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Abstract

Aims

To demonstrate that pregnancy-related complications are associated with alterations in car-
diovascular and cerebrovascular microRNA expression. Gene expression of 32 microRNAs
(miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p,
miR-24-3p, miR-26a-5p, miR-29a-3p, miR-33a-5p, miR-92a-3p, miR-100-5p, miR-103a-3p,
miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-
145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-208a-3p,
miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in
placental tissues, compared between groups (35 gestational hypertension, 80 preeclamp-
sia, 35 intrauterine growth restriction and 20 normal pregnancies) and correlated with the
severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound
parameters. Initially, selection and validation of endogenous controls for microRNA expres-
sion studies in placental tissues affected by pregnancy-related complications have been
carried out.

Results

The expression profile of microRNAs was different between pregnancy-related complica-
tions and controls. The up-regulation of miR-499a-5p was a common phenomenon shared
between gestational hypertension, preeclampsia, and intrauterine growth restriction.
Preeclamptic pregnancies delivering after 34 weeks of gestation and IUGR with abnormal
values of flow rate in the umbilical artery demonstrated up-regulation of miR-1-3b. Pre-
eclampsia and IUGR requiring termination of gestation before 34 weeks of gestation were
associated with down-regulation of miR-26a-5p, miR-103a-3p and miR-145-5p. On the
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other hand, some of microRNAs (miR-16-5p, miR-100-5p, miR-122-5p, miR-125b-5p, miR-
126-3p, miR-143-3p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-
3p) were only down-regulated or showed a trend to down-regulation just in intrauterine
growth restriction pregnancies requiring the delivery before 34 weeks of gestation.

Conclusion

Epigenetic changes induced by pregnancy-related complications in placental tissue may
cause later onset of cardiovascular and cerebrovascular diseases in offspring.

Introduction

Preeclampsia and fetal growth restriction (FGR) are major complications affecting 2-10% of
pregnancies responsible for maternal and perinatal morbidity and mortality [1, 2]. Preeclamp-
sia usually develops after 20 weeks of gestation and is characterized by chronic or gestational
hypertension combined with proteinuria [3], which results from defective placentation eliciting
inadequate uteroplacental blood perfusion and ischemia [4, 5]. The causes of preeclampsia and
FGR remain unknown; however, preeclampsia is thought to be an implantation disorder [6].

Hypertension in pregnancy induces long-term metabolic and vascular abnormalities that
might increase the overall risk of cardiovascular, cerebrovascular, and kidney diseases, as well
as diabetes mellitus, later in life [7-9]. Increasing evidence suggests an association between pre-
eclampsia or eclampsia and the risk for latter developing hypertension, atherosclerosis, ische-
mic heart disease, congestive heart failure, stroke, and deep venous thrombosis, and metabolic
syndrome [10-15]. Increased risk for ischemic heart disease, myocardial infarcts, heart failure,
and ischemic stroke has also been observed among women with gestational hypertension [9].
Women with a history of pregnancy complicated by intrauterine growth restriction and low
infant birth weight are at a higher risk for subsequent ischemic heart disease as well [16]. Epi-
demiologic and experimental data strongly indicate that children born to a pregnancy compli-
cated by preeclampsia have an unique, life time cardiovascular risk profile that is present from
early life, and represent a population that may benefit from early implementation of primary
prevention strategies [17]. Childhood obesity, hypertension, and diabetes are the most com-
mon intermediate and long-term health consequences of fetal undernutrition caused by pla-
cental insufficiency [8, 18]. Interestingly, familial predisposition to preeclampsia occurs. Men
and women exposed to preeclampsia in utero were more likely to trigger preeclampsia in their
partners or develop preeclampsia, respectively [19-21].

MicroRNAs belong to the family of small noncoding RNAs (18-25 nucleotides) that regu-
late gene expression at the posttranscriptional level by degrading or blocking translation of tar-
get messenger RNA (mRNA) [22, 23]. MicroRNA analyses indicate that a variety of tissues
display microRNA expression profiles that are significantly different from normal tissues [24],
which may be useful for a wide range of applications in clinical diagnostics [25]. Recent studies
have shown that preeclampsia and fetal growth restriction are associated with alterations in
microRNA expression in the placenta [26-45].

The aim of the present study was to explore placental tissue expression profile of micro-
RNAs known to be involved in the onset of diverse cardiovascular and cerebrovascular diseases
(miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-
24-3p, miR-26a-5p, miR-29a-3p, miR-33a-5p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-
122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p,

PLOS ONE | DOI:10.1371/journal.pone.0138383 September 22,2015 2/27



@’PLOS ‘ ONE

Cardiovascular and Cerebrovascular miRNAs in Pregnancy Complications

miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-208a-3p, miR-210-
3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p).

We focus mainly on those microRNAs playing a role in pathogenesis of dyslipidaemia
(miR-1-3p, miR-21-5p, miR-33a-5p, miR-122-5p, miR-146a-5p, miR-155-5p) [46-63], hyper-
tension (miR-21-5p, miR-143-3p, miR-145-5p, miR-181a-5p, miR-208a-3p) [64-70], vascular
inflammation (miR-29a-3p, miR-126-3p, miR-146a-5p, miR-155-5p, miR-195-5p, miR-210-
3p, miR-221-3p) [71-73], insulin resistance and diabetes (miR-20b-5p, miR-21-5p, miR-24-
3p, miR-26a-5p, miR-29a-3p, miR-103a-3p, miR-126-3p, miR-133a-3p, miR-181a-5p) [74,
75], atherosclerosis (miR-21-5p, miR-33a-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-
155-5p) [76-82], angiogenesis (miR-16-5p, miR-17-5p, miR-20a-5p, miR-21-5p, miR-92-3p,
miR-100-5p, miR-126-3p, miR-210-3p, miR-221-3p) [83-85], coronary artery disease (miR-1-
3p, miR-17-5p, miR-20a-5p, miR-21-5p, miR-92-3p, miR-126-3p, miR-133a-3p, miR-143-3p,
miR-145-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-208a-3p, miR-221-3p) [83, 86-91],
myocardial infarction and heart failure (miR-1-3p, miR-16-5p, miR-17-5p, miR-20b-5p, miR-
21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92-3p, miR-100-5p, miR-122-
5p, miR-125b-5p, miR-126-3p, miR-103a-3p, miR-133a-3p, miR-181a-5p, miR-195-5p, miR-
199a-5p, miR-208a-3p, miR-210-3p, miR-499a-5p) [92-125].

