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ABSTRACT

Influenza virus hemagglutinin (HA) mediates virus entry by binding to cell surface receptors and fusing the viral and endosomal
membranes following uptake by endocytosis. The acidic environment of endosomes triggers a large-scale conformational change
in the transmembrane subunit of HA (HA2) involving a loop (B loop)-to-helix transition, which releases the fusion peptide at
the HA2 N terminus from an interior pocket within the HA trimer. Subsequent insertion of the fusion peptide into the endo-
somal membrane initiates fusion. The acid stability of HA is influenced by residues in the fusion peptide, fusion peptide pocket,
coiled-coil regions of HA2, and interactions between the surface (HA1) and HA2 subunits, but details are not fully understood
and vary among strains. Current evidence suggests that the HA from the circulating pandemic 2009 H1N1 influenza A virus
[A(H1N1)pdm09] is less stable than the HAs from other seasonal influenza virus strains. Here we show that residue 205 in HA1
and residue 399 in the B loop of HA2 (residue 72, HA2 numbering) in different monomers of the trimeric A(H1N1)pdm09 HA
are involved in functionally important intermolecular interactions and that a conserved histidine in this pair helps regulate HA
stability. An arginine-lysine pair at this location destabilizes HA at acidic pH and mediates fusion at a higher pH, while a gluta-
mate-lysine pair enhances HA stability and requires a lower pH to induce fusion. Our findings identify key residues in HA1 and
HA2 that interact to help regulate H1N1 HA stability and virus infectivity.

IMPORTANCE

Influenza virus hemagglutinin (HA) is the principal antigen in inactivated influenza vaccines and the target of protective anti-
bodies. However, the influenza A virus HA is highly variable, necessitating frequent vaccine changes to match circulating strains.
Sequence changes in HA affect not only antigenicity but also HA stability, which has important implications for vaccine produc-
tion, as well as viral adaptation to hosts. HA from the pandemic 2009 H1N1 influenza A virus is less stable than other recent sea-
sonal influenza virus HAs, but the molecular interactions that contribute to HA stability are not fully understood. Here we iden-
tify molecular interactions between specific residues in the surface and transmembrane subunits of HA that help regulate the HA
conformational changes needed for HA stability and virus entry. These findings contribute to our understanding of the molecu-
lar mechanisms controlling HA function and antigen stability.

The influenza virus envelope protein, hemagglutinin (HA), is
organized as a noncovalently associated homotrimer on the

viral surface. Each monomer of HA is posttranslationally cleaved
into HA1 and HA2 subunits that are disulfide linked. The HA
trimer consists of a large membrane-distal, globular domain
formed only by HA1 and an elongated membrane-proximal stem
domain comprised of HA2 and the N- and C-terminal segments of
HA1. HA1 mediates virus binding to cell surface sialic acid recep-
tors to initiate viral entry through endocytosis. The acidic pH in
endosomes induces an irreversible, large-scale conformational
change in HA2 that mediates the fusion of viral and endosomal
membranes and then uncoating (1, 2).

High-resolution structural information is currently available
for multiple HA subtypes (3–9). A hinge region referred to as the
B loop, which connects two antiparallel �-helical segments of
HA2 in the neutral pH conformation, has a high propensity for a
helical conformation (10). At the pH of fusion, the B loop adopts
a helical conformation connecting the adjoining helices to form a
single long � helix in the postfusion conformation of HA. Transi-
tion to the postfusion conformation repositions the fusion pep-
tide at the N terminus of HA2 approximately 100 Å closer to the
target membrane (2, 11–14).

In the prefusion state, the B loop is trapped in a metastable
conformation during HA expression and transport through the

endoplasmic reticulum and Golgi compartments to the cell sur-
face (15, 16). Some rearrangement of HA1 is needed to release the
B loop for the conformational change (17–19). A large body of
literature has suggested that the acid stability of HA is influenced
by the residues in the fusion peptide, the fusion peptide pocket,
coiled-coil regions of HA2, and local interactions between the
HA1 and HA2 subunits (20–25). Molecular modeling studies have
shown a strong electrostatic attraction between the HA1 subunits
(positively charged) and the HA2 subunits (negatively charged) at
neutral pH (26, 27). However, the interactions between the HA1
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and HA2 subunits and the molecular mechanism for the B-loop
release from its metastable state are not fully understood.

