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Introduction
Sleep is essential for normal cognitive function and overall health 
and is an important consideration in the development of novel 
therapeutics (Dresler et al., 2014). It is well documented that 
depression is associated with abnormal sleep homeostasis and 
sleep electroencephalographic (EEG) rhythms, such as disrupted 
sleep continuity, decreased slow wave sleep, and dysregulated 
rapid eye movement (REM) sleep (Arfken et al., 2014; 
Argyropoulos and Wilson, 2005; Kimura and Steiger, 2008; 
Steiger and Kimura, 2010; Wichniak et al., 2012). Sleep EEG 
measures such as disturbed REM density and delta sleep ratio are 
highly replicable and are thought to be useful diagnostic biomark-
ers for depression (Wichniak et al., 2013). On the other hand it is 
also well documented that currently used antidepressants such as 
selective serotonin reuptake inhibitors (SSRIs) are associated with 
sleep related adverse effects (Wichniak et al., 2012).

Although the complexity of sleep architecture varies between 
species, it is relatively conserved across mammals and shares 
features which are comparable (Lesku et al., 2009; Lo et al., 
2004; Rial, 2009). In addition, sleep architecture is sensitive to 

changes in brain neurotransmitters such as serotonin (5-HT) 
allowing cross-species sleep measurement with pharmacological 
manipulation to investigate the receptor mechanisms controlling 
sleep-wake regulation and sleep architecture in response to 
known and novel agents (Paterson et al., 2011). As reviewed by 
Pehrson et al. (2015) sleep-EEG changes produced by SSRI anti-
depressants in rodents, in general, replicate in clinical studies of 
healthy subjects or depressed patients.

The sleep-wake cycle is a highly regulated system involving 
many cortical and subcortical brain regions and is driven by a 
homeostatic process, which regulates the amount of sleep, and the 
circadian process, which regulates the timing of sleep (Borbely 
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1982; Brown et al., 2012). The interplay between these processes 
determines when sleep occurs or when the organism is awake 
(Krystal et al., 2013). Sleep stages or states of wakefulness in 
rodents are typically defined by EEG as (a) wakefulness, which 
exhibits low-voltage fast EEG activity and high muscle tone 
recorded via electromyography (EMG), (b) non-rapid eye move-
ment (NREM) or slow wave sleep, which is characterized by high-
amplitude, low-frequency EEG and decreased muscle tone, and (c) 
REM or paradoxical sleep, which has low voltage fast EEG activ-
ity coupled with a complete loss of muscle tone (atonia) and char-
acteristic rapid eye movements (Brown et al., 2012). In the 
laboratory, wakefulness is further divided into quiet wake or active 
wake based on the presence or absence of locomotor activity or 
movement within the test environment (e.g. home cage). Sleep 
stages are very sensitive to pharmacological manipulations, par-
ticularly those of antidepressants, and often it is possible to identify 
differences between compounds with different pharmacology 
using sleep-EEG endpoints (Paterson et al., 2011; Wilson et al., 
2014). Herein, we focus on how the serotonergic system acting via 
its different receptors can modulate the sleep-wake cycle.

Much of what we know about the role of 5-HT and sleep has 
been summarized by Jaime M. Monti (e.g. see Monti, 2011). In 
short, 5-HT predominantly promotes wakefulness and inhibits 
REM sleep and during wakefulness the 5-HT system interacts 
closely with other neurotransmitter systems, including acetylcho-
line (ACh), glutamate (Glu), dopamine (DA), norepinephrine 
(NE), histamine (HA) and orexin (hypocretin; OX), to regulate 
circadian, sleep, and cognitive processes (Leiser et al., 2015; 
Miyamoto et al., 2012; Monti, 2011; Sebban et al., 1999). This is 
because 5-HT neurons of the raphe nucleus innervate widespread 
brain areas, including the cholinergic nuclei of the mesencepha-
lon and the basal forebrain, the dopaminergic neurons of the ven-
tral tegmental area and the substantia nigra compacta, the 
noradrenergic cells of the locus coeruleus (LC), the gamma-
aminobutyric acid (GABA)ergic, histaminergic and orexinergic 
cells of the hypothalamus and the glutamatergic neurons of the 
thalamus and the brain stem reticular formation, to name only a 
subset of brain areas involved in regulation of sleep-wake states 
(Brown et al., 2012; Datta and Maclean, 2007). Therefore, the 
sleep-wake cycle is complex and a complete understanding of 
how it is regulated is still emerging (Zeitzer, 2013). However, to 
simplify matters, it is thought that during wakefulness serotonin-
ergic tone (as well as that of many other neuromodulator systems 
mentioned above) gives rise to enhanced cortical activity and 
arousal, while during sleep the awake-related neurons slow 
down, thereby withdrawing their effects on so called REM sleep-
related cholinergic neurons of the laterodorsal and pedunculo-
pontine tegmental nuclei (LDT/PPT) (Steriade and McCarley, 
1990). As 5-HT levels drop, an increase in REM-ON neuronal 
activity is triggered, which in turn releases ACh onto GABAergic 
neurons in the locus coeruleus, where GABA inhibits the REM-
OFF neurons, resulting in initiation of REM sleep (Aloe et al., 
2005; Sutcliffe and de Lecea, 2002). Consequently, the rate of 
firing of neurons in both the locus coeruleus (Aston-Jones and 
Bloom, 1981; Curtis et al., 2012) and dorsal raphe nucleus (Wu 
et al., 2004) falls to almost zero during REM sleep. SSRI-induced 
increase of extracellular 5-HT consistently results in suppression 
of REM (see Drago, 2008; Rijnbeek et al., 2003; Wichniak et al., 
2012; Wilson and Argyropoulos, 2005 for tables summarizing 
antidepressant effects on sleep in healthy subjects and patients), 
which equates to a suppression of REM-ON neurons.