To our knowledge, no study on cardiovascular and cerebrovascular microRNA expression
in placental tissues derived from gestational hypertension has been carried out. Our study also
describes, for the first time, placental expression of these microRNAs in preeclampsia (miR-
23a-3p, miR-24-3p, miR-33a-5p, miR-92-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-
125b-5p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-199a-5p,
miR-208a-3p, miR-221-3p, miR-499a-5p, and miR-574-3p) or intrauterine growth restriction
(miR-1-3p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-
26a-5p, miR-29a-3p, miR-33a-5p, miR-92-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-
125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p,
miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-208a-3p, miR-210-3p, miR-221-
3p, miR-342-3p, miR-499a-5p, and miR-574-3p).

Materials and Methods
Patients

The study was retrospective. The studied cohort consisted of 170 consecutive Caucasian preg-
nant women involving 35 pregnancies with gestational hypertension (GH), 80 pregnancies
with clinically established preeclampsia (PE), 35 pregnancies complicated by intrauterine
growth restriction (IUGR), and 20 normal pregnancies. Of the 80 patients with preeclampsia,
34 had symptoms of mild preeclampsia and 46 were diagnosed with severe preeclampsia.
Twenty-nine preeclamptic patients required delivery before 34 weeks of gestation and 51
patients delivered after 34 weeks of gestation. Preeclampsia occurred both in previously nor-
motensive patients (57 cases), and was superimposed on pre-existing hypertension (23 cases).
Eleven growth-retarded foetuses were delivered before 34 weeks of gestation and 24 after 34
weeks of gestation. Oligohydramnios or anhydramnios were present in 15 growth-restricted
foetuses.

An examination of blood flow (Doppler ultrasonography) showed an abnormal pulsatility
index (PI) in the umbilical artery (13 preeclampsia and 19 IUGR) and/or in the middle cerebral
artery (11 preeclampsia and 11 IUGR). The cerebro-placental ratio (CPR), expressed as a ratio
between the middle cerebral artery and the umbilical artery pulsatility indexes was below the
fifth percentile in 30 cases (13 preeclampsia and 17 IUGR). Absent or reversed end-diastolic
velocity waveforms in the umbilical artery occurred in 4 cases (1 preeclampsia and 3 IUGR).
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Table 1. The clinical characteristics of normal and complicated pregnancies.

Age (years)
Blood pressure (mmHg)
Systolic
Diastolic
Proteinuria (g/24h)
Gestational age at delivery (weeks)
Pregnancy body mass index
Fetal birth weight (grams)
Mode of delivery
Vaginal
Cesarian section
Fetal sex
Boy
Girl
Glukose status
Normal
GDM/DM

Healthy pregnant women Preeclamptic patients IUGR patients GH patients
(n=20) (n =80) (n=35) (n =35)
30 (26.5-33) 33 (30-36) 30 (27-31) 30 (28-31,5)

118 (110.5-119.5)

155 (143-164.5)

120 (115-131.3)

151 (144-161,5)

72 (70-82) 98 (90-101) 75.5 (70-84.3) 95,5 (90,75-100)
None 1.1 (0.58-3.59) None None
40 (38-41) 36 (33-38) 36.5 (31-38) 39 (39-39)

26.1 (24.8-27.9)
3420 (3170-3750)

29.1 (26.4-32.0)
2650 (1650-3210)

26.4 (24.3-28.3)
2120 (1560—-2490)

30.2 (27.6-34.8)
3320 (2930-3510)

18 (90%) 14 (17.5%) 9 (25.7%) 25 (71.4%)
2 (10%) 66 (82.5%) 26 (74.3%) 10 (28.6%)
11 (55%) 34 (42.5%) 17 (48.6%) 16 (45.7%)
9 (45%) 46 (57.5%) 18 (51.4%) 19 (54.3%)
19 (95%) 77 (96.2%) 34 (97.1%) 35 (100%)
1 (5%) 3 (3.8%) 1 (2.9%) 0

Data are presented as median (25-75 percentile) for continuous variables and as number (percent) for categorical variables.

doi:10.1371/journal.pone.0138383.t001

The clinical characteristics of normal and complicated pregnancies are presented in Table 1.

Women with normal pregnancies were defined as those without medical, obstetrical, or sur-
gical complications at the time of the study and who subsequently delivered full term, singleton
healthy infants weighing > 2500 g after 37 completed weeks of gestation. Gestational hyperten-
sion was defined as high blood pressure that developed after the twentieth week of pregnancy.

Preeclampsia was defined as blood pressure > 140/90 mmHg in two determinations 4
hours apart that was associated with proteinuria > 300 mg/24 h after 20 weeks of gestation [3].
Severe preeclampsia was diagnosed by the presence of one or more of the following findings: 1)
a systolic blood pressure > 160 mmHg or a diastolic blood pressure > 110 mmHg, 2) protein-
uria greater than 5g of protein in a 24-hour sample, 3) very low urine output (less than 500 ml
in 24 h), 4) signs of respiratory problems (pulmonary oedema or cyanosis), 5) impairment of
liver function, 6) signs of central nervous system problems (severe headache, visual distur-
bances), 7) pain in the epigastric area or right upper quadrant, 8) thrombocytopenia, and 9)
the presence of severe fetal growth restriction [3].

Fetal growth restriction was diagnosed when the estimated fetal weight (EFW), calculated
using the Hadlock formula (Astraia Software GmbH), was below the tenth percentile for the
evaluated gestational age, adjustments were made for the appropriate population standards of
the Czech Republic. In addition to fetal weight below the threshold of the 10™ percentile TUGR
foetuses had at least one of the following pathological finding: an abnormal pulsatility index in
the umbilical artery, absent or reversed end-diastolic velocity waveforms in the umbilical
artery, an abnormal pulsatility index in the middle cerebral artery, a sign of a blood flow centra-
lisation, and a deficiency of amniotic fluid (anhydramnios and oligohydramnios).

Centralization of the fetal circulation represents a protective reaction of the fetus against
hypoxia that manifests itself in redistribution of the circulation in the brain, liver and heart at
the expense of the flow reduction in the periphery [126, 127]. The cerebroplacental ratio (CPR)
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quantifies redistribution of cardiac output by dividing Doppler indices from representative
cerebral and fetoplacental vessels.

Patients with a complicated gestation demonstrating premature rupture of membranes, in
utero infections, fetal anomalies or chromosomal abnormalities, and fetal demise in utero or
stillbirth were excluded from the study.

All patients who participated in this study provided written informed consent. The study
was approved by the Ethics Committees of the Third Faculty of Medicine, Charles University
in Prague and the Institute for the Care of the Mother and Child.

Processing of samples

Samples of placenta were collected at the Institute for the Care of the Mother and Child
(Prague, CZ) and stored at —80°C until further processing.