The acid stability of HA varies among different strains and is an
important factor affecting virus infectivity and adaptation to host
cells. The HA from the pandemic 2009 H1N1 influenza A virus
[A(H1N1)pdm09] has been reported to be less stable than the
HAs of other seasonal influenza A virus strains (28–31), a fea-
ture that likely contributes to challenges in the production of
A(H1N1)pdm09 vaccines (28, 29). Moreover, it was recently
reported that the currently circulating A(H1N1)pdm09 virus is
acquiring mutations that improve HA stability (31, 32) and
may therefore improve viral fitness.

In our prior studies aimed at mapping the neutralizing
epitopes in HA, we noticed that certain combinations of chimeric
HA involving HA1 and HA2 subunits from A(H1N1)pdm09 and
other seasonal H1N1 strains abolished HA fusion activity (33).
Inspection of the HA structure and sequence differences between
the HAs from these strains led us to identify residues in HA1 and
the B loop of HA2 that could potentially interact to regulate HA
function. In this report, we show that interactions between these
residues help to regulate B-loop conformational changes. These
studies identify a key pair of residues affecting HA stability and
influenza virus infectivity.

MATERIALS AND METHODS
Plasmids and cell lines. pCMV/R constructs expressing the full-length
HA open reading frame (ORF) with the Q223R mutation from A/Mexico/
4108/2009 (Mex; GenBank accession number GQ223112) and the full-
length wild-type HA ORFs from A/New Caledonia/20/1999 (NCD;
GenBank accession number AY289929) and A/Brisbane/59/2007 (Bris;
GenBank accession number CY058487) as well as the full-length wild type
neuraminidase (NA) ORF from A/California/04/2009 (GenBank acces-
sion number FJ966084) were described previously (33). In addition, with
mutations at residue 205 in HA1 and residue 72 in HA2 were introduced
into HA using standard molecular biology protocols. The codon-opti-
mized human airway trypsin (HAT)-like protease gene expression con-
struct (pCAGGS-HATcop) was described before (34). The HIV gag/pol
(pCMV�R8.2) and luciferase (Luc) reporter (pHR=CMV-Luc) constructs
were described previously (35, 36) and obtained from Gary J. Nabel (NIH,
Bethesda, MD). A plasmid expressing the �-galactosidase (�-Gal) � sub-
unit and 293T cells stably expressing the �-Gal � subunit (37) were gen-
erously provided by Nathaniel Landau (New York University, New York,
NY). MDCK cells, 293T cells, and 293T cells expressing the �-Gal � sub-
unit were cultured in Dulbecco’s modified Eagle medium (DMEM) with
high glucose, L-glutamine, minimal essential medium nonessential amino
acids, penicillin-streptomycin, and 10% fetal calf serum.

Antibodies. Rabbit antisera against the H1N1 HA2 C helix were pro-
duced via immunization with the A/New Caledonia/20/1999 HA2 C-helix
peptide conjugated to keyhole limpet hemocyanin (KLH; Pierce) as de-
scribed previously (38).

Production of HA pseudoviruses. HA pseudoviruses carrying a Luc
reporter gene were produced in 293T cells as described previously (39).
HA pseudoviruses were collected at 48 h posttransfection, filtered through
a 0.45-�m-pore-size low-protein-binding filter, and used immediately or
stored at �80°C. HA and gag in pseudoviruses were measured by immu-
noblot analysis and a p24 enzyme-linked immunosorbent assay, respec-
tively, as described previously (39). HA pseudovirus titers were measured
by infecting 293T cells with HA pseudoviruses for 48 h prior to measuring
luciferase activity in infected cells using a luciferase assay reagent (Pro-
mega) as described previously (39). HA pseudovirus infectivity titers were
expressed as the number of relative luminescence units (RLU) of HA
pseudovirus supernatants per nanogram of p24.

Generation of influenza viruses by reverse genetics. The HA gene
segment of A/Brisbane/59/2007 and the engineered mutations were am-
plified by PCR with universal primers (40) and inserted into the
pHW2000 plasmid, provided by Maryna Eichelberger (FDA, Center for
Biologics Evaluation and Research). Reassortant viruses bearing the HA of
A/Brisbane/59/2007 and the complementary seven gene products of
A/Puerto Rico/8/1934 were rescued by 8-plasmid reverse genetics, as pre-
viously described (41). All viruses were passaged once on MDCK cells.

