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Amphibian-like ranaviruses include pathogens of fish, amphibians, and reptiles that have recently evolved from a fish-infecting
ancestor. The molecular determinants of host range and virulence in this group are largely unknown, and currently fish infection
models are lacking. We show that European sheatfish virus (ESV) can productively infect zebrafish, causing a lethal pathology,
and describe a method for the generation of recombinant ESV, establishing a useful model for the study of fish ranavirus
infections.

Amphibian-like ranaviruses (ALRVs) are a subgroup of closely
related viruses within the genus Ranavirus isolated from dif-

ferent amphibian, reptile, and fish host species (1). Epizootic he-
matopoietic necrosis virus (EHNV), a rainbow trout pathogen
belonging to the ALRV found exclusively in Australia, was the first
ALRV isolated from fish to be completely sequenced (2). More
recently, we obtained the complete genome of a second fish ALRV
isolated from European sheatfish (ESV) (3). Both the dot plot
analyses as well as a phylogenetic tree, including completely se-
quenced vertebrate ranaviruses (Fig. 1), confirm that ESV is very
closely related to EHNV, with the short branch length among
ALRVs supporting its recent evolutionary origin. Most annotated
genes are conserved between both fish viruses, although two po-
tentially relevant differences are found. A putative 3�-hydroxys-
teroid dehydrogenase, whose orthologue in vaccinia virus acts as a
virulence factor in vivo (4, 5), is present in all ALRVs but deleted in
ESV. Additionally, ESV has acquired a unique set of genes repre-
senting a multigene family of unknown function described in
EHNV (2). Specifically, while EHNV carries five members of re-
lated genes located on consecutive positions on the viral genome,

ESV retains the orthologues for only three of these (ESV open
reading frames [ORFs] 75R, 76R, and 80L) but has acquired three
novel genes belonging to this family that are not found in any
other virus and are located at different positions in the genome
(ESV ORFs 59L, 110L, and 111L). In poxviruses, the presence of
additional copies of viral genes can serve as evolutionary scan-
ning devices for their adaptation to host immune evasion or
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FIG 1 European sheatfish virus (ESV) is a close evolutionary relative of epizootic hematopoietic necrosis virus (EHNV). (A) Dot plot analysis of the complete
ESV genome compared to EHNV, indicating sites of sequence insertion (solid triangles), deletion (open triangles), and inversion (circle). (B) Phylogenetic tree
calculated by the neighbor-joining method using the concatemeric protein sequence corresponding to the 26 core genes of the indicated ranaviruses. STIV,
soft-shelled turtle iridovirus; RGV, Rana grylio virus; FV3, frog virus 3; CMTV, common midwife toad virus; TFV, tiger frog virus; SGIV, Singapore grouper
iridovirus. Bootstrap percentages (500 replicates) are indicated next to the branches, and the tree is drawn to scale, with distances given as the number of amino
acid substitutions per site. Evolutionary analyses were conducted in MEGA6. The positions of ESV and EHNV are indicated by dots.

10702 jvi.asm.org October 2015 Volume 89 Number 20Journal of Virology

http://dx.doi.org/10.1128/JVI.01580-15
http://dx.doi.org/10.1128/JVI.01580-15
http://jvi.asm.org


host range adaptation (6, 7), and multigene families in the
related virus family Asfarviridae are known to contribute to the
same processes (8, 9).

Currently, in vivo studies of fish ranaviruses are restricted to its
respective host species, and a genetically tractable model is lack-
ing. The zebrafish (Danio rerio) is regarded as a choice model for
the study of pathological disorders, including viral infections (10,
11). Thus, it has been employed to characterize the host response
to infections with the human pathogen Chikungunya virus (12) or
the pathogenesis of the salmonid rhabdovirus infectious hemato-
poietic necrosis virus (IHNV) infection (13). The zebrafish also
provides a relevant model to study infections with the infectious
spleen and kidney iridovirus (ISKNV), a member of the genus
Megalocytivirus of fish pathogens included within the Iridoviridae
(14). To assess the susceptibility of zebrafish to ESV infection, we
immersed larvae for 1 h in a reduced volume of water containing
different virus doses (bath immersion) and then transferred them
to freshwater tanks. As shown in Fig. 2A, larvae readily succumbed
to ESV infection in a dose-dependent matter, with cumulative