Total RNA was extracted from 30 mg of placental tissue preserved in RNAlater (Ambion,
Austin, USA) followed by an enrichment procedure for small RNAs (siRNAs, microRNAs),
according to manufacturer’s instructions using a mirVana microRNA Isolation kit (Ambion,
Austin, USA). To minimize DNA contamination, we treated the eluted RNA with 5 uL of
DNase I (Fermentas International, Ontario, Canada) for 30 min at 37°C. Using this novel
approach, a RNA fraction highly enriched in RNA species <200nt was obtained, whose con-
centration and quality was assessed using a NanoDrop ND-1000 spectrophotometer (Nano-
Drop Technologies, USA). The A(260/280) absorbance ratio of isolated RNA was 1.8-2.0,
demonstrating that the RNA fraction was pure and could be used for analysis. Additionally,
the A(260/230) ratio was greater than 1.6, demonstrating negligible contamination by
polysaccharides.

Reverse transcriptase reaction using a stem-loop primer

Each of the 32 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p,
miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-33a-5p, miR-92a-3p,
miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-
3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-
199a-5p, miR-208a-3p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-
3p) was reverse transcribed into complementary DNA (cDNA) using a TagMan MicroRNA
Assay, containing microRNA-specific stem-loop RT primers (Table 2), and TagMan Micro-
RNA Reverse Transcription Kit (Applied Biosystems, Branchburg, USA) in a total reaction vol-
ume of 10 pL, according to manufacturer’s instructions. Reverse transcriptase reactions were
performed using a 7500 Real-Time PCR system (Applied Biosystems, Branchburg, USA) with
the following thermal cycling parameters: 30 minutes at 16°C, 30 minutes at 42°C, 5 minutes at
85°C, and then held at 4°C. Finally, 12 ng of the RNA template was used for each RT reaction.

Relative quantification of microRNAs by real-time PCR

4 uL of cDNA, corresponding to each selected microRNA, were mixed with specific primers
and the TagMan MGB probe (TagMan MicroRNA Assay, Applied Biosystems, Branchburg,
USA), and the ingredients of the TagMan Universal PCR Master Mix (Applied Biosystems,
Branchburg, USA) in a total reaction volume of 20 uL. TagMan PCR conditions were set as
described in the TagMan guidelines. The analysis was performed using a 7500 Real-Time PCR
System. All PCRs were performed in duplicates. Multiple negative controls such as NTC (water
instead of cDNA sample), NAC (non-transcribed RNA samples), and genomic DNA (isolated
from equal biological samples) did not generate any signal during PCR reactions. Each sample
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Table 2. Characteristics of microRNAs involved in the study.

Assay name
hsa-miR-1
hsa-miR-16
hsa-miR-17
hsa-miR-20a
hsa-miR-20b
hsa-miR-21
hsa-miR-23a
hsa-miR-24
hsa-miR-26a
hsa-miR-29a
hsa-miR-33a
hsa-miR-92a
hsa-miR-100
hsa-miR-103
hsa-miR-122
hsa-miR-125b
hsa-miR-126
hsa-miR-130b
hsa-miR-133a
hsa-miR-143
hsa-miR-145
hsa-miR-146a
hsa-miR-155
hsa-miR-181a
hsa-miR-195
hsa-miR-199a
hsa-miR-208
hsa-miR-210
hsa-miR-221
hsa-miR-342-3p
mmu-miR-499
hsa-miR-574-3p

miRBase ID
hsa-miR-1-3p
hsa-miR-16-5p
hsa-miR-17-5p
hsa-miR-20a-5p
hsa-miR-20b-5p
hsa-miR-21-5p
hsa-miR-23a-3p
hsa-miR-24-3p
hsa-miR-26a-5p
hsa-miR-29a-3p
hsa-miR-33a-5p
hsa-miR-92-3p
hsa-miR-100-5p
hsa-miR-103a-3p
hsa-miR-122-5p
hsa-miR-125b-5p
hsa-miR-126-3p
hsa-miR-130b-3p
hsa-miR-133-3p
hsa-miR-143-3p
hsa-miR-145-5p
hsa-miR-146a-5p
hsa-miR-155-5p
hsa-miR-181a-5p
hsa-miR-195-5p
hsa-miR-199a-5p
hsa-miR-208a-3p
hsa-miR-210-3p
hsa-miR-221-3p
hsa-miR-342-3p
hsa-miR-499a-5p
hsa-miR-574-3p

doi:10.1371/journal.pone.0138383.t002

NCBI Location Chromosome

Chr20: 61151513-61151583 [+]
Chr13: 50623109-50623197 [-]
Chr13: 92002859-92002942 [+]
Chr13: 92003319-92003389 [+]
ChrX: 133303839-133303907 [-]
Chr17: 57918627-57918698 [+]
Chr19: 13947401-13947473 [-]
Chr19: 13947101-13947173 [-]
Chr3: 38010895-38010971 [+]
Chr7: 130561506—130561569 []
Chr22: 42296948-42297016 [+]
Chr13: 92003568-92003645 [+]
Chr11: 122022937-122023016 [-]
Chr20: 3898141-3898218 [+]
Chr18: 56118306-56118390 [+]
Chr21: 17962557—17962645 [+]
Chr9: 139565054—139565138 [+]
Chr22: 22007593-22007674 [+]
Chr20: 61162119-61162220 [+]
Chr5: 148808481—148808586 [+]
Chr5: 148810209—148810296 [+]
Chr5: 159912359—159912457 [+]
Chr21: 26946292-26946356 [+]
Chr9: 127454721-127454830 [+]
Chr17: 6920934-6921020 []
Chr19: 10928102—-10928172 [-]
Chr14: 23857805-23857875 [-]
Chri1: 568089-568198 [-]

ChrX: 45605585-45605694 []
Chr14: 100575992—100576090 [+]
Chr20: 33578179-33578300 [+]
Chrd: 38869653-38869748 [+]

microRNA sequence

5-UGGAAUGUAAAGAAGUAUGUAU-3’
5-UAGCAGCACGUAAAUAUUGGCG- 3"
5-CAAAGUGCUUACAGUGCAGGUAG-3"
5-UAAAGUGCUUAUAGUGCAGGUAG-3"
5-CAAAGUGCUCAUAGUGCAGGUAG-3’
5-UAGCUUAUCAGACUGAUGUUGA-3’
5-AUCACAUUGCCAGGGAUUUCC-3’
5-UGGCUCAGUUCAGCAGGAACAG-3’
5-UUCAAGUAAUCCAGGAUAGGCU-3’
5-UAGCACCAUCUGAAAUCGGUUA-3’
5-GUGCAUUGUAGUUGCAUUGCA-3’
5-UAUUGCACUUGUCCCGGCCUGU-3"
5-AACCCGUAGAUCCGAACUUGUG-3’
5-AGCAGCAUUGUACAGGGCUAUGA-3’
5-UGGAGUGUGACAAUGGUGUUUG-3’
5-UCCCUGAGACCCUAACUUGUGA-3’
5-UCGUACCGUGAGUAAUAAUGCG-3’
5-CAGUGCAAUGAUGAAAGGGCAU-3’
5-UUUGGUCCCCUUCAACCAGCUG-3’
5-UGAGAUGAAGCACUGUAGCUC-3’
5-GUCCAGUUUUCCCAGGAAUCCCU-3’
5-UGAGAACUGAAUUCCAUGGGUU-3"
5-UUAAUGCUAAUCGUGAUAGGGGU-3"
5-AACAUUCAACGCUGUCGGUGAGU-3"
5-UAGCAGCACAGAAAUAUUGGC-3’
5-CCCAGUGUUCAGACUACCUGUUC-3"
5-AUAAGACGAGCAAAAAGCUUGU-3"
5-CUGUGCGUGUGACAGCGGCUGA-3’
5-AGCUACAUUGUCUGCUGGGUUUC-3’
5-UCUCACACAGAAAUCGCACCCGU-3’
5-UUAAGACUUGCAGUGAUGUUU-3"
5-CACGCUCAUGCACACACCCACA-3’

was considered positive if the amplification signal occurred before the 40" threshold cycle