Protease sensitivity and Western blotting. The whole viral particles
and purified HA proteins have successfully been used to demonstrate the
acidic pH-induced HA conformational changes and HA sensitivity to pro-
teolysis (15, 38, 42–46). Following the acidic pH-induced conformational
change of HA, L-(tosylamido-2-phenyl ethyl) chloromethyl ketone
(TPCK)-treated trypsin digests the HA1 subunit but not the HA2 subunit
(42). The HA pseudoviruses, made in serum-free medium in the absence
of HAT, were used for limited proteolysis by trypsin. In brief, HA pseu-
dovirus supernatant samples were mixed with 1 M citrate buffers of dif-
ferent pHs and 10% n-dodecyl �-D-maltoside (DDM) to have final con-
centrations of 0.1 M citrate and 1% DDM, and the mixtures were
incubated at 37°C for 1 h. The samples were neutralized with 1 M Tris (pH
8) and then digested with TPCK-treated trypsin (Pierce) at a final concen-
tration of 100 �g/ml at room temperature for 20 h. The trypsin-digested
samples were resolved on nonreducing SDS-polyacrylamide gels and
transferred to nitrocellulose membranes (Invitrogen) for Western blot
analysis. The blots were probed with rabbit antisera against the HA2 C
helix and horseradish peroxidase-linked anti-rabbit goat immunoglobu-
lin antibodies and detected by use of the LumiGLO Reserve substrate
(KPL). The amount of undigested HA was calculated according to the
band intensity and band area.

Cell-cell fusion assay. The HA conformational change was assessed in
an HA-mediated cell-cell fusion assay on the basis of �-Gal complemen-
tation (47). As described previously (38), 293T cells were transfected with
plasmids expressing HA, HAT, and the �-Gal � subunit using the Fugene
6 reagent. At 48 h after transfection, the transfected 293T cells were de-
tached using a nonenzymatic cell dissociation solution (Sigma) and
washed with DMEM. A total of 6 � 104 cells per well were then added to
�-Gal � subunit-expressing 293T target cells that had been seeded the
night before at 3 � 104 cells per well on a 96-well plate. The cells were
cocultivated for 3 h at 37°C. The culture supernatants were then removed
and replaced with Dulbecco’s phosphate-buffered saline (DPBS) previ-
ously adjusted to the desired pH with 0.1 M citric acid. The cells were
treated for 4 min in the DPBS-citrate buffer and then cultured with
DMEM. Sixteen hours later, cell-cell fusion was scored by determination
of the �-Gal activity in cocultured cell lysates using a Galacto-Star kit
(Applied Biosystems) according to the manufacturer’s instructions.

Agglutination of erythrocytes. Turkey, sheep, and horse erythrocytes
(red blood cells; Lampire Biological Laboratories) were washed three
times with phosphate-buffered saline (PBS) and diluted to 0.5% for hem-
agglutination assay with HA pseudoviruses and viruses generated by re-
verse genetics using standard protocols (48).

Computational analysis. The interactions between the HA1 and HA2
subunits were modeled by use of the UCSF Chimera program (http:
//www.cgl.ucsf.edu/chimera/) and the PyMOL molecular graphics system
(version 1.7.4; Schrödinger, LLC) using the protein structures with Pro-
tein Data Bank (PDB) accession numbers 3M6S (9), 3LZG (49), 1RU7 (3),
3QQB (46), 2HMG (50), 2IBX (51), and 4XKF (52).

Data analysis. The infectivity data reported were from at least three
independent experiments. A t test for comparison of paired data and the
corresponding P value were analyzed using GraphPad Prism software. P
values of 	0.05 were considered statistically significant.

RESULTS
Potential molecular interactions between HA1 and HA2 sub-
units. In our prior studies mapping neutralizing determinants in
the HA of the A(H1N1)pdm09 virus, we generated several chime-

