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Abstract
Hepatitis C virus (HCV) is a hepatotrophic virus and 
a major cause of chronic liver disease, including 
hepatocellular carcinoma, worldwide. The life cycle of 
HCV is closely associated with the metabolism of lipids 
and lipoproteins. The main function of lipoproteins is 
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transporting lipids throughout the body. Triglycerides, 
free cholesterol, cholesteryl esters, and phospholipids 
are the major components of the transported lipids. 
The pathway of HCV assembly and secretion is closely 
linked to lipoprotein production and secretion, and 
the infectivity of HCV particles largely depends on the 
interaction of lipoproteins. Moreover, HCV entry into 
hepatocytes is strongly influenced by lipoproteins. The 
key lipoprotein molecules mediating these interactions 
are apolipoproteins. Apolipoproteins are amphipathic 
proteins on the surface of a lipoprotein particle, which 
help stabilize lipoprotein structure. They perform a key 
role in lipoprotein metabolism by serving as receptor 
ligands, enzyme co-factors, and lipid transport carriers. 
Understanding the association between the life cycle of 
HCV and lipoprotein metabolism is important because 
each step of the life cycle of HCV that is associated 
with lipoprotein metabolism is a potential target for 
anti-HCV therapy. In this article, we first concisely 
review the nature of lipoprotein and its metabolism 
to better understand the complicated interaction of 
HCV with lipoprotein. Then, we review the outline of 
the processes of HCV assembly, secretion, and entry 
into hepatocytes, focusing on the association with 
lipoproteins. Finally, we discuss the clinical aspects 
of disturbed lipid/lipoprotein metabolism and the 
significance of dyslipoproteinemia in chronic HCV 
infection with regard to abnormal apolipoproteins. 
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Core tip: Hepatitis C virus (HCV) and lipids interact 
closely at multiple stages in the HCV life cycle. HCV 
infection may have a profound influence on lipid 
metabolism, while lipids can regulate HCV replication. 
Infectious HCV forms lipo-viral particles that possess 
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anomalous lipid metabolism caused by HCV infection 
may lead to liver injury and hepatocarcinogenesis. 

Hepatologists may not necessarily be familiar with 
the details of lipoprotein metabolism even though 
the liver is the central organ for the function of this 
protein. Therefore, in this review, we provide a concise 
overview of human lipoprotein, with attention to recent 
acquired knowledge. Next, we provide an outline of the 
life cycle of HCV, focusing on the interaction between 
HCV and lipoprotein metabolism in view of anti-
HCV therapeutic targets. Finally, the clinical aspects 
of disturbed lipid/lipoprotein metabolism and recent 
data on dyslipoproteinemia in chronic HCV infection, 
including the abnormality of circulating apolipoprotein, 
have been summarized. 

Overview Of the physicOchemical 
nature Of lipOprOtein and 
lipOprOtein metabOlism
Physicochemical nature and classification of lipoprotein/
apolipoprotein
A lipoprotein is a particle comprising a single outer 
layer of amphipathic phospholipid covering a non-
polar central core. The main function of lipoproteins is 
transporting lipids throughout the body. Triglycerides 
(TGs), cholesteryl esters (CEs), free cholesterol, CEs, 
and phospholipids are the major components of the 
lipids. The structure of lipoprotein (very-low-density 
lipoprotein; VLDL) is illustrated in Figure 1.

Lipoproteins are usually classified based on buoyant 
density by ultracentrifugation into five classes, namely, 
chylomicrons (CMs), VLDLs, intermediate-density 
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Figure 1  Structure of a lipoprotein (very-low-density lipoprotein).

the features of lipoproteins. Examination of lipoprotein 
sub-fractions and apolipoproteins is inevitable for 
evaluating the nature of disturbed lipid metabolism. 
Among apolipoproteins, apolipoprotein E is a key 
molecule required for HCV entry, and is one of the 
possible therapeutic targets for interrupting HCV 
infection. Understanding the disturbed lipid metabolism 
may shed light on the pathophysiology of HCV infection 
and help develop novel therapeutics.
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intrOductiOn
Hepatitis C virus (HCV) is one of the most important 
viruses affecting human health. It is estimated to 
infect about 2% of the world’s population[1]. Liver 
cirrhosis and hepatocellular carcinoma (HCC) develop 
after long-term HCV infection[2]. As natural eradication 
of chronic HCV infection is extremely rare, interferon 
(IFN)-based antiviral therapy had been carried out, 
but its efficacy was limited[3]. The application of direct-
acting antivirals (DAAs) has been progressing in recent 
years[4]. IFN free regimens with combinations of DAA 
preparations having different action mechanisms are 
recommended as a standard treatment in various 
countries. It is expected that combinations of DAAs 
without IFN might help abolish most chronic HCV 
infections within the end of the next decade in Japan. 
However, treatment with DAAs is time consuming and 
very expensive. 

HCV is a unique virus that uses the host lipid 
metabolism at multiple key steps of the HCV life cycle[5]. 
HCV is secreted from the liver as highly infective lipo-
viral particles (LVPs), which express hallmarks of 
lipoprotein particles such as apolipoprotein C (apo 
C) and apolipoprotein E (apo E) on the surface[6]. 
This strongly indicates that there is an extremely 
close connection between the infectivity of HCV and 
lipoprotein metabolism.

