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Covalency-reinforced oxygen evolution reaction
catalyst
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The oxygen evolution reaction that occurs during water oxidation is of considerable

importance as an essential energy conversion reaction for rechargeable metal–air batteries

and direct solar water splitting. Cost-efficient ABO3 perovskites have been studied

extensively because of their high activity for the oxygen evolution reaction; however, they

lack stability, and an effective solution to this problem has not yet been demonstrated.

Here we report that the Fe4þ -based quadruple perovskite CaCu3Fe4O12 has high activity,

which is comparable to or exceeding those of state-of-the-art catalysts such as

Ba0.5Sr0.5Co0.8Fe0.2O3� d and the gold standard RuO2. The covalent bonding network

incorporating multiple Cu2þ and Fe4þ transition metal ions significantly enhances the

structural stability of CaCu3Fe4O12, which is key to achieving highly active long-life catalysts.
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T
he oxygen evolution reaction (OER: 4OH�-O2þ 2
H2Oþ 4e� ) is an energy conversion reaction that is
essential for both the charging of rechargeable metal–air

batteries and direct solar water splitting1–5. ABO3 perovskite
oxides are of particular interest because of their high catalytic
OER activities, some of which are comparable to those of noble
metal oxides such as RuO2 and IrO2 (refs 6–8). Along with
reports on this high OER activity, many studies have been
conducted to clarify the relationship between the electronic state
and OER activity in perovskites6,9–11. Specifically, a simple
descriptor of OER activity has been proposed by Suntivich et al.9;
that is, the highest OER activity can be attained when the eg

occupancy of the B-site transition metal is close to unity.
Transition metal ions with e1

g electron configurations enhance the
covalency with oxygen ions, leading to effective charge transfer
in the rate-determining steps. Cobalt-perovskites such as
Ba0.5Sr0.5Co0.8Fe0.2O3� d (BSCF) have been widely investigated
because of their intrinsically high OER activities, which are
consistent with the above descriptor, but surface amorphization
in OER cycles remains a serious issue12. Therefore, it is necessary
to consider the intrinsic catalytic activity and stability separately.
In this regard, perovskite oxides containing high-spin Fe4þ ions
(t3

2g
e1

g configuration) such as CaFeO3 (CFO) and SrFeO3 (SFO)
are candidates for OER catalysts with high-catalytic activities.
As it is proposed that the electronegativity, which tends to be
enhanced in late 3d elements with high valences, serves to
increase the metal–oxygen covalency2,13, it is possible that the
Fe4þ ions have higher OER activity than the nominally
isoelectronic Mn3þ ions. The Co5þ and Ni6þ ions with
nominal d4 configuration are also expected to have higher OER
activity, but the synthesis of perovskite-oxides-containing Co5þ

and Ni6þ ions has not yet been reported. Further, to the best of
our knowledge, Fe4þ -oxides have not been well investigated as
OER catalysts to date. This is possibly because of their extreme
synthesis conditions, as the majority of Fe4þ -oxides are
synthesized under high pressures of above several GPa. As
compounds synthesized under high pressure are metastable, they
are likely to be excluded from the promising high-performance
catalyst candidates. Thus, no reports on the testing of
high-pressure synthesized compounds as electrochemical
catalysts have been published14. Furthermore, the dissolution of
metal ions seems unavoidable, because of the ionic characteristics
of A-site alkaline-earth metal ions for AFe4þO3 perovskites, as in
the case of SrRuO3, for example, ref. 15.

Recent progress in high-pressure chemistry has enabled
dramatic structural modifications, such as transitions from
simple A2þFe4þO3 to quadruple A2þCu2þ

3 Fe4þ
4 O12 perovskites

(A¼ Ca, Sr; see crystal structures in Fig. 1b). CaCu3Fe4O12

(CCFO) and its analogues exhibit unusual electronic properties,
for example, charge disproportionation (2Fe4þ-Fe3þ þ
Fe5þ )16 in the case of CCFO, and the giant negative
thermal expansion associated with second-order intersite charge
transfer17 in the case of SrCu3Fe4O12. The electronic interactions
between A0-Cu and B-Fe ions are predominant, where every oxide
ion is connected to two B-site ions and one A0-site ion with strong
covalency. This is because of the large overlapping that occurs
between Cu (Fe) eg and O 2p orbitals in square-planar
(octahedral) coordination. In fact, the electron density
distribution of CCFO obtained from our maximum entropy
method analysis illustrates a substantial and widespread
Fe–O–Cu network (Fig. 1b; details of this electron density
analysis are given in the Supplementary Note 1). In contrast, the
network is distributed only around Fe and O ions in a simple
perovskite SFO. One can expect that the complex covalent
bonding network in CCFO plays a significant role in determining
its catalytic properties, as in the case of the photocatalytic activity

