Valdés et al. (2009)

Velzing (1999) 2 Cynomolgus macaques 2 Velzing et al. (1999)

Whitehead, variousb 84 Rhesus macaque 1, 2, 3, 4 Blaney et al. (2006)

Whitehead (1970) 33 White handed gibbon 1, 2, 3, 4 Whitehead et al. (1970)

Widjaja (2010) 16 Pig-tailed macaques (Macaca nemestrina) 1, 2, 3, 4 Widjaja et al. (2010)
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Table 2
Summary of DENV infection by non-human primate species

Table reports numbers of non-human primate species by infection with DENV serotypes 1–4.

Species DENV 1 DENV 2 DENV 3 DENV 4

chimpanzee (Pan troglodytes) 2 6 2 12

common marmoset (Callithrix jacchus) 1 17 1 1

cynomolgus macaques (Macaca fascicularis) 7 2 0 10

green monkey (Chlorocebus aethiops sabaeus) 1 23 1 0

owl monkeys (Aotus nancymaae) 33 4 4 3

patas (Erythrocebus patas) 1 2 0 0

pig-tailed macaques (Macaca nemestrina) 4 4 18 4

rhesus macaque (Macaca mulatta) 97 155 75 139

spider monkey (Ateles geoffroyi) 8 5 12 12

squirrel monkey (Saimiri sciureus) 5 0 0 0

white handed gibbon (Hylobates lar) 7 9 8 9

Virology. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 21

T
ab

le
 3

A
ss

oc
ia

ti
on

s 
w

it
h 

T
im

e 
to

 D
et

ec
ta

bl
e 

V
ir

em
ia

T
ab

le
 r

ep
or

ts
 th

e 
re

su
lts

 o
f 

th
e 

un
iv

ar
ia

te
 a

nd
 m

ul
tiv

ar
ia

te
 m

ix
ed

 e
ff

ec
ts

 r
eg

re
ss

io
n 

ca
lc

ul
at

in
g 

as
so

ci
at

io
ns

 b
et

w
ee

n 
se

ro
ty

pe
, s

pe
ci

es
, v

ir
em

ia
 a

ss
ay

 

us
ed

, a
nd

 lo
g 1

0 
in

oc
ul

at
in

g 
do

se
 a

nd
 ti

m
e 

to
 d

et
ec

ta
bl

e 
vi

re
m

ia
. M

ix
ed

 e
ff

ec
ts

 m
od

el
s 

in
cl

ud
ed

 r
an

do
m

 e
ff

ec
t f

or
 s

tu
dy

. U
ni

va
ri

at
e 

es
tim

at
es

 a
re

 

di
ff

er
en

ce
s 

in
 d

ay
s 

of
 v

ir
em

ia
 f

ro
m

 th
e 

re
fe

re
nc

e 
ca

te
go

ry
 o

f 
ea

ch
 m

od
el

 (
de

no
te

d 
“r

ef
.”

),
 a

nd
 m

ul
tiv

ar
ia

te
 e

st
im

at
es

 a
re

 d
if

fe
re

nc
es

 in
 d

ay
s 

of
 v

ir
em

ia
 

fo
r 

ea
ch

 c
ov

ar
ia

te
 f

ro
m

 r
he

su
s 

m
on

ke
ys

 in
fe

ct
ed

 w
ith

 D
E

N
V

-4
 a

ss
ay

ed
 u

si
ng

 p
la

qu
e 

co
un

t. 
P-

va
lu

es
 c

al
cu

la
te

d 
us

in
g 

lik
el

ih
oo

d 
ra

tio
 te

st
s.

 E
st

im
at

es
 o

f 

th
e 

fi
xe

d 
in

te
rc

ep
t (

β 0
) 

an
d 

va
ri

an
ce

 o
f 

th
e 

ra
nd

om
 in

te
rc

ep
t a

re
 p

re
se

nt
ed

 (
σ

).

