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The role of all-trans retinoic acid in the biology of Foxp31

regulatory T cells

Zhong-Min Liu1,5, Kun-Peng Wang2,3,5, Jilin Ma2,4 and Song Guo Zheng1,2

Regulatory T (Treg) cells are necessary for immune system homeostasis and the prevention of autoimmune diseases.

Foxp3 is specifically expressed in Treg cells and plays a key role in their differentiation and function. Foxp31 Treg cells

are consisted of naturally occurring, thymus-derived Treg (nTreg) and peripheral-induced Treg (iTreg) cells that may have

different functional characteristics or synergistic roles. All-trans retinoic acid (atRA), a vitamin A metabolite, regulates a

wide range of biological processes, including cell differentiation and proliferation. Recent studies demonstrated that

atRA also regulates the differentiation of T helper (Th) cells and Treg cells. Moreover, atRA also sustains nTreg stability

under inflammatory conditions. In this review, we summarize the significant progress of our understanding of the role(s)

and mechanisms of atRA in Treg biology.
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INTRODUCTION

Autoimmunity is a heterogeneous disorder, which includes at

least 80 diseases and is controlled by complex genetic and

environmental factors. The pathogenesis of autoimmunity is

hypothesized to result from a breakdown of immune tolerance,

including central and/or peripheral mechanisms, and this loss

of control ultimately culminates in autoimmune diseases.1

Whereas the immune system plays an important role in the

prevention of autoimmune diseases through self-tolerance

mechanisms, it must be efficient in protecting the host from

insult by exogenous pathogens. In this regard, the CD41 T-cell

represents the chief protagonist, and plays a critical role in

controlling the adaptive immune system.2 A current paradigm

in immunology is that autoimmunity is elicited by an imbal-

ance between pathogenic T cells and Foxp31 regulatory T

(Treg) cells.3 These Treg cells prevent autoimmune and inflam-

matory diseases by suppressing the activities of deleterious

effector T helper (Th) cells.4

CD41CD251Foxp31 Treg cells are a specialized CD41 T-cell

lineage that plays a central role in maintaining self-tolerance, and

the dysfunction of these cells is implicated in the development of

various autoimmune diseases.5–7 CD41CD251Foxp31 Treg cells

comprise at least two distinct subsets in the periphery, natural

Treg cells (nTreg cells) produced by the thymus after recognition

of high-affinity self-antigen and then move to the periphery, and

induced Treg cells (iTreg cells) that are converted from conven-

tional non-Treg cells as a consequence of peripheral exposure to

antigens in the presence of transforming growth factor-beta

(TGF-b) signaling.8 The comparison of the similarities and dif-

ferences between nTreg and iTreg cells has been previously

reviewed.3,9,10

Foxp31 iTreg cells can be induced ex vivo by TGF-b or IL-

10.11,12 Although many factors may promote the differentiation

and development of iTreg cells, TGF-b and its receptor signaling

pathway is critical because Foxp31 iTreg cells cannot be induced

without a TGF-b signal.13,14 IL-2 is also important for the

development and maintenance of iTreg cells.15 All-trans retinoic

acid (atRA), a vitamin A metabolite, regulates a wide range of

biological processes, including cell differentiation and prolifera-

tion. Recent studies revealed that atRA regulates the differenti-

ation of Th cells and Foxp31 Treg cells.16,17 Additionally, atRA

promotes the development and function of CD41 iTreg cells,
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although its effect on CD81 iTreg cells is minimal.18–21

Moreover, atRA also helps preserve nTreg cell stability under

inflammatory conditions.22,23 In this review, we summarize our

understanding of the role of atRA in Treg cell biology, its related

molecular mechanisms and potential clinical application for

patients with autoimmune diseases and who need organ trans-

plantation.