Selective activation of specific 5-HT receptor subtypes influ-
ences sleep and REM, in particular, in opposing ways (Artigas, 
2013; Montgomery and Fineberg, 1989; Staner et al., 2001) 
(Table 1). 5-HT1A receptor agonists typically promoted wakeful-
ness and suppressed REM sleep, while antagonists promoted 
REM sleep (Bjorvatn et al., 1997; Bjorvatn and Ursin, 1998; 
Boutrel et al., 1999, 2002; Dzoljic et al., 1992; Gillin et al., 
1996). Also, evidence indicates that selective activation of the 
somatodendritic 5-HT1A receptor in the dorsal raphe nucleus 
(DRN) increased REM, however activation of the postsynaptic 
5-HT1A receptor at the level of the laterodorsal or pedunculopon-
tine tegmental nuclei decreased REM (Monti and Monti, 2000). 
One explanation for this is that 5-HT1A receptor-responsive neu-
rons in the pedunculopontine tegmental nucleus become maxi-
mally active immediately before and during REM sleep and 
activation of these neurons likely contributes to the generation of 
REM sleep (Gillin et al., 1996; Grace et al., 2012; Wilson et al., 
2005). 5-HT1B receptor agonism typically induced waking and 
suppresses REM as well (Bjorvatn and Ursin, 1994; Boutrel 
et al., 1999; Monti et al., 1995, 2010) and 5-HT1B receptor antag-
onism induced REM sleep (Boutrel et al., 1999). 5-HT1D receptor 
agonism has been reported to inhibit REM sleep and increase 
wakefulness (Bruni et al., 2011). 5-HT2A/2C receptor antagonism 
induced NREM sleep (Monti, 2010; Monti and Jantos, 2006; 
Morairty et al., 2008), while 5-HT2A/2C receptor agonism reduced 
REM sleep (Amici et al., 2004; Monti and Jantos, 2006). There is 
evidence for the action of 5-HT3 receptor antagonism in main-
taining REM sleep, while 5-HT3 receptor agonism is suppressing 
REM (Staner et al., 2008). For example, 5-HT3 receptor agonism 
was found to reduce total REM and the number of REM periods 
(Monti and Jantos, 2008; Monti et al., 2011) and increase wake-
fulness (Gyongyosi et al., 2010). Moreover, demonstrating the 
translatability of preclinical rodent data to clinical observations, 
in healthy subjects, 5-HT3 receptor agonism produced a suppres-
sion of REM (Staner et al., 2001, 2008). 5-HT3 receptor antago-
nism increased NREM sleep in the rat (Adrien et al., 1992; 
Ponzoni et al., 1993), and reduced effects of other agents on 
wakefulness and sleep. Very little is known about 5-HT4 or 5-HT5 
receptor mediated effects on sleep. 5-HT6 receptor agonism sig-
nificantly increased wakefulness and reduced NREM and REM 
(Monti et al., 2013) while 5-HT6 receptor antagonism increased 

Table 1.  Effects of selective serotonin (5-HT) receptor agonism or 
antagonism on sleep.

5-HT effects on sleep

Receptor Agonism Antagonism
5-HT1A REM, wakefulness REM
5-HT1B REM, wakefulness REM
5-HT1D REM, wakefulness n.d.
5-HT2A/2C REM, NREM NREM
5-HT3 REM, NREM, wakefulness NREM
5-HT6 REM, NREM, wakefulness NREM, wakefulness
5-HT7 REM, wakefulness REM, wakefulness
SERT — REM, wakefulness

n.d.: no data found in literature; NREM: non- rapid eye movement; REM: rapid 
eye movement; SERT: serotonin transporter. A decrease in REM could mean and 
increase in the latency to onset of REM sleep or a reduced total amount of REM 
sleep.
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sleep and decreased waking (Morairty et al., 2008). 5-HT7 recep-
tor antagonism reduced the total amount of REM sleep (e.g. less 
frequent episodes of REM sleep or decreased bout length; syn-
onymous with induced REM suppression) and/or significantly 
increased the latency to onset of REM sleep consistently across 
several studies in rat and human (Bonaventure et al., 2007, 2012; 
Hedlund et al., 2005; Matthys et al., 2011; Monti et al., 2008, 
2012, 2014; Shelton et al., 2009; Thomas et al., 2003). 
Paradoxically, 5-HT7 receptor agonists have also been shown to 
increase wakefulness and reduce REM (Monti et al., 2008, 2014; 
Shelton et al., 2009). Additional studies are required to fully 
understand the role of 5-HT7 receptors in sleep.