Understanding the tight association between HCV 
life cycle and lipoprotein metabolism is very important 
because HCV infection is a unique model wherein the 
virus causes chronic infection while coexisting with 
the host and simultaneously taking over the host’s 
metabolism[6]. Moreover, each step of the HCV life 
cycle that is connected to lipoprotein metabolism is 
a potential target for anti-HCV therapy. The need to 
identify such targets arises despite the approval of 
DAA-based treatment, because the high cost and 
comparative long duration of DAA treatment warrant 
other types of concomitant drugs or substitutive 
drugs to overcome the limitations. In addition, the 



lipoproteins (IDLs), low-density lipoproteins (LDLs), 
and high-density lipoproteins (HDLs). Alternatively, 
lipoprotein can be classified by the mobility of 
electrophoresis as β lipoprotein, pre-β lipoprotein, or 
α lipoprotein. CMs and VLDLs are TG-rich lipoproteins, 
while LDLs and HDLs contain abundant cholesterol. CM 
particles are the biggest, while HDL particles are the 
smallest. Buoyant density of HLD is the highest, while 
it is the lowest in CMs. The physicochemical natures of 
the five classes of lipoprotein by buoyant density are 
presented in Table 1.

Apolipoproteins are amphipathic proteins on the 
surface of a lipoprotein particle that help stabilize 
the lipoprotein structure. They perform a key role in 
lipoprotein metabolism by serving as receptor ligands, 
enzyme co-factors, and lipid transport carriers. 
Apolipoproteins are classified into apolipoprotein A 
(apo A), apolipoprotein B (apo B), apo C, or apo E. 
Apolipoproteins can also be divided into two groups on 
the basis of biological and structural features, namely 
exchangeable and non-exchangeable apolipoproteins. 
Apo B-100 is a non-exchangeable protein irreversibly 
associated with the LDL and VLDL particle, whereas 
others are transportable proteins. Apo A-Ⅰ is the major 

protein component of HDL. Apo C-Ⅱ is a co-factor of 
lipoprotein lipase (LPL), which mediates the hydrolysis 
of TGs in the core of CM and VLDL particles, while apo 
C-Ⅲ inhibits the function of LPL. These exchangeable 
apolipoproteins exist mostly on the surface of CM, 
VLDL, and HDL particles[7]. The nature and function of 
the major apolipoproteins are summarized in Table 2.

Lipoprotein metabolism 
Lipoprotein metabolic pathways consist of exogenous 
and endogenous pathways[8]. In the exogenous 
pathway, lipids are absorbed through intestinal 
epithelial cells, while in the endogenous pathway, 
lipoproteins are synthesized mainly in the hepatocytes 
or intestinal epithelial cells. 

Exogenous pathway: About 90% of dietary lipid 
consists of TGs. In contrast, the daily diet contains 
only 400 mg/d of cholesterol. The major source 
of cholesterol is bile, in which about 1500 mg of 
cholesterol is secreted every day. The average 
absorption rate of cholesterol is about 50%, and non-
absorbed cholesterol is lost in the feces. Absorbed lipids 
are assembled with apo B-48 in the intestinal epithelial 
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Table 1  Classification of circulating lipoproteins

Class name Density (g/mL) Diameter (nm) % Protein % Cholesterol 
(free cholesterol + cholesteryl ester)

% Phospholipids % Triglycerides % Free fatty acids

CM < 0.95   100-1000 < 2 4-8 7-8 84-88 0
VLDL 0.950-1.006 30-80   7-10 20-25 18-20 50-55 1
IDL 1.006-1.019 25-50 10-18 29-45 22-27 25-31 1
LDL 1.019-1.063 18-28 20-25 45-58 20-28 10-15 1
HDL 1.063-1.210   5-15 33-57 17-40 26-46   3-15 0-6

Table 2  Properties and functions of major apolipoproteins

Name Molecular 
weight (Da)

Origin Lipoprotein association Principal function

apo A-Ⅰ  28016 Hepatocyte HDL>>CM Cofactor of LCAT
Intestinal epithelial cell Prostacyclin stabilizer

Ligand of SR-B1
apo A-Ⅱ 17414 Hepatocyte HDL Inhibits LCAT

Intestinal epithelial cell Inhibits HL
apo A-Ⅳ 31570 Intestinal epithelial cell CM (Activates LCAT?)

(hepatocyte?) (Activates CETP?)
apo B-48 241000 Intestinal epithelial cell 

(splicing variant of apo B-100)
CM and CM remnant Formation of CM particle

apo B-100 545000 Hepatocyte VLDL, IDL, and LDL Formation of VLDL/LDL particle
Ligand of LDL receptor

apo C-Ⅰ 6600 Hepatocyte CM, VLDL, IDL, and HDL Inhibits CETP by altering the electric charge of HDL
apo C-Ⅱ 8800 Hepatocyte CM, VLDL, IDL, and HDL Cofactor of LPL
apo C-Ⅲ 8750 Hepatocyte CM, VLDL, IDL, and HDL Inhibits LPL and HL

Promotes assembly and secretion of VLDL
apo C-Ⅳ Hepatocyte CM, VLDL, IDL, and HDL Not specified
apo E 34100 Hepatocyte CM, CM remnant, VLDL, IDL and 