of Pt-loaded CaCu3Ti4O12 (ref. 18). In this report, we show that
Fe4þ -perovskite CCFO exhibits high OER catalytic activity,
which is comparable to or exceeds that of state-of-the-art OER
catalysts such as BSCF and the gold standard RuO2. CCFO also
possesses high stability under OER conditions over many cycles,
owing to its enhanced covalent bonding network.

Results
Catalytic activity of Fe4þ -perovskites. The OER catalytic
performance of the Fe4þ -perovskites CFO, SFO and CCFO is
compared with that of BSCF and RuO2, together with a nominally
isoelectronic perovskite, LaMnO3 (LMO), in Fig. 2. The tetra-
valency of the Fe ions for CCFO was confirmed via Fe K-edge
X-ray absorption spectra (Supplementary Fig. 2). To exclude
geometrical effects, the current density per oxide surface area

mA cm� 2
oxide

� �
, in which the surface areas were determined using

Brunauer–Emmett–Teller (BET) analysis, was adopted as the
vertical axis in the voltammograms in this study (Supplementary
Note 2, Supplementary Fig. 3, and Supplementary Table 1). As
the OER activity of BSCF is strongly dependent on the synthesis
conditions9,12,19,20, two different BSCF samples calcined at 950
and 1,100 �C (BSCF950 and BSCF1100, respectively) were tested.

Figure 2a shows the obtained linear sweep voltammograms,
and it can be seen that CCFO exhibits the highest OER activity of
the catalysts tested here. The overpotential of CCFO for OER
(Z¼ 0.31 V), which was determined based on the onset potentials
at 0.5 mA cm� 2

oxide, is the lowest of the examined substances, while
its specific activity (current density at 1.6 V versus RHE) is the
highest (Fig. 2a,b). The CCFO Tafel slope (51 mV dec� 1) is as
low as those of the SFO and CFO (63 and 47 mV dec� 1,
respectively; Fig. 2c). The excellent properties of CCFO, which are
attributed to the presence of the Fe4þ ions, exceed those of
BSCF1100 and RuO2. On the other hand, the BSCF performance
reported by Suntivich et al.9 is superior to that of the CCFO
examined in this study. This is attributed to the difference in the
synthesis conditions of these particular samples, because BSCF
has exhibited different OER performance in a number of
reports9,12,19,20 (see also, the XRD profiles of the tested BSCF
samples in Supplementary Fig. 4). Thus, we are unable to
definitively conclude that CCFO exhibits superior OER
performance to BSCF in this study, and further investigations
are required in order to compare the intrinsic OER activities of
these substances. However, the intrinsic superiority of the
Fe4þ ions can be confirmed by comparison between AFe4þO3

(A¼Ca, Sr) and non-Fe4þ oxides. The overpotentials of SFO
and CFO are 0.41 and 0.39 V, respectively, which are comparable
to those of BSCF (Z¼ 0.38 and 0.36 V for BSCF950 and BSCF1100,
respectively) and are lower than that of RuO2 (Z¼ 0.49 V). By
comparing the specific activities (current densities at 1.6 V,
Fig. 2b), it can be seen that SFO and CFO have high activities
comparable to those of BSCF1100 and RuO2. On the other hand,
LMO exhibits poor OER catalytic activity; its overpotential
cannot be defined because of the overly small current density,
while the specific activity is only a centesimal fraction of that
exhibited by AFeO3. This is because the secondary descriptor,
electronegativity2,13, predominates the OER activity in these
cases.