The multimodal antidepressant vortioxetine (Lu AA21004; 
1-[2-(2,4-dimethylphenyl-sulfanyl)-phenyl]-piperazine) is an 
antagonist at the 5-HT3 receptor ligand-gated ion channel, a 
5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial 
agonist, 5-HT1A receptor agonist and serotonin transporter 
(SERT) inhibitor in vitro (Bang-Andersen et al., 2011; Sanchez 
et al., 2015). Microdialysis studies in rats have shown that vorti-
oxetine enhances extracellular levels of 5-HT, ACh, NE, DA, and 
HA in brain regions involved in the regulation of sleep, emo-
tional and cognitive functions as well as having a modulatory 
role on GABA and glutamate function (Leiser et al., 2014b; 
Mørk et al., 2012; Pehrson et al., 2013; Pehrson et al., 2015; 
Pehrson and Sanchez 2015). In depressed patients treated with 
vortioxetine, the incidence of spontaneously-reported sleep-
related adverse events was found to be 2.0–5.1% compared to 4.4 
% in patients who had received placebo (Baldwin et al., 2012, 
2013). Furthermore, the recent data by Wilson et al., (2015), (pre-
liminary findings published by Wilson et al., 2013), demonstrate 
in healthy subjects that vortioxetine produces different effects on 
REM sleep than paroxetine: namely, that despite the same SERT 
occupancy, vortioxetine seemed to affect REM sleep to a lesser 
degree than paroxetine. The present sleep-EEG study in rats was 
used to back-translate these clinical findings and further investi-
gate the role of 5-HT3 receptor antagonism in mitigating this 
effect. To mimic the steady state conditions of the human study, a 
sub-chronic dosing regimen was chosen for the rat study.

Methods

Animals

Male Sprague-Dawley rats (250–500 g) from Charles River were 
individually housed under a 12-hour light/dark cycle and tem-
perature (21±2°C) and humidity (60±10%) control with chow 
and water ad libitum. Animals were used in accordance with 
guidance on care and use of laboratory animals by Lundbeck 
Research USA and the National Research Council (2011).

EEG, surgical procedure, recording and 
analysis

Bipolar (differential) EEG screw electrodes for fronto-parietal 
EEG and wire electrodes for EMG of dorsal neck muscles were 
implanted in each animal under anesthesia as described previ-
ously (Bastlund et al., 2004; Ebert et al., 2008; Leiser et al., 2014b; 
Sanchez et al., 2007; Vogel et al., 2002) and connected to a  
sterile multi-channel telemetric device (TL10M3-F50-EEE; Data 
Sciences International (DSI)) that was implanted subcutaneously 

(s.c.) on the flank. After 10 days of recovery, EEG recordings 
were initiated in their home cages.

For sub-chronic pharmacological evaluation, recordings 
using Dataquest A.R.T. software (DSI) at a sampling rate of 500 
Hz were started at 15:00 the day prior to the acute injection that 
occurred on “Day 1” at 09:00 (three hours after lights came on). 
Animals received a s.c. injection of either vortioxetine or parox-
etine or vehicle and were then returned to their home cage with 
either vehicle or drug-infused chow or water (see below) and 
recorded for the entire 24 h for 10 days. A daily health check and 
husbandry occurred each day between 09:00–09:30 when the 
recordings were momentarily suspended. For acute pharmaco-
logical evaluation, recordings were started 90 min before injec-
tion (09:00; 3 h into the light phase) and continued for up to 4 h 
post injection.

Offline, using NeuroScore (DSI), artefacts were removed 
from the data and sleep stages assigned manually for every 
10-second epoch using EEG, EMG, and locomotor activity 
(LMA) counts derived from transmitter signal by conventional 
methods as previously described (Ivarsson et al., 2005; Leiser 
et al., 2014b; Parmentier-Batteur et al., 2012): active wake (less 
regular, low amplitude EEG with high EMG and LMA); quiet 
wake (less regular, low amplitude EEG, with low EMG, and no 
LMA); NREM sleep, consisting of high-amplitude waves with 
predominant delta (1-4 Hz), low EMG and no LMA; paradoxical 
or REM sleep exhibited stable, low-amplitude waves dominated 
by theta (4–8 Hz) with near absent EMG and no LMA.

Compounds and dosing regimen

Vortioxetine (DL-lactate salt) and paroxetine were synthesized 
by H Lundbeck A/S. The selective 5-HT3 receptor agonist 
SR57227A was synthesized by H Lundbeck A/S. The selective 
serotonin 5-HT3 receptor antagonist ondansetron was purchased 
from Sigma-Aldrich (St. Louis, Missouri, USA). For acute  
dosing vortioxetine, paroxetine, ondansetron, and SR57227A 
were dissolved in sterile distilled water and administered subcu-
taneously (s.c.) in a volume of 2.0 mL/kg. For the subchronic 
vortioxetine experimental group, the regular rat chow was 
switched to vortioxetine-enriched diet (600 mg vortioxetine per 
kg rat chow, Open Source Diets, Purina Rodent Chow with Blue 
Dye) and for the vehicle group, the regular chow was switched 
to repelleted rodent chow (Purina 5001 Rodent Chow, Open 
Source Diets), which had exactly the same nutritional content as 
in the vortioxetine-infused chow. Food was replenished as 
needed throughout the experiment. Animals demonstrated food 
consumption by dye presentation in the feces. Moreover, this 
vortioxetine administration paradigm was previously shown to 
result in full SERT occupancy in rats (Wallace et al., 2014).