HDL
Ligand of LDL receptor/LDL receptor-related protein

Macrophage Binds to HSPGs 

HDLs: High-density lipoproteins; CMs: Chylomicrons; IDLs: Intermediate-density lipoproteins; VLDL: Very-low-density lipoprotein; LDLs: Low-density 
lipoproteins; HSPGs: Heparan sulfate proteoglycans.
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HDL: High-density lipoprotein; CM: Chylomicron; IDL: Intermediate-density lipoprotein; VLDL: Very-low-density lipoprotein; LDL: Low-density 
lipoprotein.



apolipoprotein in HDL, may present predominantly 
on the HDL3. Mature HDL2 delivers cholesterol to the 
peripheral tissues[13]. In this process, HDL2 is de-
lipidated by transferring cholesterol to the tissues 
through the scavenger receptor class B type Ⅰ (SR-
BI). Then, HDL particle returns to the hepatocyte 
or intestinal epithelial cell, and attaches to ABCA1 
to receive surplus cholesterol in these cells (re-
lipidation). Alternatively, HDL2 attaches to SR-BI on 
the hepatocyte for providing cholesterol to the liver 
(reverse cholesterol transport; RCT). Cholesterol 
excess in any cell can be removed and transported to 
the hepatocytes through RCT. 

HDL and apo B-related lipoprotein exchange CE 
for TG by the action of CE transport protein (CETP). If 
TG content increases in apo B-related lipoprotein, one 
molecule of CE in HDL is exchanged with one molecule 
of TG in apo B-related lipoprotein. Then, CE is returned 
to the hepatocytes through endocytosis via LDLr 
(indirect RCT). Cholesterol in hepatocytes is excreted 
into bile directly or after being metabolized to bile acid. 

A summary of the lipoprotein metabolism is illus-
trated in Figure 2.

hcv lifecycle and lipOprOtein 
metabOlism: perspectives Of anti-
hcv therapy
Replication, assembly, and secretion of HCV
HCV replication is reported to begin in a membranous 
web on the endoplasmic reticulum (ER) membrane[14,15]. 
The membranous web contains non-structural HCV 
proteins (NS3/4A, 4B, NS5A/5B) and newly syn-
thesized HCV-RNA. Phosphatidylinositol-4-kinase Ⅲa 
(PI4KⅢa) affects the generation of the membranous 
web by altering the phosphorylation status of the HCV 
NS5A protein[16,17]. An initiation phase of assembly 
occurs on the cytosolic side of the ER membrane, 
which interacts with cytosolic lipid droplets (LDs)[18]. 
HCV core protein is associated with LDs[19] and is then 
recruited to the HCV assembly site by interacting with 
NS2 and NS3-4A[20]. 

In the late assembly steps, a lipid envelope is 
acquired, and the E1 and E2 envelope glycoproteins 
are incorporated into virions[21]. The transmembrane 
protein NS2 plays a critical role in the assembly of 
virions by mediating the interaction of immature 
particles with E1/E2 membranous glycoprotein[22,23]. 
Nascent virus particles combine with pre-VLDLs during 
maturation[24]. In this manner, lipids in the luminal 
LDs, apo B-100, apo E, and apo C-Ⅰ participate in the 
generation of LVPs, which form true hybrid particles 
of HCV and VLDL[25]. However, apo B-100 is not an 
absolute requirement for HCV-LVP morphogenesis. 
Instead, apo C-Ⅰ and E are indispensable for the 
intracellular morphogenesis of HCV-LVP[26-28]. In any 
case, engagement with the VLDL assembly pathway 
facilitates virion maturation. In this way, the process 

cells, which form nascent CMs. Then, nascent CM 
particles are secreted into lymphatic vessels and flow 
into systemic circulation via the thoracic duct. Nascent 
CMs then receive apo C-Ⅱ and apo E from HDL 
particles and become mature CMs. CMs are very large 
and less dense particles. TGs in CMs are hydrolyzed 
by LPL, which is located on vascular endothelial cells 
and releases one molecule of monoacylglycerol and 
two molecules of free fatty acids. They are taken into 
the tissues, while CMs are degraded into remnants[9]. 
The CM remnant is attached to the hepatocyte by 
interaction of apo E with the remnant receptor and is 
absorbed into hepatocytes.

Endogenous pathway: The liver is the main organ 
involved in the endogenous pathway. Hepatocytes 
secrete VLDL particles. Assembling VLDLs begins in 
the endoplasmic reticulum. In the beginning of VLDL 
formation, TGs are incorporated by the action of 
microsomal TG transfer protein (MTP) into a growing 
particle in which apoB-100 is the major component of 
an outer surface of the particles. Then, CEs and apo E 
are incorporated into the particle as well, followed by 
exocytosis of the nascent VLDL particles into the blood. 
Secreted nascent VLDL particles acquire more apo E 
and apo Cs from HDL particles. Mature VLDL particles 
are catalyzed by the action of LPL. Apo C-Ⅱ activates 
LPL, while apo C-Ⅲ impairs LPL activity and the hepatic 
uptake of VLDL remnants[10]. Fatty acids released by 
the degradation of VLDL are mainly incorporated into 
the muscle or adipose tissue for energy sources or 
stored as fats. 

VLDL particles are consistently produced and 
secreted from the liver, and 1018 particles are released 
into the circulation every 24 h. Large and TG super-
rich VLDL (VLDL1) is secreted after a meal, while small 
VLDL2 is secreted during starvation[11]. The catalyzed 
VLDL named VLDL remnant or intermediate-density 
lipoprotein (IDL) is incorporated into the liver through 
the interaction of apo E and remnant receptor, or 
further hydrolyzed by hepatic lipase (HL). 

