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Abstract
Dietary microRNAs (miRNAs), notably those found in milk, are currently being investigated

for their potential to elicit biological effects via canonical binding to human messenger RNA

targets once ingested. Besides milk, beef and other bovine tissue-derived ingredients could

also be a relevant source of potentially bioactive dietary miRNAs. In this study, we charac-

terized the human homologous miRNA profiles in food-grade, bovine-sourced sirloin, heart

and adrenal tissue (raw, cooked, and pasteurized, freeze-dried extracts) via deep-sequenc-

ing and quantitative reverse transcription PCR (RT-qPCR). A total of 198 human homolo-

gous miRNAs were detected at 10 or more normalized reads in all replicates (n = 3) of at

least one preparation method. Tissue origin rather than preparation method was the major

differentiating factor of miRNA profiles, and adrenal-based miRNA profiles were the most

distinct. The ten most prevalent miRNAs in each tissue represented 71–93% of the total nor-

malized counts for all annotated miRNAs. In cooked sirloin, the most abundant miRNAs

were miR-10b-5p, (48.8% of total annotated miRNA reads) along with the muscle-specific

miR-1 (24.1%) and miR-206 (4.8%). In dried heart extracts, miR-1 (17.0%), miR-100-5p

(16.1%) and miR-99a-5p (11.0%) gave the highest normalized read counts. In dried adrenal

extracts, miR-10b-5p (71.2%) was the most prominent followed by miR-143-3p (7.1%) and

146b-5p (3.7%). Sequencing results for five detected and two undetected miRNAs were

successfully validated by RT-qPCR. We conclude that edible, bovine tissues contain unique

profiles of human homologous dietary miRNAs that survive heat-based preparation

methods.

Introduction
MicroRNAs (miRNA) are a ubiquitous class of small non-coding RNA in plants and animals
that inhibit the protein translation of messenger RNA (mRNA) through antisense binding [1].
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Currently, over 2,500 human miRNAs are listed in miRBase (version 21) [2], and their regula-
tory effect on cellular and physiological processes is widespread. Mature, single-stranded miR-
NAs, typically 22 nucleotides in length, are derived from longer hairpin precursors through
cleavage by Drosha and Dicer [1]. They are then bound to Argonaute 2 as part of the RNA-
silencing complex that facilitates binding of miRNAs to their mRNA targets.

In 2012, Zhang and colleagues published a detailed set of experiments providing evidence
that orally consumed miR-168a in rice could be absorbed into systemic circulation, enter the
liver, bind to and decrease translation of low-density lipoprotein receptor adapter protein 1
mRNA, and decrease LDL removal from plasma [3]. These results contradicted long-held
assumptions that orally ingested RNA was nutritionally irrelevant and sparked a flurry of sci-
entific discussion and activity on the topic [4–10]. To date, three follow-up studies [5–7] inves-
tigating the oral absorption of several plant-specific miRNAs and one animal-specific miRNA
(miR-21) [5] have reported negligible miRNA absorption. One study [10] did report serum
and tissue detection of miR-172, a prominent miRNA in Brassica species, following oral intake
of RNA from Brassica oleracea in mice, but with apparent low bioavailability (less than 4.5%).
While these reports highlight the potential bioactivity of plant-based dietary miRNAs, studies
investigating animal-based miRNAs are perhaps more compelling. Raw human and cow’s milk
are rich sources of dietary miRNAs [11] many of which reside within milk exosomes which
may increase their stability and bioavailability [12,13]. Uptake of dietary miRNAs from cow’s
milk into the systemic circulation of five healthy adults has now been demonstrated [14]. Milk-
based miRNAs with immunomodulatory activity could even explain why consumption of raw
cow’s milk in the first year of life is associated with a reduced incidence of atopic allergies [15].
Besides milk, little is known about the profile and potential bioactivity of miRNAs in other edi-
ble products of animal origin such as beef, which is consumed by millions of people worldwide
[16], or bovine tissue extracts, which are used as dietary ingredients.