C
ov

ar
ia

te
U

ni
va

ri
at

e
95

%
 C

I
p

M
ul

ti
va

ri
at

e
95

%
 C

I
p

D
E

N
V

-4
re

f.
re

f.

D
E

N
V

-1
0.

53
(0

.2
0,

 0
.8

6)
0.

00
2

0.
55

(0
.2

2,
 0

.8
9)

0.
00

1

D
E

N
V

-2
−

0.
09

(−
0.

41
, 0

.2
2)

0.
55

8
−

0.
17

(−
0.

49
, 0

.1
4)

0.
25

4

D
E

N
V

-3
0.

20
(−

0.
14

, 0
.5

4)
0.

25
2

0.
24

(−
0.

10
, 0

.5
7)

0.
15

3

rh
es

us
 m

ac
aq

ue
 (

M
ac

ac
a 

m
ul

at
ta

)
re

f.

ch
im

pa
nz

ee
 (

P
an

 tr
og

lo
dy

te
s)

−
0.

17
(−

1.
10

, 0
.7

6)
0.

73
0

−
0.

30
(−

1.
22

, 0
.6

3)
0.

48
3

co
m

m
on

 m
ar

m
os

et
 (

C
al

li
th

ri
x 

ja
cc

hu
s)

−
1.

14
(−

3.
15

, 0
.8

6)
0.

21
4

−
0.

61
(−

2.
75

, 1
.5

3)
0.

49
3

cy
no

m
ol

gu
s 

m
ac

aq
ue

s 
(M

ac
ac

a 
fa

sc
ic

ul
ar

is
)

0.
66

(−
0.

18
, 1

.5
0)

0.
13

2
0.

74
(−

0.
12

, 1
.6

0)
0.

09
6

gr
ee

n 
m

on
ke

y 
(C

hl
or

oc
eb

us
 a

et
hi

op
s 

sa
ba

eu
s)

0.
61

(−
0.

32
, 1

.5
3)

0.
30

1
1.

23
(0

.1
2,

 2
.3

5)
0.

09
5

ow
l m

on
ke

ys
 (

A
ot

us
 n

an
cy

m
aa

e)
−

0.
21

(−
1.

30
, 0

.8
9)

0.
67

1
−

0.
20

(−
1.

47
, 1

.0
8)

0.
77

7

pa
ta

s 
(E

ry
th

ro
ce

bu
s 

pa
ta

s)
3.

64
(2

.1
3,

 5
.1

5)
<

 0
.0

01
3.

89
(2

.4
0,

 5
.3

9)
<

 0
.0

01

pi
g-

ta
ile

d 
m

ac
aq

ue
s 

(M
ac

ac
a 

ne
m

es
tr

in
a)

−
0.

94
(−

2.
40

, 0
.5

2)
0.

16
2

−
0.

50
(−

2.
15

, 1
.1

5)
0.

44
6

sp
id

er
 m

on
ke

y 
(A

te
le

s 
ge

of
fr

oy
i)

−
1.

29
(−

2.
74

, 0
.1

5)
0.

05
6

−
2.

49
(−

5.
20

, 0
.2

2)
0.

04
0

sq
ui

rr
el

 m
on

ke
y 

(S
ai

m
ir

i s
ci

ur
eu

s)
−

0.
35

(−
1.

73
, 1

.0
3)

0.
62

0
−

0.
96

(−
2.

36
, 0

.4
3)

0.
16

2

w
hi

te
 h

an
de

d 
gi

bb
on

 (
H

yl
ob

at
es

 la
r)

0.
62

(−
1.

35
, 2

.5
8)

0.
50

8
−

0.
27

(−
2.

34
, 1

.8
0)

0.
75

5

pl
aq

ue
 c

ou
nt

re
f.

E
L

IS
A

−
0.

75
(−

2.
31

, 0
.8

2)
0.

32
9

−
1.