FOXP3 AND TREG CELL SUBSETS

Foxp3, an X chromosome linked factor that controls Treg cell

development and function, is the major transcription factor for

determining the fate and identity of Treg cells and is specifi-

cally expressed in Treg cells.24,25 Foxp3 is generally postulated

to positively control Treg cell function in a binary fashion,

because its expression in conventional T cells is sufficient to

specify immune-suppressive activities.7 Foxp3 is critically

involved in the development and function of Treg cells, its

expression appears to play a necessary role in governing Treg

cell action. Treg cells also prevent autoimmune and inflam-

matory diseases by suppressing the potentially deleterious

activities of Th cells.4 In contrast, the downregulation of

Foxp3 or Foxp3 deficiency results in multiorgan autoimmune

diseases. For example, downregulation of Foxp3 in antigen-

experienced Treg cells coincides with the onset of pro-inflam-

matory and immunoregulatory cytokine secretion, such as IL-

2, IFN-c and IL-10, in these cells.26 Recent data indicate that

mature Foxp31 Treg cells express the highest levels of neuro-

pilin-1 (Nrp-1), which is usually expressed on thymus-derived

natural regulatory T cells. This suggests that the overwhelming

majority of thymus-derived, natural Treg cells express Nrp-1.27

Similarly, Helios provides an additional marker for the dis-

crimination of nTreg cells from iTreg cells, although its spe-

cificity remains a concern.28,29 Nrp-1 also identifies Foxp31

cell stability because Nrp-11 nTreg cells are more stable com-

pared with Nrp-12 nTreg cells. Nrp-11 nTreg cells have lower

methylation levels in the Treg cell-specific demethylated

region.30 The Treg cell-specific demethylated region colocalizes

with conserved non-coding sequence-2 of Foxp3, a region

involved in the maintenance of Foxp3 expression.31

One paradigm of immunology is that autoimmunity is eli-

cited by an imbalance between pathogenic T and Foxp31 Treg

cells. The pathophysiology driven by autoimmune diseases can

alter the phenotypic and functional activity of Treg cells. Foxp3

expression in Treg cells is closely associated with their func-

tional activities. The plasticity of Foxp3 expression by nTreg

cells under inflammatory conditions may also play an impor-

tant role in infectious diseases, in which early inflammatory

cytokines induced by the innate immune response may not

only downregulate Treg cell function, but may also change

Treg cells into T effector cells locally in the infected tissues,

thereby enhancing immunity.1 The adoptive transfer of

nTreg cells prevents the initiation and development of auto-

immune diseases in many animal models; however, the thera-

peutic effect of nTreg cells on autoimmune diseases remains

unsatisfactory. The key reason is that inflammatory cytokines,

such as IL-6, TNF-a and IL-1, may decrease Foxp3 expression

and subsequently reduce the functional activity of nTreg

cells.22,23,32–36

THE STABILITY OF TREG CELL SUBSETS

Recent studies demonstrated that nTreg cells from both mouse

and human are instable and dysfunctional under inflammatory

conditions.7,32,34,35,37,38 These cells not only lose their suppress-

ive ability after encountering inflammatory environments, but

they can convert into pathogenic cells that may actually accel-

erate the inflammatory process.1 In addition, the repeat expan-

sion of nTreg cells, even in the absence of pro-inflammatory

cytokines, can also result in the loss of Foxp3 expression. This

finding has very important implications for clinical utility

because nTreg cells initially exist as a very small cell popu-

lation.26 It is therefore critical to identify approaches that main-

tain Foxp3 expression and Treg cell function during expansion,

particularly under inflammatory conditions.