For the subchronic paroxetine experimental group, paroxetine 
at a dose of 2.5 mg/30 mL drinking water was prepared fresh 
every three days and replenished as necessary. Fluid intake was 
recorded and all animals consumed at least 30 mL of fluids daily. 
Regular drinking water in the vehicle groups was changed at the 
same time as the paroxetine group. A total of eight animals were 
used per treatment group unless otherwise noted, however some 
animals were excluded prior to data analysis due to EEG device 
failure or poor EEG or EMG quality making it difficult to prop-
erly score sleep stages. This rendered the number of animals for 
the vortioxetine chow group to n=7, 7, 6, and 5, and the control 
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group to n=7, 6, 6, and 5 for days 1, 3, 7, and 10 respectively. 
Animals were euthanized at the end of each study.

SERT occupancy

Doses were chosen based on previous studies of SERT occu-
pancy-dose relations measured by ex vivo autoradiography. 
Vortioxetine-infused chow was administered as previously 
described; Chronic administration of vortioxetine at 0.6 g/kg of 
food led to 85–90% occupancy of the 5-HT transporter, and 55–
60% occupancy of the 5-HT1B receptor (Wallace et al., 2014). 
The target of >80% SERT occupancy was chosen since this is 
generally considered to be the minimally effective dose for SSRI 
therapeutic effect (Meyer et al., 2004) and the vortioxetine dose 
of 10 mg/kg produced a similar level of SERT occupancy (~90%) 
in rodents as the highest clinically used dose, 20 mg/day (Areberg 
et al., 2012; Stenkrona et al., 2013).

Rats were treated with paroxetine at 1, 2.5, 3, or 5 mg/kg/day 
per os (p.o.) for 14 days (n=4–8/treatment group). Rats in the 2.5 
mg/kg/day paroxetine-treated group were the same animals in 
which sleep-EEG experiments were conducted; all other groups 
were conducted in a study prior to initiation of the sleep-EEG 
study for dose finding purposes. SERT occupancy was deter-
mined as previously described (Betry et al., 2013; Du Jardin 
et al., 2014; Leiser et al., 2014b; Pehrson et al., 2013; Wallace 
et al., 2014). Briefly, rats were anaesthetized using CO2, decapi-
tated and their brains quickly harvested, flash-frozen, and then 
sectioned coronally at 20 μm thickness. Slices were mounted on 
slides with a minimum of three replicate slices per brain and 
stored at −20°C until being used in autoradiography experiments. 
Slides were defrosted at room temperature under a constant 
stream of air for 30–45 min and then incubated for 90 min with 
buffer (50 mM Tris-HCl, 150 mM NaCl and 5 mM KCl, pH 7.4) 
containing 0.5 nM [3H]DASB. Non-specific binding was deter-
mined using 1 µm escitalopram. Slides were washed three times 
in buffer at 4°C for 5 min, briefly dipped in distilled water, air-
dried, and then placed in a desiccator for at least 60 min. Finally, 
the slides were exposed at room temperature in a Beta imager 
(Biospace Lab, France) for 16 h prior to analysis (Betry et al., 
2013). Surface radioactivity (cpm/mm2) was measured using 
Beta Vision+ software version 2.0 (Biospace Lab, France) from a 
region of interest defined a priori on the basis of mapping experi-
ments conducted by this laboratory.

Polysomnographic data analysis

Vivarium lights turned on at 06:00. and off at 18:00, thus the 
Light phase of the experiment when rats were typically quiescent 
or sleeping was from 06:00–18:00. and the Dark phase of the 
experiment when rats were typically awake and active was from 
18:00–06:00. Figure 1 illustrates the time in REM for each 
30-minute bin in zeitgeber time, which refers to the time relative 
to the light/dark schedule with 0 corresponding to lights on and 
12 to lights off. Significance was determined by multifactorial 
analysis of variance (ANOVA) for each day and treatment group 
comparisons (e.g. vortioxetine vs its control and paroxetine vs its 
control) separately with a Fisher least significant difference 
(LSD) post-hoc test for multiple timepoint comparisons.

Quantitative analysis of each sleep stage, REM, NREM, and 
wake (quiet wake and active wake), was calculated from the sum 

of time spent in each 30-minute epoch during the light or dark 
phase, except for D1 in which only the epochs after drug admin-
istration were added. Vortioxetine or paroxetine treatment group 
was compared to its corresponding vehicle treatment group at 
days 1, 3, 7, and 10. Significant differences between compound 
and vehicle were determined using Student’s unpaired t-test 
when data presented a normal distribution or Mann-Whitney test 
if data were not normally distributed as determined by the 
D’Agostino and Pearson omnibus normality test. Data are pre-
sented as mean± standard error of the mean (SEM) and levels of 
statistical significance as *p<0.05; **p<0.01; ***p<0.005.

For the acute experiments, the REM onset latency was deter-
mined as the first epoch of REM lasting greater than 20 s follow-
ing drug treatment. The REM onset latency was not used in the 
subchronic dosing study because rats alternate sleep and wake-
fulness throughout the day and night (i.e. polyphasic) unlike 
humans, who tend to sleep and transition into sleep phases in one 
recording session overnight thereby making it easier to calculate 
the first true REM onset. The nonstationary (ultradian) periodic 
rhythms in rats precludes calculating true first REM onset 
(Stephenson et al., 2012).