53
(−

3.
51

, 0
.4

5)
0.

16
1

FF
A

0.
02

(−
1.

49
, 1

.5
2)

0.
97

4
0.

22
(−

1.
41

, 1
.8

6)
0.

74
6

IF
A

−
0.

75
(−

1.
43

, −
0.

07
)

0.
02

5
−

0.
89

(−
1.

74
, −

0.
04

)
0.

01
6

R
T

PC
R

−
0.

67
(−

1.
37

, 0
.0

3)
0.

05
0

−
0.

51
(−

1.
39

, 0
.3

7)
0.

17
0

su
ck

lin
g 

m
ic

e
−

1.
16

(−
2.

34
, 0

.0
2)

0.
04

3
0.

64
(−

1.
71

, 2
.9

9)
0.

56
1

lo
g 1

0 
do

se
−

0.
15

(−
0.

32
, 0

.0
1)

0.
06

9
−

0.
21

(−
0.

39
, −

0.
04

)
0.

02
1

Virology. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 22

C
ov

ar
ia

te
U

ni
va

ri
at

e
95

%
 C

I
p

M
ul

ti
va

ri
at

e
95

%
 C

I
p

In
te

rc
ep

t (
β 0

)
2.

68
(1

.6
3,

 3
.7

4)
<

 0
.0

01

R
an

do
m

 E
ff

ec
t (

σ
)

0.
99

(0
, 2

.9
3)

Virology. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 23

T
ab

le
 4

A
ss

oc
ia

ti
on

s 
w

it
h 

D
ur

at
io

n 
of

 V
ir

em
ia

T
ab

le
 r

ep
or

ts
 th

e 
re

su
lts

 o
f 

th
e 

un
iv

ar
ia

te
 a

nd
 m

ul
tiv

ar
ia

te
 m

ix
ed

 e
ff

ec
ts

 r
eg

re
ss

io
n 

ca
lc

ul
at

in
g 

as
so

ci
at

io
ns

 b
et

w
ee

n 
se

ro
ty

pe
, s

pe
ci

es
, v

ir
em

ia
 a

ss
ay

 

us
ed

, a
nd

 lo
g 1

0 
in

oc
ul

at
in

g 
do

se
 a

nd
 d

ur
at

io
n 

of
 v

ir
em

ia
. M

ix
ed

 e
ff

ec
ts

 m
od

el
s 

in
cl

ud
ed

 r
an

do
m

 e
ff

ec
t f

or
 s

tu
dy

. U
ni

va
ri

at
e 

es
tim

at
es

 a
re

 d
if

fe
re

nc
es

 in
 

da
ys

 o
f 

vi
re

m
ia

 f
ro

m
 th

e 
re

fe
re

nc
e 

ca
te

go
ry

 o
f 

ea
ch

 m
od

el
 (

de
no

te
d 

“r
ef

.”
),

 a
nd

 m
ul

tiv
ar

ia
te

 e
st

im
at

es
 a

re
 d

if
fe

re
nc

es
 in

 d
ay

s 
of

 v
ir

em
ia

 f
or

 e
ac

h 

co
va

ri
at

e 
fr

om
 r

he
su

s 
m

on
ke

ys
 in

fe
ct

ed
 w

ith
 D

E
N

V
-4

 a
ss

ay
ed

 u
si

ng
 p

la
qu

e 
co

un
t. 

P-
va

lu
es

 c
al

cu
la

te
d 

us
in

g 
lik

el
ih

oo
d 

ra
tio

 te
st

s.
 D

ur
at

io
ns

 o
f 

D
E

N
V

-1
 

an
d 

-2
 v

ir
em

ia
 a

re
 s

ig
ni

fi
ca

nt
ly

 lo
ng

er
 th

an
 D

E
N

V
-4

 a
ft

er
 a

dj
us

tin
g 

fo
r 

st
ud

y,
 s

pe
ci

es
, a

ss
ay

 a
nd

 lo
g 1

0 
do

se
. E

st
im

at
es

 o
f 

th
e 

fi
xe

d 
in

te
rc

ep
t (

β 0
) 

an
d 

va
ri

an
ce

 o
f 

th
e 

ra
nd

om
 in

te
rc

ep
t a

re
 p

re
se

nt
ed

 (
σ

).