death rates of up to 100%. Adult fish were similarly susceptible to
infection, with cumulative mortality rates of up to 90% within 12
days postinfection (dpi) (Fig. 2B). By using plaque assays on epi-
thelioma papulosum cyprini (EPC) cells, we detected the presence
of live virus in whole-body tissue homogenates of dead adult fish
obtained at day 3 postinfection (p.i.) as well as in all 4 surviving
animals by day 16 after inoculation. Similarly, infectious ESV was
recovered from dead larvae between days 2 and 5 p.i. The virus
recovered was confirmed to be ESV by PCR analysis using oligo-
nucleotides targeting ESV ORF 114L. Moreover, electron micros-
copy analyses of ultrathin sections of infected larvae at 2 and 3 dpi
showed discrete viral factories, assembling virions and budding
viruses at different locations, which were never observed in mock-
infected animals (Fig. 2C) that were indistinguishable in size,
shape, and composition from ESV particles replicating on cul-
tured EPC cells. By 2 dpi, histopathological examination of adult
infected fish showed kidney lesions with chromatin margination
and necrosis of the tubular epithelium (Fig. 2D) in all infected
animals, as described in ESV-infected catfish (Ictalurus melas)
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FIG 2 ESV infection causes high mortality rates in larval and adult zebrafish. (A) Groups of AB zebrafish larvae (n � 11) at 6 days postfertilization (dpf) were
infected by bath immersion with increasing doses of semipurified ESV obtained by ultracentrifugation of crude viral stocks through a 45% sucrose cushion as
indicated, and cumulative mortality was recorded daily up to 8 dpi. Shown is one representative experiment of three. (B) Groups of adult AB zebrafish (mock,
n � 28; ESV, n � 38) were infected by bath immersion with a single dose of 2 � 106 PFU/ml of semipurified ESV, and cumulative mortality was recorded daily
up to 17 dpi. Shown is one representative experiment of three. (C) Transmission electron micrograph of ultrathin sections of glutaraldehyde-fixed and
Epon-embedded ESV-infected larva at 2 dpi. The inset shows a detail of budding viruses from a different section. (D) Hematoxylin and eosin (H&E)-stained
section of an adult zebrafish kidney corresponding to mock-infected (a) or ESV-infected (b) animals at 48 h p.i. Arrows indicate nuclear chromatin margination,
necrosis, and vacuolation in segments of the renal tubular epithelium. Scale bars are shown in panels C and D.
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FIG 3 Method for the generation of recombinant ESV using homologous recombination. (A) Schematic representation of the genomic structure of the parental
ESV and the ESV�DHFR deletion mutant generated indicating the fragmented locus, the late viral promoter, and the neomycin resistance/EGFP fusion cassette
used for selection, as well as the positions of the oligonucleotides used for PCR analyses. (B) Relevant sequences of a fragment of the plasmid used for homologous
recombination, representing the genomic sequence of the recombinant virus in this area. The sequence of the viral promoter corresponding to the 92 bp upstream
of the initiation codon of Singapore grouper iridovirus ORF 125R is shown in red. The complete sequence of the plasmid is available upon request. The amino
acids corresponding to the putative ESV DHFR are shown in blue, and translation frames are indicated. (C) Bright-field (a) and fluorescence microscopy (b) of
EPC cells showing developing ESV�DHFR replication plaques at 24 hpi. (D) PCR analyses using the indicated oligonucleotide pairs of purified DNA derived
from four individual recombinant ESV clones (lanes 1 to 4) and the parental ESV (lane 5), along with a positive (plasmid used for the generation of the
recombinant virus (lane 6) and negative (no-DNA) control (lane 7). MWM, molecular weight markers. (E) ESV and ESV�DHFR virus yields at the indicated
time points after high-multiplicity infection of EPC cells.
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(15). Other typical pathological findings, including disseminated
foci of hemorrhage and necrosis of hematopoietic tissue of the
kidney and spleen, were not detected in zebrafish. Whether these
occur at later stages of the disease remains to be addressed.