Results

Comparisons of subchronic vortioxetine and 
paroxetine

Figure 1 shows, in 30-minute bins, the duration of REM-sleep 
over 24 h on days 1, 3, 7, and 10. During the light phase (06:00–
18:00) vortioxetine decreased the duration of REM sleep 
throughout the day on day 1, whereas paroxetine produced a 
decrease of REM sleep throughout the day on all days. There 
were no significant drug effects on REM sleep duration during 
the dark phase. Specifically, on Day 1 (Figure 1(a)), following 
the acute dose of vortioxetine and paroxetine, there was a sup-
pression of REM in agreement with our previously reported 
results for acute administration in rats (Leiser et al., 2014b; 
Sanchez et al., 2007) and consistent with clinical findings (see 
companion paper Wilson, et al., this issue). This REM sleep sup-
pression after acute vortioxetine was dose-dependent in rats 
(Leiser et al., 2014b) and humans (Wilson, et al., this issue). Yet, 
the amount of REM sleep returned to vehicle levels for the vorti-
oxetine-treated group well before the onset of the dark phase 
(15:30–16:00), while the paroxetine-treated group did not recover 
from the REM suppression until after the onset of the dark phase 
(18:00–18:30). On Day 3 (Figure 1(b)), the vortioxetine group 
exhibited normal REM sleep compared to its control group. 
However, the paroxetine group continued to demonstrate a dis-
ruption in REM sleep throughout the day. Day 7 (Figure 1(c)) and 
Day 10 (Figure 1(d)) exhibited similar effects, showing that vor-
tioxetine induced few changes to REM except for the first 1.5 h 
of the light phase, while paroxetine’s disruption to REM sleep 
lasted throughout the day. The high variance on Day 10 observed 
in the vehicle control group of the vortioxetine study was due to 
low animal number (n=5; see Methods).

REM sleep changes were quantified by summating the total 
amount of REM sleep during the light phase (Figure 2(a) and (b)). 
Paroxetine significantly suppressed REM for the duration of the 
experiment in relation to its control group (p<0.05, unpaired t-test). 
No noticeable changes in REM were observed in dark phase 
(Figure 3(a) and (b)). NREM sleep was also quantified for both the 
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light (Figure 2(c) and (d)) and the dark phase (Figure 3(c) and (d)). 
During the light phase, both the vortioxetine- and paroxetine- 
treated groups demonstrated an elevated NREM sleep compared to 
their respective control groups on Day 1 following the acute dos-
ing (p<0.05, unpaired t-test). During the light phase, on Days 3, 7 
and 10 the vortioxetine- treated group had normal levels of NREM 
(not different than the control group). Yet, the paroxetine-treated 
group continued to exhibit an increased amount of NREM sleep 
compared to its control group (p<0.05, unpaired t-test). During the 
dark phase, paroxetine also showed an increased level of NREM 
sleep on Day 7 (p<0.05, unpaired t-test) and Day 10 (p=0.06, 
unpaired t-test), demonstrating more sleep during the period in 
which animals should be more active. To further investigate these 
observed changes in sleep, the ratio of NREM to REM was calcu-
lated by dividing the total amount of REM sleep by the total 
amount of NREM sleep for light phase (Figure 2(e) and (f)) and 
dark phase (Figure 3(e) and (f)). Normally this ratio yields approx-
imately 25% REM and 75% NREM during sleep (i.e. during light 
phase) as can be seen in both control groups. The acute doses of 
vortioxetine and paroxetine showed a reduced REM/NREM ratio 
(p<0.05, unpaired t-test). This ratio was reduced for both groups 
throughout Day 3 (p<0.05, unpaired t-test), but for vortioxetine, it 
returned by Day 7, while for paroxetine, it did not return even by 
Day 10 (p<0.05, unpaired t-test). No changes were observed for 
NREM/REM during the dark phase (Figure 3(e) and (f)). 
Additionally, the amount of time spent in wakefulness (both active 
and quiet wake) was quantified for both the light (Figure 2(g) and 
(h)) and the dark phases (Figure 3(g) and (h)). Interestingly, vorti-
oxetine did not seem to augment the total time spent in wake (quiet 
and active wake) during the light phase of Day 1, nor any other day 
(Days 3, 7, and 10). During the dark phase of Day 3, vortioxetine 
only increased total awake time. Paroxetine increased the time 
spent in wake during the light phase on Day 1. Yet, more impor-
tantly, paroxetine significantly decreased the time spent in wake 
during the dark phase on Day 7 and Day 10 (p<0.05, unpaired 
t-test), when the animals should be more active, which further 
demonstrates a disruption in the ultradian sleep-wake balance.

Furthermore, the transitions of NREM to wake were investi-
gated (Figure 4). Typically during normal sleep, there are very few 
NREM sleep-to-wake transitions given that most NREM sleep 
bouts are followed by REM prior to wakefulness. Vortioxetine had 
normal NREM to wake transitions for the duration of the study 
(Figure 4(a)). However, paroxetine (Figure 4(b)) showed an 
increased number of these transitions on day 1, 7 and 10 (p<0.05, 
unpaired t-tests). Taken together the decreased time spent in  
wake during the dark phase and the increased number of NREM to 
wake transitions suggest that with the paroxetine treatment rats 
were waking up more when they are supposed to be asleep and had 
poor sleep efficiency since they had fewer NREM to REM transi-
tions. Seemingly, animals are sleeping more (e.g. in NREM or 
REM more) during the subjective night (i.e. dark phase) when they 
are supposed to be in wake. This may correspond to a commonly 
reported adverse effect of SSRIs – that is, day-time drowsiness.