After hydrolysis by HL, IDLs transform to LDLs, 
which have high cholesterol content. LDL particles 
provide cholesterol to peripheral tissues or liver 
cells via interaction of apoB-100 with LDL receptors 
(LDLr). LDL particles are attached and internalized by 
endocytosis and hydrolyzed in lysosomes.

Apo A-I, the major apolipoprotein of HDL, is 
synthesized and secreted from hepatocytes or 
intestinal epithelial cells. Apo A-Ⅰ is attached to 
ATP-binding cassette transporter A1 (ABCA1), a 
cellular cholesterol efflux pump, and lipidated by free 
cholesterol and phospholipids[12]. Apo A-Ⅰ carries 
lecithin acyl cholesterol acyltransferase (LCAT), which 
esterifies cholesterol to CE and makes discoidal 
nascent HDL. Then, nascent HDL particles change to 
spherical particles by receiving more CE, and increases 
in size. Smaller HDL is called HDL3, while larger HDL 
is named HDL2. Apo A-Ⅱ, the second most common 
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of maturation and secretion of HCV particles is linked 
with VLDL assembly and secretion[22]. More details 
on the precise process of HCV replication, assembly, 
and secretion have been summarized in several 
reviews[5,29-32]. In chronic HCV infection, about 1012 
HCV virions are secreted into circulation every 24 h.

Replication of HCV is suppressed by inhibition of 
MTP, which is a key molecule for the generation of 
VLDL[33]. Apo B-100 production is interfered by HCV, 
and over storage of TG leads to hepatic steatosis[34]. 
Inhibition of apo E, a key molecule of both HCV-LVP[35] 
and VLDL, impairs the secretion of infectious 
HCV-LVP[36]. These findings indicate close association 
between HCV replication and VLDL production, and 
imply the significance of VLDL as a possible target of 
anti-HCV therapy.

The metabolism of fatty acids and phospholipids 
is crucial in HCV replication. Fatty acid synthase 
is upregulated during HCV replication[37,38]. HCV 
replication is inhibited by polyunsaturated fatty acids 
(PUFAs)[39,40] but stimulated by monounsaturated 

fatty acids[41]. The inhibition of HCV replication by 
PUFAs may be mediated by the peroxidation of PUFAs, 
which can be blocked by vitamin E[42] or a reduction in 
cellular cholesterol level[40]. Meanwhile, HCV replication 
induces sphingosine kinase 2-mediated peroxidation 
of PUFAs, which suppress HCV replication[43]. This 
feedback mechanism may regulate the HCV-replication 
runaway and participate in long-term perpetuation of 
HCV infection. These findings strongly suggested that 
manipulation of lipid metabolism in hepatocytes may 
be an important therapeutic strategy for impairing HCV 
replication. 

HMG-CoA inhibitors (statins), which inhibit cho-
lesterol synthesis, have been used as adjuvants 
for anti-HCV therapy[44-46]. Addition of statins to 
the standard pegylated (peg) IFN and ribavirin 
therapy for HCV genotype 1 may improve the rate of 
sustained virological response. As mentioned earlier, 
increased synthesis of geranylgeranyl pyrophosphate 
is involved in HCV replication[41]. Statins decrease 
geranylgeranylation and thus function against HCV 
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infection[47]. In addition, eicosapentaenoic acid (an 
omega-3 PUFA) and fibrate may also improve the 
outcome of peg IFN and ribavirin therapy[48,49]. 

A micro RNA (miRNA) is a small non-coding 
RNA molecule, which functions on silencing of RNA 
and regulates post-transcriptional gene expression. 
miR-122 binds near the 5’ end of the HCV genome 
and stabilizes HCV RNA, which may participate in 
positive regulation of HCV replication[50]. miR-122 also 
upregulates genes participating in the synthesis of 
cholesterol[51]. Therefore, miR-122 can be an important 
target of anti-HCV therapy. Treatment of chronic 
HCV infection by Miravirsen (locked nucleic acid-
modified oligonucleotide complementary to miR-122) 
leads to long-lasting suppression of serum HCV[52,53] 

accompanied by a decrease of serum cholesterol. 
miR-27a is preferentially expressed in the HCV-infected 
liver and regulates lipid metabolism by targeting the 
lipid synthetic transcription factor retinoid X receptor 
α (RXRα) and ABCA1. Moreover, miR-27a represses 
the gene expression of many lipid metabolism-related 
genes. Suppression of miR-27a increases the cellular 
lipid content, and increases HCV replication and 
infectivity[54]. Manipulation of miR-27a may also be a 
possible target against HCV infection.

In summary, replication of HCV is largely affected 
by lipid metabolism. Suppression of VLDL production, 
manipulation of lipid metabolism and miRNA may be a 
possible target against HCV infection.

Properties of circulating HCV-LVPs 
HCV particles have unusually low and heterogeneous 
buoyant density compared with other enveloped RNA 
viruses[30,32]. Infectious HCV particles have densities 
of 1.03-1.10 g/mL. There may be two different type 
of infectious HCV particles: first, hybrid particles of 
lipoproteins and HCV virions that share a common 
envelope (true HCV-LVP), and second, transient 
association of HCV virions with lipoprotein particles 
(transient HCV-LVP) (Figure 3). True HCV-LVP may 
further transiently unite to host lipoprotein particles. 