(Ct < 40).
The expression of particular microRNA was determined using the comparative Ct method

[128] relative to normalization factor (geometric mean of two selected endogenous controls)
[129]. Stability of candidate endogenous controls was evaluated using NormFinder (available:
http://moma.dk/normfinder-software), an ANOVA-based model, which returns standard
deviation (SD) value, accumulated SD (Acc.SD) value and stability value, named variability
[130-132]. In total, expression of 19 candidate endogenous controls (HY3, RNU6B, RNU19,
RNU24, RNU38B, RNU43, RNU44, RNU48, RNU49, RNU58A, RNU58B, RNU66, RPL21, U6
snRNA, U18, U47, U54, U75, and Z30) was investigated in placental tissue samples.

The identification and validation analyses of suitable endogenous controls for normalization

in placental tissues revealed that RNU58A and U54 were equally expressed between patients
with normal course of gestation, preeclampsia and IUGR. In case of gestational hypertension
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qPCR data were normalized to U6snRNA and RNU66. These small nucleolar and nuclear
RNAs also served as positive controls for successful extraction of RNA from all samples and
were used as internal controls for variations during the preparation of RNA, cDNA synthesis,
and real-time PCR.

RNA fraction highly enriched for small RNA isolated from the fetal part of one randomly
selected placenta derived from gestation with normal course (the part of the placenta derived
from the chorionic sac that encloses the embryo, consisting of the chorionic plate and villi) was
used as a reference sample for relative quantification throughout the study.

Statistical analysis

Data normality was assessed using the Shapiro-Wilk test, which showed that our data did not
follow a normal distribution. Therefore, microRNA levels were compared between groups
using non-parametric tests (the Mann-Whitney U test for the comparison between two groups
and the Kruskal-Wallis test for the comparison among multiple groups). Since the Bonferroni
correction was used to address the problem of multiple comparisons, the significance level was
established at a p-value of p < 0.025 for the comparison between two groups and p-value of

p < 0.017 for the comparison among multiple groups.

Data analysis was performed and box plots were generated using Statistica software (version
9.0; StatSoft, Inc., USA). Each box encompasses the median (dark horizontal line) of log-nor-
malized gene expression values for microRNAs of interest in cohorts; the upper and lower lim-
its of the boxes represent the 75" and 25" percentiles, respectively. The upper and lower
whiskers represent the maximum and minimum values that are no more than 1.5 times the
span of the interquartile range (range of the values between the 25" and the 75" percentiles).
Outliers are indicated by circles and extremes by asterisks.

Information on microRNA-gene-Disease ontology interactions

MIiRDB (available: http://mirdb.org/miRDB/) and miRTar databases (available: http://mirtar.
mbc.nctu.edu.tw/human/) were used to predict targets of those microRNAs that have been
found to be dysregulated in placental tissues of patients with pregnancy-related complications.

MIiRDB is an online database for miRNA target prediction and functional annotations. All
the targets were predicted by a bioinformatics tool, MirTarget, which was developed by analyz-
ing thousands of miRNA-target interactions from high-throughput sequencing experiments.
Common features associated with miRNA target binding have been identified and used to pre-
dict miRNA targets with machine learning methods.

MicroRNA Target prediction (miRTar) is a tool that enables biologists easily to identify the
biological functions and regulatory relationships between a group of known/putative miRNAs
and protein coding genes. It also provides perspective of information on the miRNA targets on
alternatively spliced transcripts.

Further, miRWalk database (available: http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/) and the Validated Targets module were used to provide information on experimen-
tally verified interaction between appropriate microRNA and specific genes on human disease
ontologies such as heart disease, myocardial infarction, congestive heart failure, vascular dis-
ease, cerebral infarction, hypertension, obesity, atherosclerosis, hypercholesterolemia and dia-
betic angiopathy, insulin resistance and diabetes [133]. miRWalk is a comprehensive database
that provides information on miRNA from human, mouse, and rat on their predicted as well
as validated binding sites on their target genes. Information on miRNA-target interactions on
2,035 disease ontologies (DO), 6,727 Human Phenotype ontologies (HPO) and 4,980 OMIM
disorders is available.
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Fig 1. Identification of the most suitable endogenous controls in placental tissues of patients with
preeclampsia and IUGR. The identification and validation analyses reveal that RNU58A and U54 are
equally expressed between patients with normal course of gestation, preeclampsia and IUGR.

doi:10.1371/journal.pone.0138383.g001

Results

Selection and validation of endogenous controls for microRNA
expression studies in placental tissues affected by pregnancy-related
complications

Expression of 19 candidate endogenous controls (HY3, RNU6B, RNU19, RNU24, RNU38B,
RNU43, RNU44, RNU48, RNU49, RNU58A, RNU58B, RNU66, RPL21, U6 snRNA, U18,
U47, U54, U75, and Z30) was investigated in placental tissue samples obtained from 80
patients (20 normal gestation, 20 GH, 20 PE and 20 IUGR) using NormFinder [130-132]. The
results were then validated using larger group of samples (20 normal gestations, 35 GH, 80 PE
and 35 IUGR). In both analyses, RNU58A and U54 were identified as the most stable ncRNA
and equally expressed between patients with normal and abnormal course of gestation (pre-
eclampsia and IUGR), (Fig 1). The equivalent expression between normal gestation and gesta-
tional hypertension groups was confirmed for other two candidate endogenous controls:
U6snRNA and RNU66 (Fig 2). Therefore, these small nucleolar and nuclear RNAs were
selected as the most suitable endogenous controls for normalization of microRNA qPCR
expression studies performed on placental tissues affected by pregnancy-related complications.