Chronic vortioxetine/paroxetine occupancy 
data

Prior to conducting the subchronic paroxetine sleep-EEG study, a 
satellite group of animals was treated with paroxetine at 1, 3, and 5 
mg/kg/day p.o. (via drinking water) for 14 days (n=3 rats/dose). 
SERT occupancy was determined as described previously and all 

doses yielded greater than 80% SERT occupancy (Table 2). 
Additionally, animals treated with 2.5 mg/kg/day paroxetine from 
the sleep-EEG portion of this study were assessed in terms of SERT 
occupancy, and these animals also had greater than 80% SERT 
occupancy (Table 2). Importantly, previous data demonstrates that 
the subchronic dose of vortioxetine infused in chow used in this 
study also yields greater than 80% SERT occupancy (Wallace et al., 
2014). Previous reports have shown that ondansetron at 0.3 mg/kg 
yields 5-HT3 receptor occupancy in the forebrain only in the range 
of 30–35% (Du Jardin et al., 2014; Leiser et al., 2014b).

Acute paroxetine vs paroxetine with 
ondansetron

In a separate experiment, paroxetine when dosed acutely (0.5 mg/
kg, s.c., n=12) significantly suppressed REM with a REM onset 
latency of 145±8 min post dose (Figure 5(a)). However, when 
paroxetine was dosed in combination with ondansetron (0.3 mg/

Figure 4.  The mean (±standard error of the mean (SEM)) number of 
transitions from non-rapid eye movement (NREM) to wake during days 
1, 3, 7 and 10 and calculated for 24 h after drug administration for 
day 1 and the time-matched 24-hour period for all other days. Each 
treatment group was compared to its respective vehicle control for 
each day separately (*p<0.05; **p<0.01; ***p<0.005).
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kg, s.c., n=8), REM onset latency was significantly shorter at 
107±8 min post dose (p=0.004, unpaired t-test). For comparison, 
after vehicle (n=10) administration alone, REM onset latency 
was 72±8 min and ondansetron (n=7) was 98±15 min post dose 
(Figure 5(b)). There was no difference between the vehicle and 
ondansetron groups (p=0.331, unpaired t-test).

Acute vortioxetine with SR57227A

In the final experiment vortioxetine was combined with the 
5-HT3 receptor agonist SR57227A (Figure 6). When dosed alone 
vortioxetine (1 mg/kg, s.c.; n=10) produced a REM onset latency 
of 75±9 min post dose compared to vehicle (n=10), which pro-
duced a REM onset latency of 62±5 min (Figure 6(a) and (b)). In 
combination with SR57227A, vortioxetine (n=10) produced a 
significantly greater REM onset latency of 116±8 min (p=0.003, 
unpaired t-test) (Figure 6(a)). SR57227A treatment alone (n=10) 
produced a REM onset of 117±10 min, which was significantly 
greater than vehicle (p=0.0001, unpaired t-test) (Figure 6(b)).

Discussion

In our comparative EEG study in rats of acute and subchronic 
effects of paroxetine and vortioxetine, we have shown that vortiox-
etine impacted the sleep architecture much less than paroxetine, in 
particular on measures of REM sleep and NREM to wake transi-
tions which are considered as measures of sleep fragmentation.

Whereas paroxetine suppressed REM sleep both acutely and 
continually during the sub-chronic treatment, with vortioxetine 
treatment only the acute dose had an effect. The effect of paroxetine 
is in agreement with the effects of SSRIs described in the literature, 
where chronic treatment with the SSRIs citalopram and escitalo-
pram demonstrated long-term REM suppression in rats. Specifically, 
after five weeks of chronic treatment with citalopram in rats there 
was still a 21% reduction in total REM sleep (Neckelmann et al., 
1996) and after three weeks of treatment with escitalopram in rats 
there was a reduction in REM sleep and onset latency (Vas et al., 
2013). Moreover, our data in rats are consistent with a previous 
report in healthy subjects showing that REM sleep was significantly 
suppressed by both citalopram and paroxetine (Wilson et al., 2004). 
That is, in our study the total number of NREM to wake transitions 
in 24 h was significantly increased in paroxetine-treated animals on 
days 1, 7 and 10. Also, looking beyond the acute effects, in the dark 
phase paroxetine, but not vortioxetine, reduced the total time in 
wake and increased the total time in NREM on days 7 and 10. In the 
light phase paroxetine, but not vortioxetine, decreased REM but 
also increased NREM on days 3, 7, and 10. These analyses demon-
strate that paroxetine altered ultradian sleep patterns and thus we 
may relate to the metric of sleep fragmentation used clinically: in 
healthy subjects sleep fragmentation was significantly increased by 
both citalopram and paroxetine (Wilson et al., 2004).

Because vortioxetine, at a given SERT occupancy, seemed to 
affect REM sleep differently than paroxetine in both our study in 
rats and Wilson et al.’s study in healthy subjects (this issue), we 
sought to experimentally address the hypothesis we have previ-
ously suggested that the 5-HT3 receptor antagonistic properties 

Table 2.  Effects of subchronic paroxetine dose on serotonin transporter 
occupancy, as assessed with ex vivo autoradiography.