The existence of transient HCV-LVP is supported by a 
report that serum-derived HCV particles are associated 
with apo B-48-containing CMs[55]. 

Highly infectious HCV particles have a buoyant 
density of less than 1.07 g/mL, which corresponds 
to the density of LDL or VLDL[56], and their average 
particle size is 73 nm, which corresponds to the size 
of VLDL1

[57]. Thus, physical properties of infectious 
HCV particles closely resemble those of VLDL particles. 
Infectious HCV particles have apo E and apo C-I to 
C-Ⅲ on the surface, just as VLDLs have[28,58-60]. Due 
to the physicochemical similarities with lipoproteins, 
infectious HCV particles have been named HCV-LVPs. 

In a study of chronic HCV G1 infection, the quantity 
of plasma HCV-LVPs correlated with plasma TG/HDL-
cholesterol ratio, HOMA-IR, and non-response to IFN-
based antiviral therapy, suggesting the importance 
of lipid/glucose metabolism in the generation and 
persistence of circulating HCV-LVPs[57]. An HCV-LVP 
may contain more than 300 molecules of apo E on 
the surface, while VLDL has only 5-7 molecules[59]. 
Therefore, apo E may be one of the key molecules for 
determining the direction of circulating HCV-LVPs. 

The density of circulating HCV is dramatically 
altered after oral intake of TGs[61]. HCV-LVPs with 
a density less than 1.025 g/mL increase by 26-fold 
after the intake of a fatty meal, together with a 
rise in TG-super-rich VLDL1 and CM. This very low-
density HCV-LVP bears apo B-48 or apo B-100 and 
very rapidly increases after meal; thereafter, it is 
rapidly cleared from circulation. Marked increase of 
postprandial HCV-LVPs indicates that non-infectious 
HCV particles can be transferred onto TG-super-
rich VLDL1 or CM by a similar manner that transfers 
exchangeable apolipoproteins from HDL to VLDL1 or 

CM postprandially. This study clearly indicates that HCV 
could be transiently associated with TG-rich lipoprotein 
particles after meal, as shown in Figure 3.

HCV-LVP can be catalyzed by LPL akin to the 
catalysis of CM and VLDL. This catalyzed HCV-LVP 
may lose infectivity. Infectivity of HCV is significantly 
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inhibited by exogenous LPL in vitro[62]. In addition, not 
only LPL but also HL reduces the infectivity of HCV by 
catalyzing HCV-LVP[63]. Abundant apo C-Ⅲ on HCV-LVP 
or VLDL reduces LPL-mediated inhibition of HCV 
infection[64]. 

The activity of HL is affected by HCV infection, and 
the transcription level of HL is strongly downregulated 
in HCV G1b-infected livers compared to that in 
hepatitis B virus (HBV)-infected or non-alcoholic 
steatohepatitis (NASH) livers[65]. In addition, post-
transcriptional regulation mechanism of HL activity 
is important for activation of HL[66]. HL is anchored in 
cell-surface heparan sulfate proteoglycans (HSPGs) on 
the hepatocytes, and is inactivated. After a meal, HL 
is dissociated from HSPGs and binds to HDL. Apo A-
Ⅱ may enhance the displacement of HL to HDL, and 
inhibit the activation of HL together with apo A-Ⅰ[67,68]. 
Apo E interferes with the association of HL with HDL, 
while stimulates the activity of HL on HDL. Therefore, 
the balance of apo E, apo A-Ⅰ, and A-Ⅱ might be 
responsible for HL activity.

Recent evidence indicates that there are many 
“empty” HCV particles that express E1/E2 glycoprotein 
on the surface, but do not contain the core protein 
and HCV-RNA in the blood of HCV patients. “Empty” 
HCV particles may be 106 times more numerous than 
infectious HCV-LVPs[56], and may have a role on host 
lipoprotein metabolism. In addition, “empty” HCV 
particles could be bound to anti-E1 and E2-specific 
antibodies[56]. Therefore, infectious HCV-LVP may be 
hidden among the numerous “empty” HCV particles. 
This might be one of the mechanisms enabling HCV to 
escape from host immunological surveillance system.

In summary, HCV-LVP demonstrates dynamic 
changes in circulation and loses infectivity by LPL or 
HL. In view of anti-HCV therapy, the manipulation of 
HCV-LVP may not be an excellent therapeutic strategy 
because there are dynamic transformations between 
non-infectious HCV and HCV-LVP. In addition, E1/E2 
envelope proteins on the surface of infectious HCV are 
hidden among the numerous “empty” HCV particles. 
This finding renders E1/E2 envelope proteins less 
amenable as promising target molecules. 

Entry of HCV into liver cells
HCV entry into human hepatocytes is a complex, 
multistep process involving a couple of receptors. The 
full description of the mechanisms of this process is 
beyond the scope of this review. Details are available 
in numerous related reviews[5,29,32,69-71]. As a first step 
of HCV entry, HCV-LVP attaches to the liver cell surface 
by adhering to HSPGs, which are abundant on the liver 
cell surface. HCV-LVP uses syndecan-1 or syndecan-4 
HSPGs for the initiation of entry into hepatocytes[72]. 
Apo E on the surface of HCV-LVP and HCV envelope 
proteins adheres to HSPGs[73-76]. The minimal unit 
required for infection is a decasaccharide[77]. 