Exclusion of miR-33a-5p and miR-208a-3p from further analyses

Unfortunately, miR-33a-5p and miR-208a-3p displayed repeatedly poor amplification curves
in placental tissue samples, and therefore were excluded from further analyses.
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Cardiovascular and cerebrovascular disease associated microRNAs are
dysregulated in placental tissues affected with gestational hypertension,
preeclampsia and intrauterine growth restriction

Gene expression of microRNAs was compared between normal and complicated pregnancies.
Gene expression of microRNAs was analysed in relation to the severity of the disease with
respect to the degree of clinical signs (mild vs. severe preeclampsia, absence vs. presence of oli-
gohydramnios or anhydramnios in growth-restricted foetuses) and delivery dates (before or
after 34 weeks of gestation). Additionally, the association between microRNA gene expression
and the occurrence of previous hypertension in the group of patients with preeclampsia was
determined.

The association between gene expression of particular microRNAs and Doppler ultrasonog-
raphy parameters (the pulsatility index in the umbilical artery, the pulsatility index in the mid-
dle cerebral artery and the cerebroplacental ratio) was analysed in the cohort of pregnancies
complicated with preeclampsia or intrauterine growth restriction. Just the results that reached
a statistical significance or displayed a trend toward higher or lower microRNA levels in pla-
cental tissues derived from abnormal cases are presented below.

Up-regulation of miR-499a-5p is a common feature of gestational hypertension, pre-
eclampsia and IUGR. After the correction for multiple comparisons, it was found that the
expression of miR-499a-5p differed significantly between the control group and pregnancies
affected with pregnancy complications. Higher expression rates were detected in patients with
gestational hypertension (p = 0.013), preeclampsia (p< 0.001), and intrauterine growth restric-
tion (p = 0.011), (Fig 3A and 3B).

Best gene U6snRNA
Stability value 0,129
Best combination of two genes U6snRNA and RNU66
Stability value for best combination of two genes 0,102

Stability value

0,250

0,200

0,150
0,100
0,050
0,000

UBsnRNA RNU66 RNU38B RNU6B

Fig 2. Identification of the most suitable endogenous controls in placental tissues of patients with
gestational hypertension. The identification and validation analyses reveal that UsnRNA and RNU66 are
equally expressed between patients with normal course of gestation and gestational hypertension.

doi:10.1371/journal.pone.0138383.g002

PLOS ONE | DOI:10.1371/journal.pone.0138383 September 22,2015 9/27



el e
@ ' PLOS ‘ ONE Cardiovascular and Cerebrovascular miRNAs in Pregnancy Complications

A miR-499a-5p B miR-499a-5p
1,0 _ _
| p=0.013 } 3 | p=0.011 |
< 0.001
05 —_— Ip—1
< : c 2 o
S 00 S
» » N
o
3 g1
o _0‘5 L —_—
o o
) &)
o o
4 4
=10 'n_: 0
= s T
i E
15 1
2,0 . 4L L L
=3 - -
Normal pregnancies Gestational hypertension Normal pregnancies Preeclampsia IUGR
(n=20) (n=35) (n=20) (n=80) (n=35)
C miR499a-5p D miR-499a-5p
25
‘ p=0.001 ) 25 | p< 0.001 |
2,0 p= 0.003 o p=0.029
e E—— 2,0 A —
5 s *
7 15 - e 10
o - | <
o Qo
X 00 X 05
o o —_
g Q 00
S 05 >
E B
x -05
o
o -1.0 2
° 810
15 ‘ 15 i
1
3,0 - - 3,0
Normal pregnancies mild PE severe PE Normal pregnancies PE delivering before PE delivering after
(n=20) (n=34) (n=46) (n=20) 34 week of gestation 34 week of gestation
(n=29) (n=51)
E miR499a-5p F miR-499a-5p
2,0
3 _
. p=0.008 ‘ | p=0016 |
" | | p< 0.001
o A
§ g 2
ko ‘B
3 s 1 o
o o
g 0s &
7 A
B £ o
£ 10 3 T
o [
o o
15 J‘ -1
I I
3,0 -3
Normal pregnancies IUGR delivering before IUGR delivering after Normal pregnancies PE without previous PE with previous
(n=20) 34 week of gestation 34 week of gestation (n=20) hypertension hypertension
(n=11) (n=24) (n=57) (n=23)

Fig 3. Up-regulation of miR-499a-5p is a common feature of gestational hypertension, preeclampsia and IUGR. Expression of miR-499a-5p differs
significantly between the control group and pregnancies affected with (A) gestational hypertension, (B) preeclampsia and IUGR. Up-regulation of miR-499a-
5p occurs in both, mild and severe preeclampsia (C). Gene expression of miR-499a-5p differs significantly between preeclamptic pregnancies delivering
after 34 week of gestation and normal pregnancies (D). The difference between preeclamptic pregnancies requiring the delivery before 34 week of gestation
and controls was only a trend (D). When compared to normal pregnancies, significant up-regulation of miR-499a-5p was observed in IUGR pregnancies
delivering after 34 week of gestation (E). Up-regulation of miR-499a-5p appears in patients with unexpected onset of preeclampsia as well as in those with
preeclampsia superposed on chronic and/or gestational hypertension (F).

doi:10.1371/journal.pone.0138383.g003

When compared to normal pregnancies, significant up-regulation of miR-499a-5p was
observed in both, mild (p = 0.003), and severe preeclampsia (p = 0.001) (Fig 3C). While gene
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expression of miR-499a-5p differed significantly between preeclamptic pregnancies delivering
after 34 weeks of gestation and normal pregnancies (p< 0.001), the difference between pre-
eclamptic pregnancies requiring the delivery before 34 weeks of gestation and controls was
only a trend (p = 0.029) (Fig 3D). Similar results were achieved in case of [IUGR (IUGR with
the onset before 34 weeks of gestation: p = 0.256 and IUGR with the onset after 34 weeks of ges-
tation: p = 0.008) (Fig 3E).

The statistical analyses revealed the difference between the group of preeclampsia super-
posed on chronic hypertension and/or gestational hypertension compared to control group
(p = 0.016). The higher expression of miR-499a-5p in the group of patients with unexpected
onset of preeclampsia was also observed (p< 0.001) (Fig 3F).

Up-regulation of miR-1-3p represents a common feature of preeclamptic pregnancies
delivering after 34 week of gestation and IUGR with abnormal values of flow rate in the
umbilical artery. After the correction for multiple comparisons, a significant difference in
miR-1-3p expression was found between the control group and preeclampsia patients deliver-
ing after 34 weeks of gestation (p = 0.012) (Fig 4A).

IUGR pregnancies with abnormal blood flow velocity waveforms also showed significantly
increased expression of miR-1-3p compared to IUGR patients with normal values of flow rate
in the umbilical artery (p = 0.019), (Fig 4B).