Paroxetine dose (mg/
kg/day)×14 days

Sample size % SERT occupancy±SEM

Vehicle 7   0±1.5
1 4 84±2.0
2.5a 8 97±0.9
3 4 94±1.5
5 4 95±1.4

SEM: standard error of the mean; SERT: serotonin transporter. Rats were adminis-
tered paroxetine per os at various doses for 14 days. All doses tested engendered 
greater than 80% occupancy at the serotonin transporter. aData from this group 
was collected from the same animals involved in the sleep-EEG study; others were 
from a group of animals run prior to the chronic sleep-EEG study.

Figure 5.  Rapid eye movement (REM) onset latency following acute administration of paroxetine alone and in combination with ondansetron shows 
that the 5-HT3 antagonist reduced REM onset latency (*p<0.05, unpaired t-test). Ondansetron alone was not different than vehicle (p=0.331). 
Paroxetine was significantly greater than vehicle (p<0.001). Ondansetron in combination with paroxetine did not reach vehicle control levels 
(p<0.01, unpaired t-test), but did significantly reduce REM onset from paroxetine alone (p=0.004, unpaired t-test).
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of vortioxetine may lessen its effect on REM (Bétry et al., 2011; 
Leiser et al., 2014a; Sanchez et al., 2015). This hypothesis is 
derived in part from published studies of selective 5-HT3 receptor 
ligands studied in animals with a normal 5-HT tone, i.e. without 
the elevated tone produced by SERT inhibition (see introduction 
and Table 1). To test the hypothesis we first measured the acute 
REM-suppressing effect of paroxetine alone and with pretreat-
ment with the selective 5-HT3 receptor antagonist ondansetron. 
As hypothesized, the combination significantly attenuated the 
REM-suppressing effects of paroxetine. Next, to further establish 
the role of 5-HT3 receptors in mediating these effects, we tested 
whether adding a selective 5-HT3 receptor agonist to vortioxetine 
would counteract the effects of its 5-HT3 antagonism and yield 
greater REM suppression. To test this hypothesis we co-adminis-
tered SR57227A with vortioxetine. SR57227A is a selective 
5-HT3 receptor agonist (Delvaux, 2002). This combination elic-
ited a longer delayed REM onset latency than vortioxetine alone. 
This effect was similar to that reported in healthy subjects where 
SR57227A produced a dose-dependent shift of REM toward the 
end of the night (Staner et al., 2001). In summary, acutely, vorti-
oxetine (1 mg/kg) elicited a mean REM onset latency of approxi-
mately 75 min, while paroxetine (0.5 mg/kg) elicited a much 
greater mean REM onset latency of approximately 145 min, but 
when the 5-HT3 receptor agonist SR57227A was combined with 
vortioxetine the combination elicited a mean REM onset latency 
closer to paroxetine, suggesting that the reduced effect on REM 
suppression elicited by vortioxetine alone is, at least in part, due 
to its 5-HT3 receptor antagonism. Vortioxetine is also a SERT 
inhibitor and thus it does have REM-suppressing properties, 
however the effects contributed by SERT seem to be offset by 
vortioxetine’s other actions. The mechanism by which these 
effects happen is currently not well understood but is discussed 
below in the context of all findings. However, the interaction of 
SR57227A with vortioxetine likely takes place at 5-HT3 recep-
tors since vortioxetine at a dose of 1.0 mg/kg practically only 
occupies SERT and 5-HT3 receptors (Sanchez et al., 2015).

5-HT3 receptors are expressed on inhibitory GABAergic 
interneurons, where they are thought to provide a serotonin-
mediated fast excitatory drive (Kawa, 1994; Leiser et al., 2015; 
Pehrson and Sanchez 2015). 5-HT3 receptor antagonists suppress 
the firing of GABAergic interneurons as well as elicit changes to 
neuronal firing downstream of GABAergic interneurons (Ashby 
et al., 1991; Puig et al., 2004; Reznic and Staubli, 1997). 
Additionally, 5-HT3 receptor antagonists increase ACh levels as 
measured by microdialysis (Barnes et al., 1989; Giovannini 
et al., 1998) and increase cortical theta rhythms as measured by 
EEG (Staubli and Xu, 1995). Notably, vortioxetine has been 
shown to both increase ACh measured at acute timepoints (Mørk 
et al., 2013) and increase theta oscillations in the frontal cortex of 
rats (Leiser et al., 2014b) after acute administration. These effects 
are likely driven by its 5-HT3 receptor antagonism. Therefore, 
since REM sleep only occurs when the aminergic system sus-
pends its inhibitory effect on cholinergic activity (Aloe et al., 
2005) and, given that 5-HT3 receptor antagonism can increase 
ACh, this may stimulate REM onset.