HA1 and HA2 Interactions and Hemagglutinin Stability

October 2015 Volume 89 Number 20 jvi.asm.org 10603Journal of Virology

http://www.ncbi.nlm.nih.gov/nuccore/GQ223112
http://www.ncbi.nlm.nih.gov/nuccore/AY289929
http://www.ncbi.nlm.nih.gov/nuccore/CY058487
http://www.ncbi.nlm.nih.gov/nuccore/FJ966084
http://www.cgl.ucsf.edu/chimera/
http://www.cgl.ucsf.edu/chimera/
http://www.rcsb.org/pdb/explore/explore.do?structureId=3M6S
http://www.rcsb.org/pdb/explore/explore.do?structureId=3LZG
http://www.rcsb.org/pdb/explore/explore.do?structureId=1RU7
http://www.rcsb.org/pdb/explore/explore.do?structureId=3QQB
http://www.rcsb.org/pdb/explore/explore.do?structureId=2HMG
http://www.rcsb.org/pdb/explore/explore.do?structureId=2IBX
http://www.rcsb.org/pdb/explore/explore.do?structureId=4XKF
http://jvi.asm.org


ric HAs by combining the HA1 subunit from one strain with the
HA2 subunit from another strain (33). The function of the chime-
ric HA was assessed in infectivity studies involving lentiviral pseu-
dotype particles bearing the chimeric HA on their surface, as pre-
viously described (34). Using the HA1 and HA2 subunits from the
pandemic strain A/Mexico/4108/2009 (Mex) and two recent
seasonal H1N1 strains, A/New Caledonia/20/1999 (NCD) and
A/Brisbane/59/2007 (Bris), we found that all chimeras between
these strains were functional except chimeras involving the Mex
HA1 subunit combined with the HA2 subunit from the seaso-
nal strains (Mex.HA1-Bris.HA2 and Mex.HA1-NCD.HA2) (33).
Thus, we analyzed the nonconserved residues among the NCD,
Bris, and Mex HA1 and HA2 subunits that could potentially con-
tact each other using available H1 HAs with PDB accession num-
bers 3M6S, 3LZG, and 1RU7.

We noted that the residue pair consisting of residue 205 in HA1
and residue 399 in the B loop (hinge) of HA2 (residue 72, HA2
numbering) in Mex differs from that in NCD or Bris (Fig. 1A). For
all three structures from PDB it was found that residue 205 in HA1
and residue 72 in HA2 are in close proximity, suggesting that they
may be involved in intermonomer, intersubunit interactions (Fig.
1B). The interactions between the arginine at residue 205 in HA1
and the lysine at residue 72 in HA2 (R-K pair) in the chimeric HAs
involving Mex.HA1-NCD.HA2 or Mex.HA1-Bris.HA2 may be

different from the interactions seen in the other pairs involving (i)
the arginine at residue 205 in HA1 and the histidine at residue 72
(R-H pair) in the wild-type Mex HA, (ii) the histidine at residue
205 and the lysine at residue 72 (H-K pair) in wild-type NCD and
Bris HAs or the chimeric HA involving NCD.HA1-Bris.HA2 and
Bris.HA1-NCD.HA2, and (iii) the histidine at residue 205 and the
histidine at residue 72 (H-H pair) in the chimeric HA involving
Bris.HA1-Mex.HA2 and NCD.HA1-Mex.HA2. We therefore
asked whether the R-K pair alters the HA function.

The R-K pair reduces HA pseudovirus infectivity. To investi-
gate the effect of R-K interactions on HA function, we introduced
mutations at residue 205 in HA1 and residue 72 in HA2 in differ-
ent HAs, as well as created a chimeric HA1-HA2 with these mu-
tations. As shown in Fig. 2, compared to the effect of the wild-type
HAs (the R-H pair in Mex, the H-K pair in NCD and Bris), the
H-H pair had little effect on HA pseudoviruses infectivity, while
the R-K pair in Mex, Bris, and NCD HA pseudoviruses greatly
reduced infectivity (Fig. 2A). As expected, in the chimeric
Mex.HA1-NCD.HA2 and Mex.HA1-Bris.HA2 HA, the R-K pair
also resulted in the low infectivity of HA pseudoviruses (Fig. 2B).
However, these HA pseudoviruses gained infectivity when the
R-K pair was converted to H-K, R-H, and H-H pairs. The levels of
mature HA in all pseudoviruses were similar, indicating that the
R-K pair directly alters HA function.