As the B-site ion (Fe4þ ) is identical among CFO, SFO and
CCFO, the excellent OER activity of CCFO can be attributed to
its particular structure, that is, it is a quadruple perovskite
incorporating ordered A0-site Cu ions. It should be noted that a
reference Cu2þ–Fe3þ complex oxide examined in this
study, CuFe2O4 spinel, did not exhibit high OER activity
(Supplementary Fig. 5), thus, the combination of a Cu2þO4

square and Fe4þO6 octahedron is a key factor enhancing the
OER activity, as will be discussed below.
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Stability of Fe4þ -perovskites. The Fe4þ -perovskite stability
under OER conditions was tested. Fig. 2d–f show the cyclic
voltammograms (CV) of SFO, CFO and CCFO for continuous
100 cycles. In the SFO case, the OER current density is suppressed
even in the anodic sweep of the first cycle, because of the
degradation of the SFO; this implies the dissolution of metal
ions15. On the other hand, the increase in current density
for 100th cycle is possibly attributed to the increase in
electrochemical surface area in amorphization12. For the CFO,
the OER current density increases slightly in the first B10 cycles,
and then gradually decreases over the 100 cycles. As can be seen
in the Tafel plots of the 3rd and 100th cycles for the SFO and
CFO (Fig. 2g,h), both the Tafel slopes are increased after 100
cycles; this clearly suggests the degradation of the SFO and CFO
under OER conditions (also see the increases in overpotentials for
100 cycles in Supplementary Note 3 and Supplementary Fig. 6).
Considering the fact that the highest occupied molecular orbitals
are dominated by the O 2p orbitals in SFO and CFO, as shown in
Fig. 1a, the above results are explained by the trend that the
highly elevated O 2p band centre (or the deep Fe 3d orbital)
increases the activity but decreases the stability, as suggested for
cobalt perovskites6. However, CCFO is remarkably stable up to
100 cycles, in spite of the fact that it has the same electronic
configuration as SFO and CFO. For CCFO, the current density
increases in the first B10 cycles and remains almost unchanged.
The CCFO Tafel slope does not vary significantly, rather it
improves slightly over the 100 cycles (Fig. 2i). This corresponds to
a slight improvement in the catalytic activity. Thus, we conclude
that CCFO is an excellent OER catalyst that satisfies both the
activity and stability requirements.

To determine the difference in stability for these Fe4þ -
perovskites, the surface structures of SFO, CFO and CCFO were

investigated using high-resolution transmission electron
microscopy (HRTEM) both before and after the 100-cycle
OER measurements. Figure 3 shows surface HRTEM images
of SFO, CFO and CCFO samples, as-synthesized, as-cast, and
after the 100-cycle OER measurements. Well-crystalline
surface structures can be observed for all the as-synthesized
powders and the bulk crystallinity of all the samples
was retained after the 100-cycle OER measurements (see also,
the electron diffraction patterns in Supplementary Fig. 7).
However, thin amorphous layers (B5 nm) formed on the
surfaces of all the as-cast catalysts. Further amorphization
gradually occurred during the OER cycles in the case of the SFO
and CFO samples, resulting in thick amorphous layers about
20 nm after 100 cycles. These amorphous layers caused
suppression of the OER reaction of these two perovskites with
decreased current density as shown in Fig. 2d,e. In contrast,
CCFO retained the thin amorphous layer (B5 nm) even after
100 cycles, and no erosion was observed. If the amorphous
layers isolated only the catalyst surfaces from the electrolyte, the
catalytic activities would converge on the lower levels equally.
However, the experimental results suggest that the amorphous
layers reflect the bulk properties to some extent. The significant
improvement in the CCFO stability in comparison with that of
AFe4þO3 can be attributed to the transformation of the
covalent bonding networks. In a simple AFe4þO3 perovskite,
the B-site Fe4þ ions are covalently bound to the oxide ions,
whereas the A-site alkaline-earth metal ions have ionic
characteristics15. Thus, the A-site ions are easily dissolved in
the electrolyte during OER12. In contrast, the covalent Cu–O
bonds in square-planar units of CCFO aid formation of the
covalent bonding network and prevent progressive amorphization
during the OER measurements.
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Figure 1 | Electronic and crystal structures of SFO and CCFO perovskites. (a) Schematic illustration of molecular orbitals for regular Mn3þO6 and Fe4þO6

octahedra. The Mn3þ - and Fe4þ - ion 3d-orbital energy levels are higher and lower than those of the O 2p orbitals, respectively. Therefore, the highest

occupied molecular orbitals s* generated from the eg and 2p orbitals have 3d and 2p characteristics for the Mn3þ and Fe4þ ions. The holes at the s* orbitals

are due to the eg and O 2p orbitals in the former and latter, respectively, resulting in different representations of d4 and d5L1 for Mn3þ and Fe4þ , respectively,

where L denotes a ligand hole at the O 2p orbital25. The p-bonds between the t2g and 2p orbitals are neglected for simplicity. (b) Crystal structures and 3D

electron density maps of SFO and CCFO. SFO is crystallized in a cubic ABO3-type perovskite structure, and CCFO is crystallized in a cubic quadruple

