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Aquatic heterotrophic bacteria have highly flexible
phosphorus content and biomass stoichiometry
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Bacteria are central to the cycling of carbon (C), nitrogen (N) and phosphorus (P) in every ecosystem,
yet our understanding of how tightly these cycles are coupled to bacterial biomass composition is
based upon data from only a few species. Bacteria are commonly assumed to have high P content,
low biomass C:P and N:P ratios, and inflexible stoichiometry. Here, we show that bacterial
assemblages from lakes exhibit unprecedented flexibility in their P content (3% to less than 0.01%
of dry mass) and stoichiometry (C:N:P of 28: 7: 1 to more than 8500: 1200: 1). The flexibility in C:P and
N:P stoichiometry was greater than any species or assemblage, including terrestrial and aquatic
autotrophs, and suggests a highly dynamic role for bacteria in coupling multiple element cycles.
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Terrestrial ecosystems are an important source of
nutrients and organic carbon (C) to freshwater rivers
and lakes as well as the coastal ocean. Past work has
shown that heterotrophic bacteria, a group of orga-
nisms that process terrestrial inputs of organic
carbon, nitrogen (N) and phosphorus (P) (Biddanda
et al., 2001), are C-poor and P-rich (Makino et al.,
2003) relative to terrestrial inputs characterized by
high C:P ratios. As a result, bacterial assemblages in
freshwater ecosystems should experience elemental
imbalance and act as efficient exporters of organic
carbon to downstream ecosystems. However, fresh-
water ecosystems metabolize most of the organic C
they receive from terrestrial ecosystems (Cole et al.,
2007) and it has been shown recently that strains
(Scott et al., 2012) and assemblages (Godwin and
Cotner, 2014) of bacteria from lakes can be P-poor
and stoichiometrically flexible. Here, we demon-
strate that bacterial assemblages from lakes exhibit
unprecedented plasticity in their stoichiometry and
discuss the implications of flexible composition to
ecosystem processes.

To determine the extent of stoichiometric flex-
ibility within assemblages, we performed two
experiments in which we cultured the bacteria-
sized fraction of plankton from a northern temperate
lake under varying C:P supply ratios and mea-
sured their biomass composition (Supplementary
Methods). We created C:Psupply ratios from 31.6:1 to
more than 2 20 000:1 by manipulating the supply of

phosphate in a defined medium, with all other
nutrients in excess of C and P. At each level of C:
Psupply, we enriched the lake assemblages in batch
cultures and used these enrichments to inoculate
chemostats at the same C:Psupply. The chemostats
were maintained at a dilution rate (0.33 d− 1) that is
low relative to assemblage growth rates measured in
lakes (Cotner et al., 2001).

The bacterial P content decreased from a mean of
3.55% of dry mass when the assemblage was
C-limited to 0.006–0.05% when the assemblage was
most P-limited (Figure 1). The range of P content
measured in the assemblage cultures was nearly
equal to the range of existing data in the literature,
particularly for P relative to dry mass (Supplementary
Table 6). Single-cell measurements from plankton
environments indicated the potential for even lower
phosphorus quotas (Norland et al., 1995; Cotner et al.,
2010), although many of those cells may not be
actively growing, potentially decreasing their demand
for P-rich RNA, where much of the P resides in
bacterial cells (Makino et al., 2003). The P relative to
dry mass values measured here were lower than those
reported for a bacterium grown in the absence of
added phosphate and high concentrations of arsenate
(0.012% of dry mass as P, Wolfe-Simon et al., 2010).
The results presented here clearly demonstrate that
bacteria can have P content less than 0.01% of dry
mass when growing at low levels of P.

The C:Pbiomass and N:Pbiomass of the bacterial assem-
blages increased from 28:1 and 6:1, respectively,
when C-limited to a maximum of 48500:1 and
41200:1 when P-limited (Figure 1). The ranges of C:
Pbiomass and N:Pbiomass observed in this study cover
nearly the entire range of measurements recorded in
previous studies for bacterial cultures and assem-
blages (Figure 2; Supplementary Table 6) and nearly
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match the ranges of C:Pbiomass and N:Pbiomass observed
in vascular plant tissues (Elser et al., 2000; Sterner
and Elser, 2002; Reich and Oleksyn, 2004). Further-
more, the bacterial assemblage (of multiple strains)
exhibited greater stoichiometric plasticity than
has been documented in any other species or
assemblage, including terrestrial and aquatic primary
producers (Sterner and Elser, 2002; Persson et al.,
2010). These experiments demonstrate that previous
assumptions of low and invariant C:Pbiomass (Tanaka
et al., 2009; Fanin et al., 2013) and high relative P
content for bacteria (Wolfe-Simon et al., 2010) do not
represent the physiological flexibility of bacteria in
natural assemblages. Although mean cellular P con-
tent decreased under P limitation, much of the
flexibility in C:Pbiomass was due to a substantial
increase in cellular C content (Supplementary
Figure 1), likely owing to the accumulation of C-rich
storage molecules (Thingstad et al., 2005).