In order to be able to study the contribution of individual viral
genes to pathogenesis and other processes, we developed a method
to generate recombinant ESV. Homologous recombination in
ranaviruses was first demonstrated when a recombinant Bohle
iridovirus expressing the �-globin from the cane toad (Bufo ma-
rinus) was obtained. In this case, the promoter from ranaviral
ICP18 was used to drive a neomycin resistance gene that was used
for selection (16). A similar strategy was employed to generate
recombinant Ambystoma tigrinum virus (ATV) lacking the homo-
logue of eukaryotic initiation factor-2 (vIF2a) to study its contri-
bution to immune evasion in infected salamanders (17). More
recently, a dual selection marker encoding a puromycin resis-
tance-enhanced green fluorescent protein (EGFP) fusion protein
was placed under the control of the same viral promoter and used
to generate targeted knockouts in frog virus 3 (FV3) (18). How-
ever, no recombinant fish ranaviruses have been constructed or
tested in vivo. We adapted the methodology to the generation of
ESV recombinants by using a distinct selection marker encoding
an EGFP/neomycin resistance fusion protein (19) placed under
the control of a strong late promoter sequence from the fish rana-
virus Singapore grouper iridovirus, which is highly expressed both
in cell culture and in vivo (20) (Fig. 3A). We selected the ESV ORF
114 locus for targeted disruption. This gene encodes a putative
dihydrofolate reductase (DHFR) that is highly similar to but
smaller than the orthologue identified in EHNV, where it was
proposed to play a role in host tropism (2). To delete ESV DHFR,
a plasmid bearing two approximately 200-bp-long flanking re-
gions corresponding to positions 112506 to 112284 and 111945 to
111726 of the ESV genome as well as the previously mentioned
selection cassette was obtained by gene synthesis (Mr. Gene, Ger-
many) (Fig. 3B). EPC cells were transfected with circular plasmid
and subsequently infected with parental ESV. The recombinant
viruses were obtained by selection in the presence of neomycin
and subsequent purification of EGFP-expressing viral plaques
(Fig. 3C). Four independent clones of the resulting viruses were
selected and amplified, and the correct insertion of the reporter

cassette at the expected genomic location as well as absence of
unwanted single crossover events were confirmed by PCR (Fig.
3D). Gene expression using the annotated start codon from ORF
114L in the recombinant viruses would result in a 21-amino-acid
peptide due to the presence of an early in-frame stop codon, which
would only retain the first eight N-terminal residues of the puta-
tive DHFR, abrogating its activity (Fig. 3B). Importantly, this sys-
tem may be adapted for its use in a transient dominant selection
procedure (21) by placing both flanking regions together on one
side of the selection cassette in the plasmid used for recombina-
tion. This would enable the generation of recombinant viruses
lacking heterologous DNA sequence, allowing the construction of
revertant viruses as controls or of multiple targeted deletion mu-
tants using the same selection procedure.

The recombinant virus generated, termed ESV�DHFR, showed
no defect in single-cycle (Fig. 3E) or multiple-cycle (not shown)
viral growth assays on fish EPC cells. Both ESV and ESV�DHFR
were able to infect and replicate in the BHK, Vero, and L929
cell lines of mammalian origin when held at 30°C under stan-
dard growth conditions (not shown). When zebrafish larvae
were infected with increasing doses of the parental ESV or the
ESV�DHFR viruses, no significant differences in the overall mor-
tality rates were observed (Fig. 4A). Similarly, no significant dif-
ferences in mortality rates were observed in adult zebrafish. Im-
munostaining using anti-GFP antibodies showed labeling of
kidney cells in adult animals infected with the recombinant virus
but not with parental ESV at 4 dpi, indicating viral replication and
expression of the heterologous gene in vivo (Fig. 4B). Overall,
these results show that the putative ESV DHFR activity is not an
essential factor for virus replication in cell culture and does not act
as a major virulence factor in zebrafish infection. Further experi-
ments on the activity of EHNV and ESV DHFRs will be required to
understand their precise roles during infection of their specific
hosts.

In summary, we have shown zebrafish to be a convenient
model for the study of ranavirus pathogenesis and provided a new
platform for the generation of recombinant iridoviruses that
might be used to explore the role of additional genes in virus-host
interaction as well as for the expression of foreign antigens as
novel fish vaccines.
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www.zfin.org) larvae at 7 days postfertilization (dpf) either mock infected or infected by bath immersion with increasing doses of the parental ESV and the
recombinant ESV�DHFR as indicated. Means from duplicates from one representative experiment of two are shown. (B) Immunohistochemical analysis of
paraformaldehyde-fixed specimens of mock-infected (a) and ESV�DHFR-infected (b) adult zebrafish sacrificed at 4 dpi using anti-GFP antibody, showing
specific staining of kidney cells in infected fish. Scale bars are shown.

European Sheatfish Virus Infection of Zebrafish

October 2015 Volume 89 Number 20 jvi.asm.org 10705Journal of Virology

http://www.zfin.org
http://jvi.asm.org


ACKNOWLEDGMENTS

We wish to acknowledge the work of Milagros Guerra, from the electron
microscopy unit at Centro de Biología Molecular Severo Ochoa.