In this study, we utilized deep miRNA sequencing and quantitative reverse transcription
PCR (RT-qPCR) to characterize the profile and stability of human homologous bovine miR-
NAs in food-grade bovine tissues including top sirloin, heart, and adrenal. We tested the effect
of conventional cooking (pan-frying) or pasteurization followed by freeze-drying of liquid tis-
sue extracts on the tissue miRNAs. Our overall goal was to provide prerequisite compositional
information required for the broader effort of determining whether meat-based miRNAs are
nutritionally relevant.

Methods

Sample Collection
Bovine muscle and organ tissues investigated were United States Department of Agriculture
grade and suitable for human consumption. Meat products were not aged and were derived
from an aggregate of breeds. Freshly-cut top sirloin samples (12–15 pounds each) were
obtained from grocery stores in south-central Wisconsin (WI) including Walmart Supercenter
(Monona, WI), Piggly Wiggly (Cambridge, WI), and Pick ‘n Save (Fort Atkinson, WI). Bovine
hearts (Long Prairie Packing, Long Prairie, MN, Federal Establishment #253) and bovine adre-
nals (Cargill Wyalusing, Wyalusing, PA, Federal Establishment #9400) were purchased directly
from United States Department of Agriculture-inspected facilities. Each organ sample con-
sisted of pooled tissues (12–15 pounds each) from multiple animals.

Sample Preparation
Sirloin, heart, and adrenal samples were initially ground using an STX Turbo Force meat
grinder. To prepare conventionally cooked tissue samples, the ground tissues were pan-fried
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(no pink meat remaining) using an electric skillet set to 350°F (177°C). To prepare dried tissue
extracts, the ground tissue was processed into a liquid tissue extract using a lab scale method
based on a production scale, food-grade extraction process (Standard Process, Inc, Palmyra,
WI). The liquid tissue extract was then flash pasteurized at 72°C for 15 seconds and subse-
quently freeze-dried. The freeze-dried extracts were ground into a powder using a mortar and
pestle. All samples were then stored at -20°C.

RNA Extraction
Total RNA was extracted from each raw, cooked, and dried tissue using themirVana™miRNA
Isolation Kit (Life Technologies, Carlsbad, CA) based on the manufacturer’s instructions.
Briefly, 100 mg of the raw or pan-fried samples and 25 mg of the dried extracts were sonicated
for 5 minutes in 600 μL Lysis/BindingTM solution, followed by an acid-phenol extraction. Total
RNA was collected in a spin column and eluted in 50–100 uL Elution solution. Quantity and
purity were determined using a Nanodrop ND-1000. RNA integrity was assessed using a Bioa-
nalyzer (Agilent, CA). Samples were shipped on dry ice to Arraystar, Inc. (Rockville, MD) for
sequencing.

Deep miRNA Sequencing
Total RNA from each sample was used to prepare the miRNA sequencing library which
included the following steps: 1) 3'-adapter ligation with T4 RNA ligase 2 (truncated); 2) 5'-
adapter ligation with T4 RNA ligase; 3) cDNA synthesis with RT primer; 4) PCR amplification;
5) extraction and purification of ~135–155 bp PCR amplified fragments (correspond to ~15–
35 nt small RNAs) from the PAGE gel. After the completed libraries were quantified with an
Agilent 2100 Bioanalyzer, the DNA fragments in the libraries were denatured with 0.1M
NaOH to generate single-stranded DNA molecules, captured on Illumina flow cells, amplified
in situ and finally sequenced for 36 cycles on Illumina HiSeq1 2000 according to the manufac-
turer’s instructions. After sequencing images were generated, image analysis and base calling
were performed using Off-Line Basecaller software (OLB V1.8.0). Subsequently, 3’ adapter
sequences were trimmed from clean reads (reads that passed Solexa CHASTITY quality filter)
and the reads shorter than 15nt were discarded. The 3’-adapter-trimmed-reads (> = 15nt)
were aligned to the latest known cow and human reference miRNA precursor set (Sanger miR-
Base 20) using Novoalign (v2.07.11). Reads (counts< 2) were discarded when calculating the
miRNA expression. In order to characterize the isomiR variability, any sequence that matched
the miRNA precursors in the mature miRNA region ±4nt (no more than one mismatch) were
accepted as mature miRNA isomiRs, which were grouped according to the 5-prime (5p) or
3-prime (3p) arm of the precursor hairpin.