The range of stoichiometric flexibility present in
natural assemblages is critical to understanding
homeostasis within ecosystems. Strict homeostasis
of assemblage C:N:Pbiomass leads to the prediction that
the ratio of regenerated C:P increases dramatically
with increasing resource C:P (Sterner, 1990), but
flexible biomass stoichiometry allows tight coupling
and negative feedback between bacterial biomass
stoichiometry and resource stoichiometry, facilitating
the inherent resilience of ecosystems to nutrient
perturbations (Scheffer et al., 2001). It is increasingly
recognized that much of the organic matter metabo-
lized in rivers and lakes originates in terrestrial
ecosystems where C:P and N:P ratios can be much
higher than for organic matter originating in aquatic
ecosystems (Lennon and Pfaff, 2005). The observa-
tions in this study of extreme flexibility in bacterial
biomass stoichiometry are consistent with observa-
tions of higher and more variable biomass C:P and

Figure 1 Effect of C:Psupply ratio on biomass P/cell (a), P/dry mass
(b), C:Pbiomass (c) and N:Pbiomass (d) ratios in chemostats diluted at
0.33 d−1. Data from Experiment 1 are displayed as solid circles,
and open circles denote data from Experiment 2. At each level of
C:Psupply, the data from replicate chemostat are staggered to
improve clarity. The error bars represent the s.e. of the ratio for
each chemostat, following propagation of errors from the numera-
tor and denominator. In Experiment 1, C:Pbiomass and N:Pbiomass

(analysis of variance, Po1×10-5) increased and P/dry mass and
P/cell decreased (Po0.005) significantly with increasing C:Psupply.
On the basis of changes in C:Pbiomass, the assemblage was defined as
P-sufficient at C:Psupply of 31.6:1 and P-limited at C:Psupply of 10
000:1 and greater. At C:Psupply of 1 00 000:1, only one chemostat
had P content above the analytical detection limit and only two
chemostats without added P had N above the detection limit.

Figure 2 Ranges of C:Pbiomass and N:Pbiomass for bacterial cultures
and other organisms, with separate panels for C:Pbiomass (panel a)
and N:Pbiomass (panel b). Data for heterotrophic bacteria are
separated by sources: literature data (Supplementary Table 7),
assemblage chemostat cultures (Godwin and Cotner, 2014) and
this study. Ranges for other organisms were from a (Cross et al.,
2005) and b (Elser et al., 2000). cRanges for E. coli were compiled
from multiple studies (Supplementary Table 7). Seston refers to
suspended particulate matter (phytoplankton, heterotrophs and
detritus). The boxplots display data for individual replicate
cultures where data are available, with the centerline representing
the median, the edges of the box representing the 25% and 75%
quantiles, and the whiskers representing the maximum and
minimum values. Dashed lines indicate the Redfield ratio (C:N:
P=106:16:1).

Phosphorus content of aquatic bacteria
CM Godwin and JB Cotner

2325

The ISME Journal



N:P in the seston (suspended particulate matter) in
freshwaters than in pelagic (offshore) marine systems
where terrestrial influences and nutrient gradients
are less profound (Cotner et al., 2010).

The bacteria in inland waters and the coastal
ocean experience stoichiometric imbalance when
they process terrestrial inputs of dissolved and
particulate organic matter with high C:P ratios.
Compared with bacteria with low and invariant
C:Pbiomass, assemblages that increase their C:Pbiomass

in response to this imbalance will remineralize less
‘excess’ C through respiration and could decrease the
export of organic matter to downstream ecosystems.
In ecosystems where internal nutrient cycling pro-
cesses are dominant and bacteria regenerate a large
fraction of available nutrients (for example, offshore
marine systems), flexible bacterial stoichiometry
likely stabilizes dissolved inorganic nutrient con-
centrations and inhibits fluctuations.

The capacity of heterotrophic bacteria to continue to
buffer C and nutrient feedbacks in ecosystems is likely
challenged by the use of inorganic fertilizers that
decrease the exported C:N and C:P ratios to aquatic
systems (Arbuckle and Downing, 2001) and anthro-
pogenic warming that increases both the export of
organic carbon and the C:N:P stoichiometry of that
material (Freeman et al., 2001; Urban et al., 2011).
Additionally, because stoichiometric flexibility
decreases with increasing relative growth rates
(Makino and Cotner., 2004; Hillebrand et al., 2013),
bacterial assemblages in low-temperature environ-
ments could become less flexible as the result of
anthropogenic warming. By examining the capacity of
aquatic bacterial assemblages to respond to C:N:P
imbalance, we can evaluate the influence of stoichio-
metric flexibility on aquatic ecosystem productivity
and the extent and periodicity of nutrient fluctuations.
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