Down-regulation of miR-26a-5p, miR-103a-3p, and miR-145-5p represents a common
feature of preeclampsia and IUGR requiring the delivery before 34 weeks of gestation.
After the correction for multiple comparisons, statistical analysis revealed that placental
expression of miR-26a-5p (p = 0.013), miR-103a-3p (p = 0.006) and miR-145-5p (p = 0.016),
differed significantly between the control group and pregnancies affected with preeclampsia
that required delivery before 34 weeks of gestation (Fig 5A, 5B and 5C). Parallel, a significant
difference in miR-145-5p expression (p = 0.011) was found between IUGR requiring the deliv-
ery before 34 weeks of gestation and normal pregnancy groups (Fig 6A). A trend toward statis-
tical significance for down-regulation of miR-26a-5p (p = 0.031) and miR-103a-3p (p = 0.047)
was observed for IUGR pregnancies delivering before 34 weeks of gestation (Fig 6B and 6C).

Down-regulation of miR-16-5p, miR-100-5p, miR-122-5p, miR-125b-5p, miR-126-3p,
miR-143-3p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p repre-
sents an unique feature of IUGR requiring the delivery before 34 weeks of gestation. The
down-regulation of 3 of 30 microRNAs was associated with [UGR requiring termination before
34 weeks of gestation (miR-122-5p, p = 0.003; miR-125b-5p, p = 0.005; miR-195-5p, p = 0.012)
(Fig 7A, 7B and 7C). Several cardiovascular microRNAs showed a trend to lower expression in
placental tissues derived from IUGR cases terminated before 34 weeks of gestation (miR-16-5p,
p = 0.018; miR-100-5p, p = 0.023; miR-126-3p, p = 0.033; miR-143-3p, p = 0.043; miR-199a-5p,
p = 0.043; miR-221-3p, p = 0.042; miR-342-3p, p = 0.039 and miR-574-3p, p = 0.042) (Fig 8A-
8H).

Information on microRNA-gene-Disease ontology interactions. The extensive file of
predicted or verified targets of all aberrantly expressed microRNAs in placental tissues derived
from patients with established gestational hypertension, preeclampsia, or intrauterine growth
restriction indicate that a large group of genes may be potentially dysregulated since prenatal
period of life (Table 3).

Discussion

Relative quantification of microRNA expression requires proper normalization strategy to
minimize systematic and technical bias introduced at each step of microRNA quantification
process [132, 134, 135]. A proper normalization of microRNA quantification requires a careful
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choice and validation of endogenous controls in the representative sample of the studied popu-
lation [132, 136]. No previous report described an experimental identification and validation
of suitable endogenous controls for normalization in pregnancy-related complications. Thus
we aimed to experimentally identify the most stable endogenous controls for normalization of
microRNA qPCR expression studies in gestational hypertension, preeclampsia and intrauterine
growth restriction, which comprise the most common pregnancy-related complications. Anal-
yses performed by our group revealed that RNU58A and U54 were the most stable endogenous
controls in preeclamptic and IUGR placenta tissues. On the other hand, NormFinder indicated
that other two non-coding small RNA (U6snRNA and RNU66) were optimal for qPCR data
normalization in GH placental tissues.

Most studies on microRNA profiling in placental tissues derived from pregnancy-related
complication relied on arbitrarily chosen endogenous controls. U6snRNA that is the most
commonly used endogenous control, was characterized by high inter-group variation in that
study when its placental tissue expression was compared between preeclampsia, [IUGR and
normal pregnancies.

Gene expression of cardiovascular and cerebrovascular microRNAs was compared between
normal and complicated pregnancies. We focus mainly on those microRNAs being previously
reported to play a role in pathogenesis of dyslipidaemia, hypertension, obesity, vascular inflam-
mation, insulin resistance and diabetes, atherosclerosis, angiogenesis, coronary artery disease,
myocardial infarction and heart failure.

PLOS ONE | DOI:10.1371/journal.pone.0138383 September 22,2015
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Opverall, the expression profile of studied microRNAs was different between complicated
pregnancies and controls. With regard to individual pregnancy-related disorder subtypes, up-
regulation of only 1 out of 30 studied microRNAs was found in placental tissues derived from
patients with gestational hypertension, clinically established preeclampsia and intrauterine
growth restriction (miR-499a-5p).

Based on the results of our study, we further studied the association between microRNA
expression in placental tissues and the severity of the disease with respect to the degree of clini-
cal signs, delivery date (before or after 34 weeks of gestation) and Doppler ultrasound examina-
tion. Cardiovascular and cerebrovascular disease associated microRNA gene expression
appeared linked to the sudden onset of severe clinical symptoms requiring urgent termination
of pregnancy by Caesarean section, to avoid potentially serious maternal and perinatal out-
comes. Our results showed that 3 microRNAs (miR-26a-5p, miR-103a-5p, miR-145-5p) were
dysregulated in preeclampsia requiring termination before 34 weeks and 14 microRNAs (miR-
16-5p, miR-26a-5p, miR-100-5p, miR-103a-5p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-
143-3p, miR-145-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p)
were altered in IUGR terminated before 34 weeks of gestation. This data suggests the involve-
ment of these microRNAs in the pathogenesis of preeclampsia and IUGR.
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Fig 7. Down-regulation of miR-122-5p, miR-125b-5p, and miR-195-5p in IUGR. The expression of miR-122-5p (A), miR-125b-5p (B) and miR-195-5p (C)
differs significantly between the control group and pregnancies affected with IUGR requiring the delivery before 34 week of gestation.

doi:10.1371/journal.pone.0138383.9g007

Pregnancy-related complications such as gestational hypertension, preeclampsia and intra-
uterine growth restriction were observed to be associated with the same microRNA expression
profile concerning mir-499a-5p. Nevertheless, the longer the pregnancy-related disorder lasted,
the more extensive up-regulation of mir-499a-5p appeared. This suggests that the dysregula-
tion of mir-499a-5p firstly appears during the onset of clinical symptoms of the disease, but
could be intensified as a result of a sustainable development of compensatory mechanism
when the disease persists for several weeks.

On the other hand, the dysregulation of miR-1-3p, which appears in preeclamptic pregnan-
cies delivering after 34 weeks of gestation only, does not apparently drive the pathological pro-
cess itself, but could be reflective of a long-term compensatory mechanism.

Limited data comparing mir-100-5p, miR-103a-3p, mir-122-5p, miR-125b-5p, miR-143-3p,
miR-145-5p, miR-199a-5p, miR-221-3p, mir-342-3p, mir-499a-5p, and mir-574-3p levels
between the groups of normal and complicated pregnancies are available.

With regard to miR-1-3p, our data are inconsistent with the studies of Zhu et al. [28] and
Enquobahrie et al. [29] who found miR-1-3p to be significantly down-regulated in preeclamp-
tic placentas.