C
ov

ar
ia

te
U

ni
va

ri
at

e
95

%
 C

I
p

M
ul

ti
va

ri
at

e
95

%
 C

I
p

D
E

N
V

-4
re

f.
re

f.

D
E

N
V

-1
0.

63
(0

.1
7,

 1
.0

9)
0.

00
8

0.
74

(0
.2

6,
 1

.2
1)

0.
00

2

D
E

N
V

-2
1.

02
(0

.5
8,

 1
.4

6)
<

 0
.0

01
1.

21
(0

.7
7,

 1
.6

5)
<

 0
.0

01

D
E

N
V

-3
−

0.
34

(−
0.

81
, 0

.1
3)

0.
15

1
−

0.
30

(−
0.

77
, 0

.1
7)

0.
22

5

rh
es

us
 m

ac
aq

ue
 (

M
ac

ac
a 

m
ul

at
ta

)
re

f.

ch
im

pa
nz

ee
 (

P
an

 tr
og

lo
dy

te
s)

0.
16

(−
1.

26
, 1

.5
7)

0.
83

6
0.

26
(−

1.
06

, 1
.5

9)
0.

62
4

co
m

m
on

 m
ar

m
os

et
 (

C
al

li
th

ri
x 

ja
cc

hu
s)

−
0.

15
(−

4.
05

, 3
.7

6)
0.

93
6

−
1.

80
(−

5.
09

, 1
.4

9)
0.

18
5

cy
no

m
ol

gu
s 

m
ac

aq
ue

s 
(M

ac
ac

a 
fa

sc
ic

ul
ar

is
)

0.
23

(−
1.

09
, 1

.5
5)

0.
73

2
0.

00
(−

1.
24

, 1
.2

4)
0.

94
1

gr
ee

n 
m

on
ke

y 
(C

hl
or

oc
eb

us
 a

et
hi

op
s 

sa
ba

eu
s)

−
1.

36
(−

2.
84

, 0
.1

2)
0.

06
2

−
1.

48
(−

3.
08

, 0
.1

2)
0.

05
0

ow
l m

on
ke

ys
 (

A
ot

us
 n

an
cy

m
aa

e)
−

0.
46

(−
2.

54
, 1

.6
2)

0.
63

7
−

1.
29

(−
3.

23
, 0

.6
6)

0.
12

5

pa
ta

s 
(E

ry
th

ro
ce

bu
s 

pa
ta

s)
−

2.
07

(−
4.

21
, 0

.0
6)

0.
05

7
−

2.
35

(−
4.

45
, −

0.
25

)
0.

02
6

pi
g-

ta
ile

d 
m

ac
aq

ue
s 

(M
ac

ac
a 

ne
m

es
tr

in
a)

−
0.

40
(−

3.
21

, 2
.4

2)
0.

76
4

−
0.

64
(−

3.
16

, 1
.8

8)
0.

51
4

sp
id

er
 m

on
ke

y 
(A

te
le

s 
ge

of
fr

oy
i)

−
1.

11
(−

3.
91

, 1
.6

9)
0.

40
0

0.
34

(−
3.

77
, 4

.4
6)

0.
83

4

sq
ui

rr
el

 m
on

ke
y 

(S
ai

m
ir

i s
ci

ur
eu

s)
−

0.
72

(−
2.

72
, 1

.2
9)

0.
47

0
−

1.
39

(−
3.

36
, 0

.5
9)

0.
17

0

w
hi

te
 h

an
de

d 
gi

bb
on

 (
H

yl
ob

at
es

 la
r)

0.
00

(−
3.