The binding of apo B-100 on the surface of 

HCV-LVP to LDLr was proposed to involve the 
penetration of HCV into hepatocytes[78,79]. However, 
a productive entry process does not seem to operate 
following the binding of HCV-LVP to LDLr, but rather 
a non-productive pathway that degrades HCV 
particles is elicited[80]. Though apo E on the surface 
of HCV-LVP can participate in the binding to LDLr, 
HCV-LVP competes with the excess of LDL or VLDL for 
occupation of LDLr. 

Alternatively, productive HCV entry arises by 
interaction with SR-BI[81,82], a receptor for the uptake of 
cholesterol from HDL particles (Figure 4). The precise 
process of HCV adhesion to SR-BI is a complex[83], 
multistep one[84]. In brief, the initial step might be 
an interaction between apo E on the HCV-LVP and 
SR-BI. In the second step, the lipid transfer activity 
of SR-BI (entry of cholesterol from mature HDL) 
facilitates HCV entry by binding of specific residues in 
hypervariable region 1 of E2 and SR-BI[85]. Thereafter, 
exposed determinants in E2 bind to CD81[86] and move 
to tight junction protein claudin 1. Claudin 1 interacts 
with CD81 and contributes to the next step of HCV 
internalization[87]. Finally, internalization of HCV is 
completed by clathrin-mediated endocytosis[88]. 

Transferrin receptor 1 and other receptors may 
act as factors promoting HCV entry[89,90]. Niemann-
Pick C1-like 1 (NPC1L1) was reported as a receptor for 
HCV entry[91]. However, the significance of NPC1L1 is 
controversial because this molecule is expressed only 
on the apical side of the hepatocyte[92].

As an anti-HCV therapy target, apo E is one of the 
most promising target molecules for disrupting HCV 
infection. Apo E is preferentially distributed on the 
surface of HCV-LVP and plays a critical role in the entry 
of HCV. Under short-term suppression of apo E, serious 
adverse effects may not arise. Furthermore, SR-BI is 
a potential target molecule for anti-HCV therapy[84], 
because SR-BI is essential for productive entry of HCV. 

ABCA1 is also a potential target molecule. Recently, 
the critical role of ABCA1 on HCV-cell fusion and HCV 
entry was reported[93]. ABCA1 mediates cholesterol 
efflux from hepatocytes to extracellular apo A-Ⅰ, 
which initiates the formation of HDL. Upregulation of 
ABCA1 expression and its cholesterol efflux function[94] 
impairs HCV infection and decreases virus production. 
Stimulation of the ABCA1-dependent cholesterol efflux 
pathway disrupts membrane cholesterol homeostasis, 
thereby inhibiting HCV-cell fusion and entry. 

In summary, apo E on the surface of HCV-LVP 
is the key molecule for harboring HCV-LVPs on the 
surface of hepatocytes and for the initial attachment 
of HCV-LVPs to SR-BI. HCV entry is inhibited by 
cholesterol efflux via ABCA1 and is facilitated by 
the activity of SDR-BI. These findings suggest a 
close connection between HDL-related cholesterol 
metabolism and the persistence of HCV infection. One 
of the chief mediators determining the influx and efflux 
of cholesterol might be the intracellular concentration 
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of cholesterol.

chrOnic hcv infectiOn and 
dyslipOprOteinemia
Clinical aspects of disturbed lipid/lipoprotein 
metabolism in chronic hepatitis C
Low serum cholesterol (or low LDL-cholesterol) level 
is a well-known characteristic feature of chronic 
HCV infection[95,96]. The magnitude of altered lipid 
metabolism depends on host IFNL3 polymorphism and 
HCV genotype. The CC rs12979860 polymorphism 
(major IFNL3 genotype) is significantly associated 
with higher serum cholesterol and LDL-cholesterol 
levels in HCV genotype 1 (G1) patients but not in 
patients with genotype 3 (G3), genotype 4, or non-
infected controls[97]. Disturbed lipids are corrected after 
the eradication of HCV[98]. Therefore, HCV infection 
by itself, or inflammation and fibrosis accompanied 
by chronic HCV infection might be affected by the 
disturbance of lipoprotein metabolism. In this regard, 
a study from Japan clearly indicated that HCV itself 
directly caused hypolipidemia[99].

Development of hepatic steatosis in HCV core 
transgenic mice indicates a tight association between 
HCV infection and the generation of steatosis[100]. 
Furthermore, HCC development after a long-term 
observation of HCV transgenic indicated carcinogenic 
potential of the HCV core protein, owing to persistent 
disturbance of lipid metabolism[101]. 

Steatosis in chronic hepatitis C (CHC) may 
associate with inflammation and progression of liver 
fibrosis. Steatosis is more tightly associated with 
inflammation in CHC than in chronic hepatitis B 
(CHB)[102]. In addition, PNPLA3 genetic variants and 
body mass index are involved in hepatic steatosis in 
non-obese CHC[103]. Advanced fibrosis in HCV patients 
is associated with concurrent diabetes mellitus, liver 
steatosis, and obesity[104]. Furthermore, the PNPLA3 
variant may contribute to the severity of CHC[105] and 
HCC development[106]. 