The difference in the expression levels of microRNAs might be explained by different exper-
imental approaches. Zhu et al. [28] performed the study mainly using tissue from the decidual
side of the placenta (a collection of pooled tissue fragments derived from 10 randomly selected
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Fig 8. A trend to lower microRNA expression in IUGR pregnancies requiring the delivery before 34 week of gestation. MiR-16-5p (A), miR-100-5p
(B), miR-126-3p (C), miR-143-3p (D), miR-199a-5p (E), miR-221-3p (F), miR-342-3p (G), and miR-574-3p (H) show a trend to down-regulation in placental
tissues of IUGR pregnancies requiring the delivery before 34 week of gestation.

doi:10.1371/journal.pone.0138383.9008

sites on the placenta) using microarray and real-time RT-PCR, with the experimental data nor-
malised to U6snRNA. Enquobahrie et al. [29] studied homogenates of placental tissues
obtained from 16 various sites by a microarray miRNA profiling followed by validation analy-
sis using real-time PCR with normalization to miR-525-5p. While, our group focused on the
analysis of microRNA gene expression in the area of the central cotyledon and experimental
real-time qRT-PCR data were normalized to RNU58A and U54, experimentally identified
most stable endogenous controls in preeclamptic and IUGR placenta tissues.

Our study produced similar findings to Choi et al. [38], in which they reported no signifi-
cant change in miR-26a-5p levels in severe preeclamptic pregnancies delivering after 34 weeks
of gestation. Nevertheless, there is no study on preeclamptic and/or IUGR pregnancies deliver-
ing before 34 weeks of gestation.

Our data also confirmed data of Maccani et al. [30] who observed as well the difference in
miR-16-5p placental expression between patients with fetal growth restricted foetuses (small
for gestational age) and pregnancies with normal course of gestation. Maccani et al. [30]
applied real-time RT-PCR analysis on a homogenized sample derived from 12 biopsies per pla-
centa with normalization to RNU44. While Hu et al. [27] revealed up-regulation of miR-16-5p
in severe preeclamptic placentas; our study indicated no statistical significance in miR-16-5p
gene expression levels. Hu et al. [27] combined large-scale profiling of microRNA expression
by microarray analysis with comprehensive quantitative analysis of miRNA expression by real-
time RT-PCR relative to U6snRNA. The analyses were done on frozen chorionic tissue blocks
from the central part of the placenta.

Diverse studies focused on placental expression of cardiovascular and cerebrovascular
microRNAs in pregnancy-related complications brought dissimilar results. Hu et al. [27] and
Yang et al. [45] reported significantly increased levels of mir-126-3p and miR-195-5p in pre-
eclamptic placentas, however Bai et al. [33], Yan et al. [39], Hong et al. [40] and Xu et al. [44]
identified miR-126-3p and miR-195-5p significantly downregulated in preeclamptic placentas.
Our study indicated no statistical significance in mir-126-3p and miR-195-5p gene expression
levels in placental tissues affected with preeclampsia, but in pregnancies complicated by IUGR
that required the delivery before 34 weeks of gestation down-regulation of mir-126-3p and
miR-195-5p was observed. Similarly, multiple studies [26-29, 34-36, 42, 44] demonstrated the
up-regulation of miR-210-3p, miR-181a-5p, miR-21-5p and miR-17-5p or down-regulation of
miR-210-3p, miR-181a-5p, miR-21-5p and miR-17-5p in preeclamptic placentas [31, 38, 44],
which was not unfortunately observed in our independent study.

Several other microRNAs such as miR-155-5p, miR-20a-5p, miR-20b-5p, and miR-29a-3p
were found up-regulated in placentas from preeclampsia compared to healthy term deliveries
[26, 34, 36, 41, 43] which is inconsistent with our finding.

It is important to note that only few similarities were observed. The discrepancies in micro-
RNA placental expression may be attributed apart from no uniform way of data normalization
to variability in other factors including patients” individual characteristics (mainly race and
smoking), the sampling site within the placenta, sample handling and processing. Last but not
least any finding needs to be validated in large-scale studies involving sufficient number of
patients within particular studied groups. Proper normalization is a critical but often underap-
preciated aspect of quantitative gene expression analysis. The accuracy of microarrays and
quantitative RT-PCR methods, most frequently used technologies for gene expression
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Table 3. A list of predicted or validated targets of appropriate microRNAs dysregulated in placental tissues of patients with pregnancy-related
complications in relation to cardiovascular or cerebrovascular diseases using miRWalk, miRDB and miRTar databases.

microRNA

miR-1-3p

miR-25a-5p

miR-103a-
3p
miR-145-5p

miR-499a-

5p
miR-16-5p

miR-100-5p

miR-122-5p

miR-125b-
5p

miR-126-3p
miR-143-3p
miR-195-5p

miR-199a-
5p
miR-221-3p

miR-342-3p

miR-574-3p

miRWalk*

494

375

400

46

458

371

121

393

409
37
374

29

416

360

358

miRDB*

419

515

433

495

249

1088

26

187

476

375
1089

334

316

274

16

miRTar*

846

181

273

104

1157

229

237

340

32
20
39

24

253

83

2

Common targets of appropriate microRNA identified in mirWalk and miRDB or miRTar
databases

69 targets: ADAR, ALDH2, ANPEP, ARG1, BDNF, BMP7, CAPG, CAPN1, CCL2, CDK4, CEBPA,
CXCL1, EDN1, EGFR, F11R, F2, FABP3, FADS1, FLNA, FN1, FOXP1, G6PD, GATA4, GCH1,
GJA1, GNAI2, GSTO1, HADH, HDAC4, HMGCR, HMOX1, HSPA1A, HSPA4, HSPD1, IGFT1, IL6,
IL8, KCNE1, KCNN4, KIF5B, LGALST1, LIMS1, LIPC, LRP1, MEF2A, MEX3C, MFN2, NOTCHS3,
NR3C1, NRP1, PIM1, PROCR, PTPN1, PTPRF, SLC27A4, SP1, TCF7L2, THBS1, TIMP3, TLR4,
TPM1, TRPM6, TSHR, UNC93B1, VASP, VEGFA, YWHAZ

38 targets: ABCA1, ADAM9, ADM, AHR, ARHGEF1, ATP1A1, ATP1A2, BCR, CA2, CDC6, CELSR1,
CFLAR, CTGF, CXADR, ESR1, FASN, FOXOg3, GIT2, HSPAS, IL6, LIF, LRP6, NCEH1, NKX2-5,
PALLD, PCNA, PPIA, PTER, PTGS2, RB1, SARS, SLC12A2, SMAD1, TFAM, TGFBR2, TTN,
WNK1, ZNF652

23 targets: APLN, ARF6, CA12, CAV1, CLOCK, CYP2C8, FGF2, FOXP1, FURIN, GPD1, ID2, INSIGT1,
ITGA2, KIF5B, MAP4, MAPK8, MEX3C, MTHFR, NF1, PDE4D, PIK3R1, RORA, TGFBR3

20 targets: ADAM17, AKR1B10, CDK4, CLOCK, CTGF, F11R, IGF1R, IRS1, IRS2, KLF5, MMP1,
MMP12, MMP14, POU5F1, PPP3CA, SERPINE1, SMAD3, STAT1, VEGFA, YES1