FIG 1 Intermonomer interactions between residue 205 in HA1 and residue 72 in HA2. (A) Alignment of NCD, Bris, and Mex HA1 amino acid residues 200 to
250 and HA2 amino acid residues 350 to 400 (HA2 residues 23 to 73). The residues in the 205-72 pair are marked with blue and red ovals, respectively. (B) (Left)
The 205-72 pair position in the HA trimer complex based on the structure with PDB accession number 3M6S; (right) proposed residue interactions of R-H, R-K,
H-H, and H-K in the 205-72 pair.
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We also assessed the effect of residues in the residue 205-resi-
due 72 pair (the 205-72 pair) on the function of Bris HA in the
context of replicating virus. Construction of viruses with the H-
to-E (205E) or H-to-R (205R) substitution at residue 205 to create

an E-K pair or an R-K pair in HA using reverse genetics yielded
viruses with extremely poor replication capacities, while the vi-
ruses with a K-to-H substitution at position 72 (72H) to create an
H-H pair retained infectivity, as indicated by increasing numbers
of hemagglutination units (HAU) after passage (Fig. 2C). These
findings are consistent with the infectivity results of the corre-
sponding HA pseudotypes. The levels of mature HA in all viruses
generated by reverse genetic from the transfection supernatants
were similar (Fig. 2C, left), confirming that the E-K and R-K pairs
directly alter HA function and the ability of the virus to replicate.

The R-K pair destabilizes HA at acidic pH. Since the Bris,
NCD, and Mex 205-72 pairs contain a histidine, it seemed likely
that histidine is needed to regulate HA conformational changes at
acidic pH. We therefore investigated the effect of the R-K pair on
acidic pH-induced conformational changes. Following acidic pH
treatment, TPCK-treated trypsin digests the HA1 subunit but not
the HA2 subunit, and the undigested HA2 is associated with in-
completely digested HA1 under nonreducing condition (42). Af-
ter acidic pH and TPCK-treated trypsin treatment, the Bris HA
R-K pair underwent a structural transition when the pH dropped
below 6.0, while wild-type Bris HA containing the H-K pair un-
derwent a structural transition at a pH of less than 5.5 (Fig. 3A).
The dose-response curve of trypsin digestion of wild-type Bris HA
showed a 50% conversion to the postfusion conformation at pH
5.2 and 37°C for 1 h. However, the HA with the R-K pair under-
went a conformation conversion at pH 5.6 (Fig. 3A). The destabi-
lization of HA conferred by the R-K pair at acidic pH was also
observed in the Mex.HA1-Bris.HA2 chimeric HA (Fig. 3B). Sim-
ilar results were obtained with Mex HA, NCD HA, and the
Mex.HA1-NCD.HA2 chimeric HA (data not shown).

The R-K pair confers HA-mediated cell-cell fusion at a higher
pH. The effect of the R-K pair on acidic pH-induced HA-medi-
ated fusion was also assessed in a cell-cell fusion assay using com-
plementation of �-galactosidase subunits in effector and target
cells (37, 47). Cell numbers and surface expression levels of HA
were controlled and similar within each set of experiments (data
not shown). As expected, the R-K pair greatly influenced HA sen-
sitivity to acidic pH (Fig. 4A). Wild-type Bris HA (H-K pair) in-
duced half-maximal membrane fusion at pH 5.2, while the HA
containing the R-K pair mediated half-maximal membrane fusion
at pH 5.5 and 95% maximal membrane fusion at pH 5.2. These
results indicate that HA containing the R-K pair can undergo con-
formational changes and remain capable of membrane fusion but
that the membrane fusion of HA containing the R-K pair is sen-
sitive to conformational changes at a higher pH. The results of
these functional assays are consistent with the conformational
transitions of HA observed in the trypsin digestion experiments
(Fig. 3). Similar results were obtained when Mex, NCD, and chi-
meric HA were used (data not shown).

A salt bridge between residue 205 in HA1 and residue 72 in
HA2 stabilizes HA. To further confirm the intersubunit interac-
tions between residue 205 in HA1 and residue 72 in HA2, we
mutated the histidine at residue 205 in Bris and NCD HA1 to
glutamate. This mutation changes the H-K pair to an E-K pair at
residues 205 and 72 in the Bris and NCD HAs, which potentially
introduces a salt bridge (E-K pair). We then tested the effect of the
E-K pair on HA pseudovirus infectivity, HA stability at acidic pH,
and the pH of HA-mediated membrane fusion, as described
above. Consistent with the E-K pair forming a salt bridge, we
found that the HA with this pair was much more stable than wild-

W
T (R

-H
)

20
5H

 (H
-H

)

72
K (R

-K
)

W
T (H

-K
)

72
H (H

-H
)

20
5R

 (R
-K

)

20
5E

 (E
-K

)

0

100

200

300

400
1000

1500

2000

W
T (H

-K
)

72
H (H

-H
)

20
5R

 (R
-K

)