87
, 3

.8
6)

0.
99

8
0.

09
(−

3.
09

, 3
.2

8)
0.

93
2

pl
aq

ue
 c

ou
nt

re
f.

E
L

IS
A

0.
02

(−
2.

81
, 2

.8
5)

0.
98

7
1.

34
(−

1.
61

, 4
.3

0)
0.

30
4

FF
A

0.
17

(−
2.

59
, 2

.9
3)

0.
88

9
0.

27
(−

2.
22

, 2
.7

5)
0.

78
8

IF
A

0.
98

(−
0.

29
, 2

.2
4)

0.
11

0
1.

34
(0

.0
5,

 2
.6

4)
0.

01
8

R
T

PC
R

1.
89

(0
.5

9,
 3

.1
8)

0.
00

4
2.

52
(1

.1
9,

 3
.8

5)
<

 0
.0

01

su
ck

lin
g 

m
ic

e
−

0.
16

(−
2.

39
, 2

.0
6)

0.
88

0
−

0.
37

(−
3.

92
, 3

.1
8)

0.
80

7

Virology. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 24

C
ov

ar
ia

te
U

ni
va

ri
at

e
95

%
 C

I
p

M
ul

ti
va

ri
at

e
95

%
 C

I
p

lo
g 1

0 
do

se
−

0.
40

(−
0.

65
, −

0.
14

)
0.

00
2

−
0.

44
(−

0.
69

, −
0.

18
)

<
 0

.0
01

In
te

rc
ep

t (
β 0

)
5.

00
(3

.4
7,

 6
.5

3)
<

 0
.0

01

R
an

do
m

 E
ff

ec
t (

σ
)

2.
32

(0
, 5

.3
0)

Virology. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Althouse et al. Page 25

Table 5
Summary of DENV Virus Kinetics in Rhesus Macaques

Table reports median days to viremia and duration of viremia with 95% bootstrap confidence intervals for 5th, 

25th, 50th, 75th, and 95th percentile.

Serotype Percentile Time to Viremia
Days (95% CI)

Duration
Days (95% CI)

1 5th 1.43 (1.20, 1.68) 2.02 (1.73, 2.44)

n = 97 25th 2.35 (2.08, 2.64) 3.31 (2.97, 3.76)

50th 3.32 (3.01, 3.65) 4.67 (4.27, 5.12)

75th 4.69 (4.28, 5.11) 6.59 (6.01, 7.18)

95th 7.73 (6.89, 8.57) 10.82 (9.51, 12.12)

2 5th 0.98 (0.82, 1.18) 2.24 (1.98, 2.59)

n = 155 25th 1.76 (1.55, 2.00) 3.65 (3.35, 4.00)

50th 2.63 (2.40, 2.89) 5.13 (4.82, 5.48)

75th 3.95 (3.67, 4.22) 7.21 (6.73, 7.70)

95th 7.06 (6.48, 7.64) 11.76 (10.48, 13.01)

3 5th 1.30 (1.07, 1.57) 1.03 (0.84, 1.33)

n = 75 25th 2.14 (1.85, 2.41) 2.02 (1.73, 2.41)

50th 3.02 (2.71, 3.34) 3.22 (2.83, 3.72)

75th 4.26 (3.78, 4.74) 5.14 (4.56, 5.84)

95th 6.99 (5.91, 8.13) 10.05 (8.70, 11.58)

4 5th 1.44 (1.32, 1.58) 1.10 (0.95, 1.31)

n = 139 25th 2.32 (2.16, 2.51) 2.04 (1.83, 2.32)

50th 3.23 (2.99, 3.47) 3.13 (2.86, 3.46)

75th 4.49 (4.12, 4.84) 4.82 (4.38, 5.28)

95th 7.22 (6.48, 7.89) 8.96 (7.96, 10.00)
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