Quantitative reverse transcription PCR (RT-qPCR)
RT-qPCR for selected miRNAs was carried out using the Taqman1 assay (Life Technologies).
Total RNA (10 ng) was combined with 100 mM dNTPs, 50 U/uL reverse transcriptase (RT), 20
U/uL RNase inhibitor, buffer, RNase-free water, and primers per manufacturer’s instructions.
Reverse transcription reactions were run using a Mastercycler1 Gradient (Eppendorf, Ger-
many) with the following parameters: 30 minutes at 16°C, 30 minutes at 42°C, 5 minutes at
85°C, followed by a hold at 4°C. Samples that were not used immediately were stored at -80°C.
The product was combined with Taqman1 Universal PCR Master Mix II (no UNG), water,
and the appropriate probe per manufacturer’s instructions. Samples, as well as no template
controls, were run in triplicate. The Applied Biosystems 7300 Real-Time PCR software was set
up as follows: 10 minutes at 95°C, then 40 cycles of 15 seconds at 95°C followed by 60 seconds
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at 60°C. Threshold values were set at 0.2 after verifying that 0.2 was above the background
noise and fell within the exponential phase across all samples.

Data Analysis
Sequencing (percentage annotated reads and 22 Nt-enrichment levels) and RT-qPCR data
were compared using ANOVA with Tukey’s honest significant difference test as the post-hoc
analysis (p<0.05). For miRNA filtering and differential analysis, the normalized read counts of
the most abundant isoform for each annotated miRNA was uploaded into GeneSpring Mass
Profiler Professional software, Version 13.0 (Agilent Technologies, Santa Clara, CA) as a
generic (.csv) file. The log2 transformed read counts were compared using a Pearson’s correla-
tion heat map. Univariate analysis was carried out using ANOVA with Benjamini-Hochberg as
the multiple testing correction and Tukey’s honest significant difference test as the post-hoc
analysis method (p<0.05). Differentially detected miRNAs were then visualized using principle
component analysis with 4 components utilized and hierarchical clustering analysis with the
Pearson’s Centered algorithm as the distance metric and Ward’s method as the linkage rule.

Results

Experimental Design
Independent, commercial sources (n = 3) of top sirloin, heart, and adrenal were ground and
prepared via pan-frying (cooking) or by a series of steps resulting in a pasteurized, freeze-dried
extract (S1 Fig). Total RNA was then obtained from each sample for miRNA sequencing. We
were unable to consistently obtain detectable RNA from dried sirloin extracts and so only raw
and cooked sirloin RNA samples were sequenced. RNA integrity from all raw tissues was low
and was further reduced in cooked samples and extracts (Fig 1A). Nevertheless, we proceeded
with miRNA sequencing because previous studies have demonstrated that miRNAs are stable
and measurable even in low-integrity RNA extracts subjected to high heat [17].

Detection of human homologous bovine miRNAs
For each sample, 1 to 6.7 million clean reads corresponding to 0.5 to 5.8 million adapter-
trimmed reads was obtained (S1 Table). In all cases, the number and percentage of adapter-
trimmed reads aligned to known bovine miRNAs was nearly identical to the percentage aligned
to known human miRNA sequences (Fig 1B). A much higher percentage of adapter-trimmed
reads in raw (67 ± 8%) and cooked (67 ± 6%) sirloin corresponded to annotated cow and
human miRNAs compared to heart and adrenal-based RNA samples. A higher miRNA anno-
tation percentage was also observed in heart and adrenal-based dried extracts (26 ± 6% and
32% ± 11%, respectively) compared with their respective raw tissues (7 ± 1% and 6 ± 3%). Read
length frequency analysis revealed similar trends. Raw and cooked sirloin were much more
22-Nt (nucleotide)-enriched (48 ± 2 and 49 ± 8%, respectively) compared with the other tissues
(Fig 1C). An increased 22-Nt read length percentage was also noted in adrenal extracts
(23 ± 6%) compared with raw adrenal (8 ± 4%).