Rapamycin (RAPA) may be an ideal candidate for promot-

ing nTreg cell stability. RAPA, an mTOR kinase inhibitor, is an

immunosuppressive drug that inhibits effector T-cell prolifera-

tion, migration and cytokine production,39 and can selectively

promote the expansion of suppressive human CD41CD25hi

Foxp31 T cells isolated from healthy donors and patients with

diabetes.40,41 It remains unclear whether RAPA selectively sup-

presses the expansion of non-Treg cells, thereby indirectly pro-

moting the expansion of Foxp31 Treg cells.16 Although a

comparison study has shown that both RAPA and atRA had

similar effects on promoting and stabilizing Treg cells during

their expansion,42 a more recent study demonstrated that atRA

exhibits superior efficacy relative to RAPA for stabilizing nTreg

cells under inflammatory conditions.23 The mechanism by

which atRA stabilizes nTreg cells is discussed below.

iTreg cells exhibit several characteristic differences in sta-

bility and functionality relative to nTreg cells. Whereas IL-6

can convert nTreg cells into Th17 and Th1 cells, it does not have

this effect on iTreg cells.32 Conversely, iTreg cells are stable and

function effectively in an inflammatory environment.32,43 It is

likely that TGF-b treatment reduces IL-6 receptor expression

and thereby suppresses its signaling pathway.32 Therefore,

iTreg cells may play a complementary role to nTreg cells, par-

ticularly in response to self-antigens, which are not expressed in

the thymus. It is possible that under inflammatory conditions,

the induction of iTreg cells is suppressed and self-reactive cells

develop directly into effector-memory T cells and promote

autoimmune disease. Whereas TGF-b is crucial for promoting

the development of iTreg cells, the presence of IL-6 interferes

with the ability of TGF-b to promote this differentiation.44

However, because iTreg cells are stable and functional under

inflammatory conditions, after they have been induced, they

can expand ex vivo following adoptive transfer for cell-based

therapeutic treatment of patients with autoimmune inflam-

matory diseases.3,45

ATRA AND TREG CELL FUNCTION

atRA, the primary biologically active metabolite of vitamin

A, plays vital roles in embryonic development, vision, skin
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homeostasis and reproduction, and it also crucial for mainten-

ance of the immune system.46 atRA produced by dendritic cells

facilitates the de novo generation of Foxp31 Treg cells from

naive CD41CD252 T cell populations in mice,47,48 but also

suppress the de novo differentiation of naive CD41 cells into

Th17 cells.22 The effect of atRA on Treg and Th17 cells is

dependent upon the RA receptor/retinoid X receptor hetero-

dimer.49,50 Because the pathogenesis and development of many

autoimmune diseases is affected by the imbalance between Treg

and Th17 cells, the role of atRA in regulating this balance may

greatly affect the progress of autoimmune diseases.