This work was supported by grant AGL 2009-08711 from the Spanish
Ministerio de Ciencia e Innovación and grant AGL2013-48998-C2-2-R
from the Ministerio de Economía y Competitividad. G.A. was supported
by the Amarouto Program for senior researchers from the Comunidad
Autónoma de Madrid. A.L.B. and V.M. are holders of RyC-2010-06300
and RyC-2010-06516 Ramón y Cajal fellowships from the Spanish Min-
isterio de Ciencia e Innovación.

REFERENCES
1. Chinchar VG, Yu KH, Jancovich JK. 2011. The molecular biology of frog

virus 3 and other iridoviruses infecting cold-blooded vertebrates. Viruses
3:1959 –1985. http://dx.doi.org/10.3390/v3101959.

2. Jancovich JK, Brémont M, Touchman JW, Jacobs BL. 2010. Evidence for
multiple recent host species shifts among the ranaviruses (family Irido-
viridae). J Virol 84:2636 –2647. http://dx.doi.org/10.1128/JVI.01991-09.

3. Mavian C, López-Bueno A, Fernández Somalo MP, Alcami A, Alejo A.
2012. Complete genome sequence of the European sheatfish virus. J Virol
86:6365– 6366. http://dx.doi.org/10.1128/JVI.00618-12.

4. Moore JB, Smith GL. 1992. Steroid hormone synthesis by a vaccinia
enzyme: a new type of virus virulence factor. EMBO J 11:3490.

5. Reading PC, Moore JB, Smith GL. 2003. Steroid hormone synthesis by
vaccinia virus suppresses the inflammatory response to infection. J Exp
Med 197:1269 –1278. http://dx.doi.org/10.1084/jem.20022201.

6. Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J,
Geballe AP, Malik HS. 2012. Poxviruses deploy genomic accordions to
adapt rapidly against host antiviral defenses. Cell 150:831– 841. http://dx
.doi.org/10.1016/j.cell.2012.05.049.

7. Brennan G, Kitzman JO, Rothenburg S, Shendure J, Geballe AP. 2014.
Adaptive gene amplification as an intermediate step in the expansion of
virus host range. PLoS Pathog 10:e1004002. http://dx.doi.org/10.1371
/journal.ppat.1004002.

8. Burrage TG, Lu Z, Neilan JG, Rock DL, Zsak L. 2004. African swine fever
virus multigene family 360 genes affect virus replication and generaliza-
tion of infection in Ornithodoros porcinus ticks. J Virol 78:2445–2453.
http://dx.doi.org/10.1128/JVI.78.5.2445-2453.2004.

9. Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z,
Balinsky CA, Gibb TR, Bean TJ, Zsak L, Rock DL. 2004. African swine
fever virus multigene family 360 and 530 genes affect host interferon re-
sponse. J Virol 78:1858 –1864. http://dx.doi.org/10.1128/JVI.78.4.1858
-1864.2004.

10. van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, Bitter

W. 2004. A star with stripes: zebrafish as an infection model. Trends
Microbiol 12:451– 457. http://dx.doi.org/10.1016/j.tim.2004.08.001.

11. Allen JP, Neely MN. 2010. Trolling for the ideal model host: zebrafish
take the bait. Future Microbiol 5:563–569. http://dx.doi.org/10.2217/fmb
.10.24.

12. Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M,
Ellett F, Wang C-H, Lieschke GJ, Herbomel P, Schwartz O, Levraud J-P.
2013. Real-time whole-body visualization of Chikungunya virus infection
and host interferon response in zebrafish. PLoS Pathog 9:e1003619. http:
//dx.doi.org/10.1371/journal.ppat.1003619.

13. Ludwig M, Palha N, Torhy C, Briolat V, Colucci-Guyon E, Brémont M,
Herbomel P, Boudinot P, Levraud J-P. 2011. Whole-body analysis of a
viral infection: vascular endothelium is a primary target of infectious he-
matopoietic necrosis virus in zebrafish larvae. PLoS Pathog 7:e1001269.
http://dx.doi.org/10.1371/journal.ppat.1001269.

14. Xu X, Zhang L, Weng S, Huang Z, Lu J, Lan D, Zhong X, Yu X, Xu A,
He J. 2008. A zebrafish (Danio rerio) model of infectious spleen and
kidney necrosis virus (ISKNV) infection. Virology 376:1–12. http://dx.doi
.org/10.1016/j.virol.2007.12.026.