Dietary miRNA profiles are distinguished by tissue origin
A total of 906 human-homologous miRNAs were initially detected (2 or greater normalized
read counts of the most abundant miRNA isoform) across all samples. To select for the most
consistent and robustly expressed miRNAs, those not detected at 10 or more normalized reads
in all replicates (n = 3) of one or more sample groups were filtered. Normalized read counts
of the resulting 198 miRNAs across all tissues and treatments were log2 transformed for
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differential analysis. Correlation among sample replicates for each group was highest for raw
(0.92–0.95) and cooked (0.91–0.93) sirloin and ranged from 0.68–0.86 among replicates in
heart and adrenal-based groups (S2 Table). Correlation and univariate statistical analysis
(ANOVA) across experimental groups revealed that, regardless of processing, adrenal-based
miRNA profiles were the most distinct showing lower correlation (0.47–0.63) and higher num-
bers of significantly different miRNAs (28–46) when compared with sirloin and heart-based
miRNA profiles (Fig 2). In contrast, sirloin and heart-based miRNAs profiles, regardless of
processing, were more correlated (0.72–0.84) and had lower numbers of significantly different
miRNAs (12–22). In all, 105 miRNAs were found to be significantly different (p<0.05) in at
least one post-hoc analysis across all comparisons. Principle component analysis of these 105
miRNAs revealed clear delineations in sirloin, heart, and adrenal-based miRNA profiles (Fig
3A). Differences between raw, cooked, and extract samples within each tissue were typically
less distinct, but were still apparent. Hierarchical clustering of all averaged miRNA profiles
effectively distinguished each tissue and process group (Fig 3B). The first main branch

Fig 1. Sequencing Results. A) Representative images of total RNA from each raw and prepared tissue following electrophoretic separation. B) The
percentage of adapter-trimmed reads annotated as bovine or human miRNAs. C) Read-length frequency graphs for raw and Prepared tissues. Data is
expressed as mean ± SD, * significantly different (p<0.05) from all samples derived from different tissue types. † significantly different (p<0.05) from raw and
cooked samples of the same tissue type.

doi:10.1371/journal.pone.0138275.g001
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Fig 2. Correlation and Univariate Analysis of miRNA Profiles.Correlation heat map of the averaged log2 transformed normalized read counts of the 198
miRNAs detected at 10 or greater reads in all three replicates of at least one tissue and process. The number of significantly different miRNAs (p<0.05)
between each comparison as determined by ANOVA is also indicated.

doi:10.1371/journal.pone.0138275.g002
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differentiated adrenal-based profiles from heart and sirloin-based profiles whereas heart and
sirloin were separated on the second branch. In heart and adrenal, the miRNA profile of the
raw tissue and extracts was clustered separately from the miRNA profile of the cooked tissues.
Lower numbers of miRNAs present at 10 or greater reads in all replicates were detected within
cooked heart (93) and cooked adrenal (61) compared to raw heart (114) and raw adrenal (113)
whereas no similar loss was observed in heart extracts and adrenal extracts (122 and 114 miR-
NAs, respectively) (S2 Fig). Interestingly, there was no difference in the total number of consis-
tently detected miRNAs in raw and cooked sirloin (111, and 115, respectively).

Influence of tissue preparation methods on dietary miRNAs
We next examined the identities and relative contributions of specific human homologous
miRNAs for each raw and prepared tissue. In all cases, the ten most abundant miRNAs
accounted for the majority (71–93%) of the total miRNA-annotated averaged normalized
reads (S3 Table, Fig 4). The miRNA profiles of cooked sirloin, cooked heart, and heart extract
were very similar to their respective raw tissues. In contrast, the profile of the 10 most abundant
miRNAs in cooked adrenal and adrenal extract differed somewhat from raw adrenal contain-
ing roughly half of the same 10 most abundant raw tissue miRNAs. Two miRNAs, miR-10b-5p
and miR-143-3p, were among the most expressed miRNAs in all preparations of all three tis-
sues while miR-26a-5p and miR-30a-5p were also in the top ten miRNAs in all groups except
cooked adrenal. The muscle-specific miR-1 was prominent in sirloin and heart-based prepara-
tions while miR-206, another muscle-specific miRNA, was prevalent in both raw and cooked

Fig 3. Multivariate Analysis of miRNA Profiles. A) Principle component analysis and B) hierarchical clustering of the log2 transformed normalized read
counts of the 105 differentially detected miRNAs determined by ANOVA.

doi:10.1371/journal.pone.0138275.g003
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sirloin. In all adrenal-based groups, miR-146b-5p was detected at higher reader counts com-
pared with sirloin and heart groups.