AA03B4O12-type structure with a 2a0� 2a0� 2a0 unit cell (a0: a-axis length of a simple ABO3 perovskite). In these types of perovskites, the A-sites are

occupied by alkaline, alkaline-earth or rare-earth metal ions, the A0-sites by Jahn–Teller active ions such as Cu2þ and Mn3þ , and the B-sites by d-block

transition metal ions. 3D electron density maps of SFO (equi-density level: 0.4 Å� 1) and CCFO (equi-density level: 0.5 Å� 1) were obtained from maximum

entropy method analysis of synchrotron X-ray powder diffraction data. The shaded cross-sections indicate the (110) and 1 4
3 0

� �
planes of SFO and CCFO,

respectively. The widespread covalent network incorporating the Cu, Fe and O ions is exemplified by CCFO. These illustrations were drawn using the VESTA3

program26. The synchrotron X-ray powder diffraction patterns and Rietveld refinement results are shown in Supplementary Fig. 1 and Supplementary Note 1.
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Discussion
Here, we demonstrate the structural features of CCFO that are
associated with OER catalytic activity. When we assume that the
local crystal structures of CCFO are reflected on the surface at a
certain level, several factors that increase the catalytic activity are
considered. Fig. 4 proposes three possible OER routes for SFO

and CCFO. The left route is the conventional Eley-Rideal
(ER)-type mechanism for SFO and CCFO. In the ER-type
mechanism, OH� adsorbates are bound to B-site Fe ions on the
surface (Fig. 4a), in which the rate-determining step is considered
to be the formation of the O–O bond (reaction 2) or the
subsequent deprotonation (reaction 3)9 along with the redox
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Figure 2 | OER catalytic performance of Fe4þ -perovskites and references. (a) Linear sweep voltammograms for OER for SFO, CFO, CCFO, LMO, BSCF

and RuO2. The overpotential (Z) of each catalyst was determined from the onset potential, Eonset (V versus RHE); Eonset is the potential at 0.5 mA cm� 2
oxide

and Z¼ Eonset� 1.23 (V). (b) Specific activities (current density at 1.6 V versus RHE) for SFO, CFO, CCFO, LMO, BSCF and RuO2. (c) Tafel plots for SFO,
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reaction of the B-site ions. In both cases, the electron charges are
transferred to the Fe ions efficiently through strong Fe–O
covalent bonds. An almost identical mechanism is most likely
valid on the Cu-terminated surface of CCFO (Fig. 4b). The Cu
and Fe ions can tolerate the redox reactions in the Cu2þ /Cu3þ

and Fe4þ /Fe5þ states, leading to the stable and high OER
activity exhibited by CCFO. It should be noted that the
Langmuir-Hinshelwood (LH)-type reaction can occur through
the direct formation of the O–O bond between the neighbouring
oxygen atoms connected to the nearest neighbouring Fe ions,
because of the short distance (Fig. 4c). The oxygen–oxygen
distance is shortened to B2.6 Å by heavily bent Fe–O–Fe bonds
(B140�) for CCFO. This oxygen–oxygen distance is comparable
to that of a-Mn2O3, in which the LH-type mechanism is thought
to dominate21. In contrast, the oxygen–oxygen distances for
simple cubic perovksite SFO is B3.9 Å because of the linear
Fe–O–Fe bonds (¼ 180�). This oxygen–oxygen distance is too
large to permit the oxygen atoms to interact with each other and
form oxygen molecules. In the LH-type reaction, one of the two
possible rate-determining steps in the ER-type reaction (that is,
the deprotonation of the oxyhydroxide group to form peroxide
ions) is skipped, resulting in the acceleration of the reaction.
Thus, the realization of the LH-type reaction is another major
specificity of CCFO.

In summary, the Fe4þ -perovskite CCFO exhibits promising
OER activity. Further, CCFO has a widespread covalent bonding
network that enhances its stability. The cationic arrangements of
this substance provide a further increase in the OER activity.
These findings indicate that the covalent network consisting of
multiple transition metal ions in CCFO plays a crucial role in
the activity and stability of the OER catalysis. In addition, the
various unexplored A0-B ion couplings in quadruple perovskites
may provide further high-performance, high-stability and cost-
effective OER catalysts.