To understand how 5-HT3 receptors could modulate sleep, we 
must first discuss some basic premises of how REM sleep is initi-
ated (see Brown et al., 2012; Datta and Maclean, 2007; Staner 
et al., 2008 for more in depth review of this process). Briefly, the 
two brain regions predominantly involved in generation of REM 
are the PPT nucleus, which is maximally active immediately 
before and during REM sleep, and the LDT. The output of these 
brain regions have been coined the cholinergic REM-ON neu-
rons. Interestingly, local injections of cholinergic agonists into 
the PPT triggers REM sleep (Jones, 1991). The DRN projects its 
5-HT neurons to the LDT/PPT complex and when the DRN is 
tonically active, such as in wake, it inhibits the LDT/PPT thereby 
suppressing its REM-ON neurons. This inhibitory drive supplied 
by the DRN will be active as long as the DRN is being activated 
with wake-active neurons (e.g. NE, DA, HA, OX, ACh). 
However, as the diurnal switch draws near and less wake-active 
neurons are supplying input to the DRN, the sleep-active neurons 

Figure 6.  Rapid eye movement (REM) onset latency following acute administration of vortioxetine alone and in combination with SR57227A shows 
that the 5-HT3 agonist increased REM onset latency (*p<0.05, unpaired t-test). SR57227A alone induced a significant delay in REM onset compared 
to vehicle (p<0.001). Vortioxetine alone was not different than vehicle (p=0.228), however SR57227A in combination with vortioxetine significantly 
delayed (increased) REM onset compared to vortioxetine alone (p=0.003, unpaired t-test).
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(e.g. GABA and melanin-concentrating hormone/melanin) 
inhibit the DRN, withdrawing the DRN’s inhibitory drive on the 
LDT/PPT, thereby activating REM-ON neurons. The LDT/PPT 
sends glutamatergic neurons to the medial pontine reticular for-
mation (mPRF), which in turn sends glutamatergic neurons to 
stimulate the cholinergic REM-ON neurons. As mentioned 
above, when active the DRN inhibits the mPRF, but during sleep, 
this inhibition is lost, further reinstating REM. Once the cholin-
ergic REM-ON neurons are activated in the LDT/PPT, the locus 
coeruleus and the DRN are in turn inhibited explaining why these 
structures exhibit no firing rate during REM. Recall from the 
introduction that during wakefulness serotoninergic tone gives 
rise to enhanced cortical activity and arousal, while during sleep 
the awake-related neurons slow down, thereby withdrawing their 
effects on REM sleep-related neurons. As 5-HT levels drop, this 
triggers an increase in the acetylcholinergic REM-ON neuronal 
activity, which in turn excites GABAergic neurons to inhibit the 
REM-OFF neurons (5-HT neurons of the DRN and NE neurons 
of the LC), resulting in initiation of REM sleep (Aloe et al., 2005; 
Sutcliffe and de Lecea, 2002).

Another possibility is that the 5-HT3 receptor antagonism-
induced increase in REM is mediated by glutamate. 5-HT3 recep-
tors are also located on glutamatergic interneurons in the DRN 
where they elicit glutamate release (Monti and Monti, 2000, 
Monti et al., 2011). Activation of glutamatergic interneurons that 
express 5-HT3 receptors in DRN facilitates the release of gluta-
mate, which, in turn, acts on postsynaptic N-Methyl-D-aspartate 
(NMDA) and non-NMDA receptors expressed by serotonergic 
neurons of the DRN and increases the release of 5-HT at postsyn-
aptic sites (Monti, 2011). Presumably, 5-HT3 antagonists would 
inhibit these glutamatergic interneurons and in turn decrease 
5-HT release at postsynaptic sites (Monti and Jantos, 2008). If so, 
as 5-HT levels drop, this triggers an increase in the acetylcholin-
ergic REM-ON neuronal activity, and the cascade occurs as 
described above until REM sleep is initiated.

Finally, vortioxetine may act via other mechanisms as well to 
overcome the typical SSRI-induced sleep disruption. For exam-
ple, vortioxetine may mediate its effect on sleep via its 5-HT1B 
partial agonist properties (El Mansari and Blier, 2015) to contrib-
ute to its overall lesser effect on REM. That is, under elevated 
5-HT tonus (e.g. SERT inhibition), the 5-HT1B receptor partial 
agonism could in fact function to reduce the overstimulation of 
receptors thereby acting similar to an antagonist (Zhu, 2005) and 
we know from the literature that 5-HT1B receptor antagonism 
induces REM sleep (Boutrel et al., 1999; Monti et al., 2010). 
Moreover, a preclinical sleep EEG study in rats by Bonaventure 
et al. (2007) reported an increase in the number of micro-arousals 
in citalopram-treated rats and showed that the 5-HT7 receptor 
antagonist SB-269970 counteracted this effect. Ex vivo autoradi-
ography studies of vortioxetine’s target to dose relation would 
suggest that vortioxetine occupies 5-HT7 receptors in our chronic 
sleep EEG study. It may therefore be hypothesized that vortiox-
etine’s neutral effect of NREM to wake transitions involves its 
5-HT7 receptor antagonistic properties. In fact, it has been dem-
onstrated that 5-HT7 receptors can mediate phase advances of the 
circadian biological clock through increases in cAMP production 
(Sprouse et al., 2004) and that the combination of an SSRI and a 
5-HT7 receptor antagonist has a greater impact on circadian 
rhythms than that observed with either agent alone (Westrich 
et al., 2013, 2015). Nevertheless, it is clear that more work is 

needed to fully understand the mechanisms involved in vortiox-
etine’s effects on REM sleep and its different clinical pharmaco-
logical profile than a SSRI.

Overall, our preclinical findings support that these two antide-
pressants at clinically relevant levels of SERT occupancy have 
different modes of action on sleep-wake rhythms. This is in line 
with the overall conclusion of the clinical study in healthy sub-
jects reported by Wilson et al., and previous reports (Baldwin 
et al., 2012; Wilson et al., 2013). Whether these differences have 
an impact on sleep in depressed patients or contribute to vortiox-
etine’s efficacy as an antidepressant is worthy of study.
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