These findings suggest that liver steatosis and 
fibrosis might be strongly influenced by disturbed host 
metabolic factors that can induce NASH. Therefore, 
correction of disturbed metabolic factors is important 
for preventing the progression of HCV-related liver 
disease. 

Disturbed serum lipoprotein and apolipoprotein 
levels in chronic HCV infection may be affected by 
deteriorated liver function induced by HCV. However, 
a decrease in the serum VLDL-TG level and the 
reciprocal increase in non-VLDL-TG were found in 
very early stages of chronic HCV-G1b infection[107]. In 
addition, Moriya et al[108] reported that apo B, apo C-
Ⅱ, and apo C-Ⅲ levels were significantly reduced in 
HCV G1b infection, while apo A-Ⅰ, A-Ⅱ, and E levels 
were similar in patients infected with HCV G1b, G2a, 
or HBV. These findings suggest that HCV infection by 
itself may be involved in the disturbance of serum 
lipoproteins/apolipoproteins. Therefore, examining 
serum lipoproteins/apolipoproteins is beneficial for 
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monitoring disturbed lipid metabolism induced by HCV.

Anomalous circulating lipoproteins in chronic HCV 
infection
As mentioned above, low LDL-cholesterol level is one 
of the features of chronic HCV infection. Nevertheless, 
current evidence indicates that HCV by itself or 
factors associated with HCV infection can promote the 
occurrence and progression of atherosclerosis[109-111]. 
A recent meta-analysis indicates that HCV infection 
is significantly associated with carotid atherosclerosis 
independent of classical risk factors such as type 2 
diabetes (or insulin resistance) and hepatic steatosis[109]. 
There are various factors possibly associated with 
atherosclerosis in CHC, especially elevation of pro-
inflammatory cytokines in CHC may be participated in 
the progression of atherosclerosis.

In a view of anomalous lipoproteins, we found that 
an increase in TG in the small-VLDL fraction (equivalent 
to VLDL remnant) is a characteristic feature of chronic 
HCV G1b infection, independent of other metabolic 
factors [manuscript in preparation]. This elevation 
is not found in the subjects cured of HCV infection. 
As TG-rich lipoprotein remnants are unequivocally 
mentioned as atherogenic[112,113], our finding of the 
increasing atherogenic VLDL remnant may be involved 
in the promotion and progression of atherosclerosis in 
chronic HCV infection. 

In contrast to VLDL and LDL, the interaction of 
HDL with chronic HCV infection is poorly understood. 
However, SR-BI is a receptor for both HCV and 
matured HDL, and is a possible target for anti-HCV 
therapy[83]. In HCV G3 infection, the HCV-LVP load 
correlates inversely with HDL cholesterol[114], but such 
a correlation is not found in HCV G1 infection. This 
finding may indicate that there is a difference in the 
role of lipoprotein among infections by different HCV 
genotypes. Although apo B-associated cholesterol level 
has received attention as a determinant of treatment 
outcome in patients receiving IFN plus ribavirin[115], 
dyslipoproteinemia in HCV infection is not limited 
to apo B-related lipoprotein, because the metabolic 
pathways of HDL and apo B-related lipoprotein are 
closely related to each other. In the near future, the 
total picture of dyslipoproteinemia associated with the 
different HCV genotypes is expected to be elucidated 
more clearly.

Abnormal serum levels of apolipoprotein in chronic HCV 
infection
As described earlier, apolipoprotein plays a key role 
in lipoprotein metabolism. Therefore, monitoring 
apolipoproteins may be beneficial for understanding 
the anomalous lipoprotein metabolism in chronic HCV 
infection. The amphipathic α-helices of transportable 
apolipoproteins are crucial for maintaining the shape 
of HCV-LVP[60]. These exchangeable apolipoproteins 
can easily be transported between lipoprotein and 

HCV-LVP. Therefore, the dynamics of exchangeable 
apolipoprotein in HCV patients on stabilizing the 
structure of circulating HCV-LVP cannot be ignored.

Serum levels of apo B (apo B-100) have been 
examined in connection with the persistence of 
HCV infection and treatment outcome of IFN-based 
therapy[116,117]. Serum apo B level is strongly correlated 
with LDL-cholesterol, and is partially determined by the 
amino acid changes of core and NS5A protein[116,118], 
suggesting a close interaction between HCV replication 
and lipoprotein production in the liver.

Apo E is one of the key molecules of HCV assembly 
and entry into hepatocytes. Among the three isotypes 
of apo E (E2, E3, and E4)[119], E3 is the most frequent. 
E2 variant binds poorly to cell surface receptors[120], 
and is associated with a 3-5-fold reduction in the risk 
of chronic HCV infection[121], suggesting that this allele 
protects against viral persistence via defective binding 
of HCV-LVPs to the receptors involved in the entry of 
HCV-LVPs[122]. Association of E4 with atherosclerosis, 
Alzheimer disease, and degenerative diseases has 
been implicated. The E4 allele is positively associated 
with higher levels of vitamin D. High vitamin D levels 
are also linked to a favorable outcome of antiviral 
therapy for chronic HCV infection[123]. The apo E4 allele 
might have a protective effect against severe liver 
damage caused by HCV[124], while being associated 
with poor treatment response in HCV G1b patients[125]. 
Unfortunately, the connection between apo E4 and 
serum vitamin D in these patients has not been 
studied. Moreover, in an apo E3/E3 homozygote, fibrosis 
progression might be accelerated in chronic HCV with 
persistently normal transaminases[126]. However, the 
concept that apo E isoforms may play critical roles in 
the morbidity of chronic HCV infection has not been 
widely accepted.