Quantitative reverse transcription PCR (RT-qPCR) validation of deep
sequencing results
Sequencing results from the raw and prepared tissues were validated by RT-qPCR using Taq-
man1 assays. We first validated two miRNAs (miR-10b-5p, and miR-143-3p) that were ubiq-
uitously detected in all sequenced samples. A significant correlation was observed between the
log10-transformed read counts (3.2–5.7) and the Ct values (22.6–35.3) for both of these miR-
NAs (Fig 5). We also validated three miRNAs found at higher read counts in sirloin (miR-206),
heart (miR-221-3p), and adrenal (miR-146b-5p). In each case, lower Ct values (corresponding
to higher expression) were obtained in the expected tissue (Fig 5). Finally we validated two
miRNAs (miR-506 and miR-889) that were not detected in any sample by sequencing. As

Fig 4. miRNA Profiles of Raw and Prepared Tissues. The average percentage contribution to the total human-annotated miRNA profile of the 10 most
abundant miRNAs in each tissue and process group. Raw tissue miRNAs were each assigned a unique color. All miRNAs given a white background were
present among the 10 most abundant miRNAs in cooked or dried extract samples but not the corresponding raw tissue.

doi:10.1371/journal.pone.0138275.g004
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expected, RT-qPCR analysis of these miRNAs in sirloin, heart, and adrenal-based raw and pre-
pared samples confirmed the absence or near absence of these miRNAs (Ct values of greater
than 36 or undetermined).

Discussion
The publication of a surprising 2012 research article by Zhang and colleagues [3], which pro-
vided the first direct evidence for the absorption and bioactivity of a rice-based dietary miRNA
in mice, awakened the broader scientific community to the paradigm-altering notion that miR-
NAs within food might have nutritional relevance. Several follow-up studies, also examining
primarily rice and vegetable miRNAs, have had limited success in expanding on these findings
[5–10]. In contrast, investigations examining the potential nutritional bioactivity of animal-
based miRNAs in milk were already occurring prior to Zhang’s article and continue to yield
promising results [11–15]. Consumption of raw cow’s milk in early life is strongly associated
with decreased incidence of atopic syndrome (the predisposition to certain allergic hypersensi-
tivity reactions) and could be one reason for the lower incidence of atopic challenges among

Fig 5. RT-qPCR Validation of Sequencing Results. A) Pearson’s correlation analysis of log10 normalized sequencing reads with Ct values for miR-10b-5p
and miR-143-3p across tissue and process groups. B) Ct values for miR-206, miR-221-3p, and miR-146-5p across tissue and process groups. Data is
expressed as mean ± SD, * significantly different (p<0.05) from all samples derived from different tissue types. † significantly different (p<0.05) from raw and
cooked sirloin only.

doi:10.1371/journal.pone.0138275.g005
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individuals raised in a traditional farm setting [18–20]. Immunomodulatory miRNAs includ-
ing miR-155, miR-146a, and miR-21 have now been proposed as bioactive molecules that elicit
the atopy-protective effects of raw milk and colostrum by promoting the maturation of
demethylated CD4+CD25+FoxP3+ regulatory T cells [15]. This hypothesis has now been fur-
ther bolstered by recent findings that bovine miRNAs from milk are indeed absorbed by mice
as well as humans into the systemic circulation [14].

Here, we have shown via deep sequencing and RT-qPCR that, in addition to milk, diverse
and tissue-specific patterns of human-homologous miRNAs are also present in both conven-
tionally cooked bovine meat and dried tissues. To our knowledge, these findings represent the
first effort to catalog the complete profile of human homologous dietary miRNAs within con-
sumable animal tissues.