atRA appears to promote gut homing of CD41 T cells by

inducing CCR9 and a4b7 expression, and the expression of

these molecules also indicates that a given population of T cells

respond to atRA.51 An initial study showed that atRA sup-

presses Th1 but promotes Th2 cells.52 Vitamin A deficiency

results in immune dysfunction via excessive IFN-c production

and impaired antibody responses. A recent study reported that

atRA inhibits Th17 cell differentiation but promotes Foxp31

Treg cells,17,18,53 although the role of atRA in CD41 and CD81

iTreg cell differentiation may be different.21 The orphan nuc-

lear receptor, RORct, has been implicated in the gene tran-

scription of Th17 cells. TGF-b induces high levels of RORct

and further promotes Th17 cell development in the presence of

IL-6. However, the addition of atRA to cultures containing

TGF-b and IL-6 greatly reduces RORct expression and Th17

cell differentiation.54

The key role played by atRA in immune tolerance is via the

induction of iTreg cells. atRA plays a crucial role in maintaining

gut mucosa tolerance to commensal bacteria and food antigens

through the induction of both Foxp31 Treg cells and IL-10-

producing Treg cells.55,56 atRA is primarily produced by

CD1031 dendritic cells in the intestine. These CD1031 dend-

ritic cells originate in the lamina propria, but migrate to the

mesenteric lymph nodes where they drive the differentiation of

gut-homing Foxp31 Treg cells through the production of reti-

noic acid from dietary vitamin A.57 Whereas TGF-b alone is not

sufficient to drive the development of human iTreg cells, the

addition of atRA provides the necessary stimulus for human

iTreg cell induction, demonstrating its value in clinical trans-

lation.19 The study of molecular mechanisms demonstrated that

although atRA does not significantly affect the phosphorylation

levels of Smad2/3, it promotes iTreg cell induction in CD41

cells isolated from Smad3 knockout and Smad2 conditional

knockout mice. By contrast, atRA markedly increases the

activation of the ERK1/2 signaling pathway, and the resultant

signaling promotes Foxp3 expression.20 Although DNA methy-

lation at the Foxp3 gene locus affects Foxp3 expression and

maintenance by Treg cells,58 atRA enhances the differentiation

and stability of iTreg cells in the absence of any alteration of

DNA methylation. Instead, atRA acts via increased histone

methylation and acetylation within the promoter and conserved

non-coding DNA sequence elements at the Foxp3 gene locus;20

however, atRA can inhibit the methylation of the Foxp3 gene of

nTreg in the presence of inflammatory cytokines.23

Interestingly, atRA also helps maintain Foxp3 expression

during the nTreg cell expansion process.22 This has recently

been extended to human nTreg cells.23 Compared with RAPA,

the effect of atRA on stabilizing Foxp3 expression and Treg cell

function is superior under inflammatory conditions.23 atRA

promotes the expression of cytotoxic T lymphocyte antigen

4(CTLA-4), a cell-surface receptor typically expressed by

Treg cells on the majority of TGF-b-generated Foxp31 cells.

The B7/CTLA-4 signal is crucial for the development and func-

tion of iTreg cells.59 atRA also enhances the expression of

surface TGF-b on nTreg cells,23 which is another possible

mechanism for nTreg cell stabilization. In addition, atRA also

downregulates IL-6R expression and IL-6R signaling on nTreg

cells, rendering nTreg cells resistant to the pro-inflammatory

cytokine, IL-6, which is usually elevated in autoimmune dis-

eases.60 The key role atRA plays in promoting iTreg cells

development and nTreg cells stabilization is summarized in

Figure 1. These characteristics highly suggest that atRA-treated

nTreg cells from patients with rheumatoid arthritis and other

autoimmune diseases could potentially be used to control dis-

ease development and even cure patients. The combination of

atRA and TGF-b also provides another approach to develop

Treg cell therapy for patients with autoimmune diseases

and the prevention of allograft reject in patients with organ

transplantation.

CONCLUSIONS

Treg cells are a distinct lineage of CD41 T cells that are essential

for maintaining immune system homeostasis by promoting self-

tolerance and restraining excessive immune responses. Many

mechanisms are involved in Treg cell development and function.

Foxp3 is the most specific hallmark of Treg cell subsets. Foxp3
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Figure 1 Immunomodulatory effects of atRA on CD41 T-cell subsets.
atRA maintains immune homeostasis by working with TGF-b to promote
Treg cell induction from naive T cells, while inhibiting Th17 cell induc-
tion in the presence of inflammatory cytokines such as IL-6. In addition,
atRA inhibits Th17 differentiation from nTreg cells by reducing their
expression of IL-6Ra. atRA, all-trans retinoic acid; TGF, transforming
growth factor; Treg, regulatory T.
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expression and stability are closely related to the functionality of

Treg cells. Foxp3 expression on nTreg cells is unstable in the

presence of IL-6 and other pro-inflammatory cytokines. RAPA

and/or atRA can stabilize nTreg cells, but atRA has superior

effects on nTreg cell stabilization under inflammatory condi-

tions. atRA also promotes the differentiation of TGF-b-induced

iTreg cells and inhibits Th1 and Th17 cell differentiation. These

results highlight the role of atRA in promoting the development

of iTreg cells and stabilizing the phenotype and function of

nTreg cells, indicating that approaches with atRA-primed Treg

cells have potential therapeutic value for patients with auto-

immune diseases and those undergoing organ transplantation.
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