 Low levels of circulating apo E are reported to 
associate with favorable response to IFN-based therapy 
and with low HCV-LVP level in HCV G1 infection[127]. 
However, the serum apo E level is negatively correlated 
with the quantity of HCV-LVP in HCV G3[114]. Therefore, 
the manner of interaction with host lipid metabolism 
may vary according to the HCV genotype. Our recent 
study suggested that serum apo E level is elevated in 
HCV G1b patients and not in patients with HCV G2[128].

With regard to apo As, apo A-Ⅰ has been shown 
to be involved in HCV RNA replication and virion 
production[129]. However, we did not find any changes 
in serum apo A-Ⅰ levels in HCV G1b and G2 patients 
in a previous study[128]. Apo A-Ⅱ binds directly to the 
C-terminal domain of the HCV core protein[130]. Apo A-
Ⅱ was significantly associated with HOMA-IR and leptin 
concentrations in HCV patients[131]. Therefore, apo A-Ⅱ 
may contribute to hepatic steatosis progression in HCV 
infection. In our study, however, the serum level of apo 
A-Ⅱ seemed to increase in HCV G1b patients without 
a concomitant increase in BMI[128]. Further studies are 
needed to determine the significance of serum apo A-
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Ⅱ in chronic HCV infection. 
Apo C-Ⅰ associates with s morphogenesis of HCV 

virions, HCV replication[28] and membrane fusion of 
HCV[132]. Human apo C-Ⅰ accounts for the ability of 
HDLs to inhibit the CETP activity[133]. However, the 
information on serum level of apo C-Ⅰ in HCV infection 
is not available. Serum apo C-Ⅲ was reported to be 
higher in donors with resolved HCV infection than in 
donors with chronic infection[134]. Apo C-Ⅲ might be 
a candidate biomarker associated with HCV-related 
progression of hepatic fibrosis. Relative to other 
lipoproteins, low serum apo C-Ⅲ levels are reported 
to have the strongest association with chronic versus 
cleared infection and a decline with increasing severity 
of hepatic fibrosis[134]. LPL is an anti-HCV factor 
that hydrolyzes HCV-LVPs, and apo C-Ⅲ on HCV-
LVPs reverses the LPL-mediated inhibition of HCV 
infection[64]. In contrast, apo C-Ⅱ gives rise to the 
catalytic activity of LPL and may promote LPL-mediated 
inhibition of HCV infection. Therefore, the balance of 
apo C-Ⅱ and apo C-Ⅲ may determine the infectivity of 
HCV-LVPs.

 In our study, we found that both serum apo C-
Ⅱ and apo C-Ⅲ decreased in chronic HCV infection 
and advanced liver fibrosis. Although serum apo C-
Ⅱ and apo C-Ⅲ levels were strongly correlated with 
each other, multiple regression analysis revealed that 
a decline in serum apo C-Ⅱ alone significantly contri-
butes to advanced fibrosis in HCV G1b infection[128]. 
Therefore, relative depletion of apo C-Ⅱ in chronic HCV 
infection with advanced fibrosis might help protect HCV 
from LPL-mediated loss of infectivity and contribute to 
persistent infection of HCV. 

In a previous study, apo C-Ⅱ and apo C-Ⅲ levels 
were significantly reduced in HCV G1b infection 
compared with G2a infection with similar liver disease 
progression[108]. However, in our multivariate analysis, 
apo A-Ⅱ and E significantly increased in HCV G1b 
infection compared with HCV G2 infection, whereas 
apo C-Ⅱ and apo C-Ⅲ decreased in HCV infection 
regardless of HCV genotype[128]. This discrepancy 
remains as one of the issues that should be solved in 
the future. 

In summary, the significance and the precise 
mechanisms of anomalous circulating apolipoprotein 
levels in HCV patients, especially the differences 
among infections by different HCV genotypes, have 
not been fully elucidated yet.

cOnclusiOn
HCV is a unique virus, which ingeniously uses the host’s 
lipoprotein metabolism for persistence of infection. 
HCV and lipid interact closely at the critical steps of 
HCV life cycle (replication, assembly, secretion, and 
entry into hepatocyte). Disturbed lipid metabolism 
is tightly associated with inflammatory activity, 
progression of liver fibrosis, and HCC development. 
Circulating lipoprotein particles transport lipids 

throughout the body and carry out important functions 
for lipid metabolism. Our recent knowledge of the close 
interaction between HCV and lipoprotein suggests 
that a specific molecule on the lipoprotein could be a 
target for anti-HCV therapy. Our study on lipoproteins 
suggests that the increase in the atherogenic VLDL 
remnant may contribute to the progression of athe-
rosclerosis in chronic HCV infection. 

Monitoring of dyslipoproteinemia and correction 
of disturbed lipoprotein metabolism in chronic HCV 
patients might be important aspects in a strategy 
for predicting and preventing the generation of liver 
cirrhosis and HCC. Until now, the whole aspect of 
disturbed lipoprotein metabolism in chronic HCV 
infection had not been clarified. Further understanding 
of disturbed lipoprotein metabolism might unravel 
novel targets for anti-HCV therapy and help prevent 
complications of HCV infection.
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