Our experimental strategy was designed to not only identify dietary miRNAs in edible
bovine-based consumable products but also to determine the effect of common preparation
methods on the miRNAs present in the raw tissues. In our study, miRNAs were found to sur-
vive both pan-frying or pasteurization with subsequent freeze-drying, but we observed some
differences between the two processes. First, we found that conventional pan-frying led to a
20–50% reduction in the number of miRNAs detected at 10 or greater reads in all three repli-
cates of heart and adrenal, though interestingly, no such reduction was observed in cooked sir-
loin. In contrast, processing of these tissues to a dried extract largely preserved the raw tissue
miRNA profile. We utilized a skillet temperature of 350°F (177°C) which was chosen to model
common pan-frying methods for beef products [21]. In comparison, liquid tissue extracts were
flash pasteurized at 72°C for 15 s prior to freeze-drying. Thus, miRNAs present near the bur-
ger-skillet interface were exposed to higher heat and may have been more rapidly degraded.
Second, we observed an unexpected increase in the percentage of adapter-trimmed reads anno-
tated as known miRNAs and a corresponding 22 Nt enrichment in sequenced RNA from labo-
ratory-made heart and adrenal dried extracts compared with their respective raw tissues. The
reason for this enrichment is presently unclear, but warrants further study. Overall, our results
are consistent with recent observations that endogenous miRNAs within tissue and biofluid
samples are stable even under conditions of high heat or acidity [12,17]. In contrast, exogenous
free miRNAs are rapidly degraded when placed into plasma [22]. The stability of endogenous
miRNAs may stem from their association with high-density lipoproteins, exosomes, and Argo-
naute 2 [12, 23,24]. Such interactions may have contributed to the observed stability of native
miRNAs within tissues during heat treatment.

Two miRNAs, miR-10b-5p and miR-143-3p, were found at high levels in nearly all tested
samples. Previous studies have found that miR-10b-5p targets Hox genes [25] while miR-143-
3p helps to regulate cardiac morphogenesis [26]. Our findings of their ubiquitous expression in
adult tissues suggest they have some fundamental biological role beyond development. Other
dietary miRNAs that we detected at high levels do have known functions specific to the tissues
in which they were observed. In sirloin and heart, several muscle-specific miRNAs (myomiRs)
were observed: including miR-1, essential for the development and homeostasis of smooth and
skeletal muscle [27,28], miR-378a-3p, involved in exercise-induced muscle hypertrophy [29],
and miR-486-5p, which is also modulated by exercise and helps regulate the differentiation of
myoblasts [30]. Sirloin contained the most abundant levels of miR-206, a well-studied and
prominent skeletal muscle-specific miRNA [31], whereas heart tissue contained higher relative
levels of miR-99a-5p and miR-100-5p. Both of these miRNAs target the Akt-mTOR signaling
pathway, which regulates muscle protein synthesis [32]. Less is known regarding adrenal-spe-
cific miRNAs, however, higher relative levels of miR-146b-5b, which has been previously
detected in adrenal tissue [33], were observed. The function of this miRNA within adrenal has
not been studied.
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Increasing evidence suggests that absorption of dietary miRNAs into the systemic circula-
tion following oral intake may not always be efficient in mammals [5–7,10]. Those protected
within exosomes or bound to proteins may be more stable and bioavailable [11–15, 22–24].
Even if they are not well absorbed into systemic circulation, dietary miRNAs could affect the
gut itself. For example, immunologically-based dietary miRNAs, such as those found in milk,
could exert effects within the gut-associated lymphoid tissue.

One important limitation of the present study is that we have provided only a relative rather
than absolute quantification of meat-based miRNAs. Our primary objective was a broad char-
acterization of the stability and diversity of dietary miRNAs within edible animal tissues. These
data can now be utilized as a foundation from which to select dietary miRNAs of particular
interest for quantitative analysis, an effort that is now much more feasible with the advent of
droplet digital PCR technology. Accurately determining the net dose of dietary miRNAs within
edible animal products as well as their bioavailability will be essential to fully assess their nutri-
tional relevance.

In conclusion, we have identified numerous human homologous dietary miRNAs within
cooked top sirloin and dried bovine tissue extracts. Each tissue was found to contain a unique
profile of miRNAs, and these profiles remained largely intact following conventional pan-fry-
ing and flash pasteurization. These miRNAs can be considered unique constituents of edible
animal tissues, but further experiments will be necessary to determine their exact nutritional
effects.
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