15. Pozet F, Morand M, Moussa A, Torhy C, de Kinkelin P. 1992. Isolation
and preliminary characterization of a pathogenic icosahedral deoxyribo-
virus from the catfish Ictalurus melas. Dis Aquat Org 14:35– 42. http://dx
.doi.org/10.3354/dao014035.

16. Pallister J, Goldie S, Coupar B, Shiell B, Michalski WP, Siddon N, Hyatt
A. 2007. Bohle iridovirus as a vector for heterologous gene expression. J
Virol Methods 146:419 – 423. http://dx.doi.org/10.1016/j.jviromet.2007
.08.016.

17. Jancovich JK, Jacobs BL. 2011. Innate immune evasion mediated by
the Ambystoma tigrinum virus eukaryotic translation initiation factor
2alpha homologue. J Virol 85:5061–5069. http://dx.doi.org/10.1128
/JVI.01488-10.

18. Chen G, Ward BM, Yu KH, Chinchar VG, Robert J. 2011. Improved
knockout methodology reveals that frog virus 3 mutants lacking either the
18K immediate-early gene or the truncated vIF-2alpha gene are defective
for replication and growth in vivo. J Virol 85:11131–11138. http://dx.doi
.org/10.1128/JVI.05589-11.

19. Dewals B, Boudry C, Gillet L, Markine-Goriaynoff N, de Leval L, Haig
DM, Vanderplasschen A. 2006. Cloning of the genome of Alcelaphine
herpesvirus 1 as an infectious and pathogenic bacterial artificial chromo-
some. J Gen Virol 87:509 –517. http://dx.doi.org/10.1099/vir.0.81465-0.

20. Teng Y, Hou Z, Gong J, Liu H, Xie X, Zhang L, Chen X, Qin QW. 2008.
Whole-genome transcriptional profiles of a novel marine fish iridovirus,
Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell
cultures and in orange-spotted grouper, Epinephulus coioides. Virology
377:39 – 48. http://dx.doi.org/10.1016/j.virol.2008.04.011.

21. Falkner FG, Moss B. 1990. Transient dominant selection of recombinant
vaccinia viruses. J Virol 64:3108 –3111.

Martín et al.

10706 jvi.asm.org October 2015 Volume 89 Number 20Journal of Virology

http://dx.doi.org/10.3390/v3101959
http://dx.doi.org/10.1128/JVI.01991-09
http://dx.doi.org/10.1128/JVI.00618-12
http://dx.doi.org/10.1084/jem.20022201
http://dx.doi.org/10.1016/j.cell.2012.05.049
http://dx.doi.org/10.1016/j.cell.2012.05.049
http://dx.doi.org/10.1371/journal.ppat.1004002
http://dx.doi.org/10.1371/journal.ppat.1004002
http://dx.doi.org/10.1128/JVI.78.5.2445-2453.2004
http://dx.doi.org/10.1128/JVI.78.4.1858-1864.2004
http://dx.doi.org/10.1128/JVI.78.4.1858-1864.2004
http://dx.doi.org/10.1016/j.tim.2004.08.001
http://dx.doi.org/10.2217/fmb.10.24
http://dx.doi.org/10.2217/fmb.10.24
http://dx.doi.org/10.1371/journal.ppat.1003619
http://dx.doi.org/10.1371/journal.ppat.1003619
http://dx.doi.org/10.1371/journal.ppat.1001269
http://dx.doi.org/10.1016/j.virol.2007.12.026
http://dx.doi.org/10.1016/j.virol.2007.12.026
http://dx.doi.org/10.3354/dao014035
http://dx.doi.org/10.3354/dao014035
http://dx.doi.org/10.1016/j.jviromet.2007.08.016
http://dx.doi.org/10.1016/j.jviromet.2007.08.016
http://dx.doi.org/10.1128/JVI.01488-10
http://dx.doi.org/10.1128/JVI.01488-10
http://dx.doi.org/10.1128/JVI.05589-11
http://dx.doi.org/10.1128/JVI.05589-11
http://dx.doi.org/10.1099/vir.0.81465-0
http://dx.doi.org/10.1016/j.virol.2008.04.011
http://jvi.asm.org

	Establishment of a Zebrafish Infection Model for the Study of Wild-Type and Recombinant European Sheatfish Virus
	ACKNOWLEDGMENTS
	REFERENCES