Methods
Sample preparation. SFO, CFO and CCFO were synthesized via a high-pressure
synthesis method. LMO and BSCF were obtained using a polymerized method,

while CuFe2O4 was synthesized via the inverse coprecipitation method. RuO2

(99.9%) was used as purchased from RARE METALLIC, Co, Ltd. The sample
preparation details are given in the Supplementary Methods.

Characterization. X-ray diffraction patterns of reference oxides were obtained
using a laboratory X-ray diffractometer (Rigaku Ultima IV) with Cu Ka radiation.
Synchrotron X-ray powder diffraction patterns of the Fe4þ -perovskites were
obtained at the SPring-8 BL02B2 beamline. Fe K-edge X-ray absorption spectra of
the CCFO and Fe3þ reference oxides were collected at room temperature and in
absorption mode at the SPring-8 BL01B1 beamline. Crystal structure refinements
of CFO, SFO and CCFO were conducted based on the obtained synchrotron X-ray
powder diffraction data using a Rietveld refinement program RIETAN-FP22.
Electron density analysis of SFO and CCFO was performed using the Dysnomia
maximum entropy method program23. HRTEM images were collected using a
JEOL JEM-2100F.

Preparation of catalyst inks. The catalyst inks were prepared by reference to the
methods reported by Suntivich et al.9,24 and Jung et al.7 Kþ ion-exchanged Nafioni
was used as a immobilizing binder, which did not prevent the transport of
dissolved O2 to the catalyst surface. A B3.33 wt.% Kþ ion-exchanged Nafion
suspension was prepared by mixing a 5 wt.% proton-type Nafion suspension
(Sigma-Aldrich) and 0.1 M KOH aqueous solution at 2:1 by volume. The pH of the
5 wt.% proton-type Nafion suspension was initially B1 and 2 and was changed to
B11 after mixing. The catalyst inks of the perovskites and reference oxides
(RuO2 and IrO2, Sigma-Aldrich) were prepared by mixing 50 mg of oxide, 10 mg of
acetylene black (AB), and 0.3 mL of B3.33 wt.% Kþ ion-exchanged Nafion
suspension. The volumes of the inks were adjusted to 10 mL by the addition of
tetrahydrofuran (Sigma-Aldrich). Thus, the final concentration of the catalyst inks
was 5 mgoxide mL� 1

ink , 1 mgAB mL� 1
ink and B1 mgNafion mL� 1

ink . A rotating ring-disk
electrode (BAS Inc, Japan) consisting of a glassy carbon (GC) disk of 0.4 cm in
diameter and a Pt ring part of 0.7 and 0.5 cm outer and inner diameter,
respectively, was used as a working electrode after mirror polishing with 0.05 mg
alumina slurry (BAS Inc). Then, 6.4 mL of catalyst ink was drop-cast onto
the GC disk part (0.2� 0.2�p cm2). The catalyst layer on the GC disk part
was dried overnight in vacuum at room temperature, and was composed of
0.25 mgoxide cm� 2

disk , 0.05 mgAB cm� 2
disk and B0.05 mgNafion cm� 2

disk .

Electrochemical characterization. Electrochemical characterization was
conducted with a rotating-disk electrode rotator (RRDE-3 A, BAS Inc) at an
electrode rotation rate of 1,600 or 3,200 r.p.m. in combination with a bipotentiostat
(ALS Co, Ltd., Japan). For all experiments, a Pt wire electrode and Hg/HgO
electrode (International Chemistry Co, Ltd., Japan) filled with a 0.10 M KOH
aqueous solution (Nacalai Tesque, Inc, Japan) were used as the counter and
reference electrodes, respectively. All measurements were conducted under O2

saturation at room temperature (B25 �C ), which fixed the equilibrium potential of
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the O2/H2O redox couple to 0.304 V versus Hg/HgO (or 1.23 V versus RHE).
For the catalysis evaluation of the perovskites for OER, the potential of the catalyst-
modified GC part was controlled from 0.3–0.9 V versus Hg/HgO (1.226–1.826 V
versus RHE) at 10 mV s� 1. For all measurements, the current density was
iR-corrected (R¼B43O) using the measured solution resistance, and capacitance-
corrected by taking the average between the anodic and cathodic scans9. All the
OER currents are shown relative to the surface area of the oxide catalysts estimated
using BET analysis (BELSORP-max, BEL Japan, Inc, Japan).
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