0 target

89 targets: AGER, ALDH2, AMPD1, AP2B1, APLN, APLNR, APP, ARG2, ATXN2, CA12, CACNB2,
CD47, CLOCK, COL4A1, COMT, CPT1A, CUL4A, CYP27B1, EGFR, ENTPD1, F2, FASN, FDFT1,
FGF2, FGFR1, FLNA, G6PD, HMOX1, HSPA1A, HSPA1B, HSPA8, HSPD1, CHUK, IFNG, IGF2R,
ITGA2, JAK2, JUN, KCND3, KCNN4, KDR, KIF5B, LITAF, LRP6, MAP4, MAPK8, MERTK, MFN2,
MTHFD1L, MTHFR, NAMPT, NEUROGS3, NF1, NFKB1, NISCH, NRP1, PDE4D, PGLYRP1,
PIK3R1, PIM1, PLAUR, POLB, PON2, PPP1R2, PRKAA1, PTGS2, RORA, RTN3, RTN4, SARS,
SERPINE2, SLC12A2, SLC27A4, SLC7A1, SMAD1, SMADS5, SP1, SYT4, TFPI, TGFBR3, TIMP3,
TNFRSF12A, TP53, VAMPS8, VEGFA, VKORC1, WDTC1, WNT5A, XYLT1

17 targets: APEX1, ATP1A2, ATP2A2, BMPR2, COL4A1, DDAH1, FLT1, FOXP1, HMGBH1, ID1,
IGF1R, INSIG1, MMP13, MTOR, NLRP3, RB1, SMAD7

22 targets: ADAM10, ADAM17, ATP1A2, CDK4, FOXP1, FSTL3, GSTM3, GYS1, HLA-DQA1,
HMOX1, IGF1R, KRT18, NFATC1, PHOX2A, PTPN1, RHOA, SLC7A1, SLC9A1, SOCS1, SOX2,
SRF, TRIB1

35 targets: ADD2, ADM, ASIC1, ATP5B, ATXN1, BMPR1B, CDKN2A, CEBPA, CYP1A1, ENPEP,
ERBB3, ESRRA, HSPA1B, HSPD1, ID1, ID2, IGF2, IL1RN, IL6, ITGBS3, LIF, MAPK14, MMP13,
PARP1, PTGES, S100A8, SCARB2, SLC16A4, SLC7A1, STAT3, TBC1D1, TOR2A, TP53, VDR,
WNK1

10 targets: ADAM9, CXCL12, IGFBP2, IRS1, KRAS, MERTK, PGR, SOX2, VCAM1, VEGFA
6 targets: AKT1, KRAS, MAPK7, MMP13, PTGS2, SERPINE1

36 targets: AGER, APLN, APLNR, ATXN2, BDNF, BVES, CD47, CDK4, COMT, ENTPD1, FASN,
FDFT1, FGF2, FGFR1, G6PD, HSPA1B, CHUK, JAK2, LITAF, LRP6, MAP4, MAPK9, MFN2,
MTHFR, NEUROGS, NF1, PIK3R1, PPP1R2, PRKAA1, RORA, RTN3, SLC12A2, SMAD3, SYT4,
VEGFA, WDTCH1

7 targets: CAV1, CD44, EDN1, ERBB2, HIF1A, LIF, SIRT1

31 targets: ADD1, ATP2A2, ATXN1, BRAP, CD4, CDKN1C, CTNNB1, CXCL12, DDAH1, ESR1,
FLNA, FOXO83, ICAM1, INSIG1, ITGBS3, KIT, LIMS1, LRP6, MFN2, PIK3R1, RHOA, SELE, SLC6A9,
SOD2, TIMP3, TNFSF10, TP53, TRPCS3, TUB, YY1, ZNF652

16 targets: BMP7, CXADR, GJA1, GSTA4, HNRNPC, INSIG1, ITGAM, JUN, LRP8, MAPT, NOS1AP,
OSBPL8, PTPRC, PTPRN, SLC7A1, SOD2

1 target: RXRA

* number of verified targets in relation to human disease onthology
* number of predicted targets
MiRDB and miRTar databases were used to predict targets of those microRNAs that have been found to be dysregulated in placental tissues of patients
with pregnancy-related complications. miRWalk database and the Validated Targets module were used to provide information on experimentally verified
interaction between appropriate microRNA and specific genes on human disease ontologies such as heart disease, myocardial infarction, congestive
heart failure, vascular disease, cerebral infarction, hypertension, obesity, atherosclerosis, hypercholesterolemia, diabetic angiopathy, insulin resistance

and diabetes.

doi:10.1371/journal.pone.0138383.t003
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profiling, however, is critically dependent on proper normalization of the data in as much as
inappropriate normalization of QRT-PCR data can lead to incorrect conclusions [137, 138,
139].

Moreover, the power of the study for particular cases and 2 confidence levels (80% and
90%) together with minimal calculated number of subjects involved in the study should be cal-
culated. The conclusion that expression levels of microRNAs in placental tissue differentiated
between healthy pregnant women and pregnancy-related complications should not be done
until the base of this statistical analysis. Determining the optimal sample size for a study assures
an adequate power to detect statistical significance. Hence, it is a critical step in the design of a
planned research protocol. Using too many participants in a study is expensive and exposes
more number of subjects to procedure. Similarly, if study is underpowered, it will be statisti-
cally inconclusive and may make the whole protocol a failure [140].

Conclusions

In conclusion, epigenetic changes induced by pregnancy-related complications in placental tis-
sue may cause later onset of cardiovascular and cerebrovascular diseases in offspring.

Placental functions influence placenta itself, as well as the mother and the developing fetus,
establishing a likely role in developmental programming of the fetus [141]. Alterations in
blood vessel formation during placental development has the potential to reduce blood flow,
leading to reduced nutrient delivery and an environment of fetal undernutrition. Fetal nutri-
tion, or the supply of metabolic substrates delivered for growth and development, contributes
to immediate, intermediate, and long-term health [142]. Immediate health consequences
include intrauterine growth restriction and low birthweight. Childhood obesity, hypertension,
and diabetes are the most common intermediate and long-term health consequences of fetal
undernutrition [143]. Some authors postulate that early fetal and infant environment is
strongly predictive for the risk of cardiovascular and cerebrovascular diseases later in life [143
147].

The main pathways by which preeclampsia or pregnancy-related complications serve to
modify vascular risk would appear to be hypoxia, antiangiogenesis, endothelial dysfunction
and immune modifications. These pathways individually, synergistically, or cumulatively
appear to alter the epigenetic potential of placenta itself including microRNA expression pro-
file. And so the exposition to a preeclampsia or pregnancy-related complication environment
in utero leads to altered phenotype after birth [147].
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