20
5E

 (E
-K

)

Mex HA NCD HA Bris HA

In
fe

ct
iv

ity
 (R

LU
/n

g 
p2

4)

*

*
*

*
*

HA2

0

100

200

300

HA1-H
A2 (

R-K
)

HA1 2
05

H-H
A2 (

H-K
)

HA1-H
A2 7

2H
 (R

-H
)

HA1 2
05

H-H
A2 7

2H
 (H

-H
)

HA1-H
A2 (

R-K
)

HA1 2
05

H-H
A2 (

H-K
)

HA1-H
A2 7

2H
 (R

-H
)

HA1 2
05

H-H
A2 7

2H
 (H

-H
)

Mex HA1-NCD HA2 Mex HA1-Bris HA2

In
fe

ct
iv

ity
 (R

LU
/n

g 
p2

4)

*
*

*
*

*

*

HA2

A

B

WT 72H 205E 205R WT 72H 205E 205R
HAU <2 <2 <2 <2 <2 <21024 512

HA0

HA2

rg transfection passage oneC

FIG 2 R-K and E-K pairs at the 205-72 pair in HA decrease viral infectivity. (A
and B) The HA pseudovirus infectivities of wild-type (WT), NCD, Bris, and
Mex HAs containing R-H, H-H, H-K, R-K, and E-K pairs at the 205-72 pair
(A) and of chimeric Mex-NCD and Mex-Bris containing the R-H, H-H, H-K,
R-K, and E-K pairs at the 205-72 pair (B) are compared. Data are shown as the
mean and standard deviation from three independent experiments. *, t test,
P 	 0.05. (Bottom) The levels of mature HA (HA2) in pseudoviruses shown by
Western blotting were detected with rabbit antisera against the HA2 C helix.
(C) Influenza viruses with Bris HA generated by reverse genetics (rg) and
recovered from the supernatants of transfected cells (left) or after a single
passage on MDCK cells (right). Infectivity was scored by quantifying the HAU
on turkey red blood cells. The relative levels of HA in viruses recovered from
the supernatants shown by Western blotting were detected with rabbit antisera
against the HA2 C helix. The data shown are representative of those from two
independent experiments.

HA1 and HA2 Interactions and Hemagglutinin Stability

October 2015 Volume 89 Number 20 jvi.asm.org 10605Journal of Virology

http://jvi.asm.org


type HA. The HA with the E-K pair underwent a structural tran-
sition at a much lower pH than the wild type (pH 	 5.0) (Fig. 3A).
The dose-response curve of trypsin digestion showed a 50% con-
version to the postfusion conformation at pH 4.9 (Fig. 3A).

In the cell-cell fusion assay, the HA with the E-K pair likewise
displayed fusion activity at a lower pH than the wild type (Fig. 4A).
While wild-type Bris HA (H-K pair) induced half-maximal mem-
brane fusion at pH 5.2, the HA with the E-K pair mediated half-
maximal fusion at pH 5.0 and 90% maximal fusion at pH 4.5.
These results suggest that the HA containing the E-K pair also
undergoes pH-induced conformational changes for membrane
fusion at a pH analogous to that for wild-type HA, but the E-K pair
requires a lower pH. Curiously, the increased stability conferred
by the E-K pair greatly impaired virus infectivity (Fig. 2), suggest-
ing that the E-K pair in HA is too stable for fusion in the endosome
during infection.

A histidine in the 205-72 pair is important for HA function.
The infectivity, cell-cell fusion, and protease digestion data of HAs
containing the R-K and E-K pairs suggested that a histidine in the

205-72 pair is important for HA function. To investigate this pos-
sibility, we first asked whether histidine is conserved in the 205-72
pair in HA. After reviewing the H1 influenza virus HA sequences
(www.fludb.org/brc/home.do?decorator
influenza) available as
of 19 December 2014, we noted that there are no R-K and E-K
pairs in H1 HAs. Most human seasonal influenza H1 HAs
(�91%) have an H-K pair, while avian H1 HAs mostly have a K-N
pair (�97%). Swine H1 HAs display more diversity in the 205-72
pairs, but the R-H and K-H pairs are dominant (�50%) (Fig. 5A).
For A(H1N1)pdm09 virus HAs, 99.7% of the HAs contain R-H or
K-H pairs (Fig. 5B). Altogether, these finding suggest that histi-
dine may be critical to optimal HA function in human cells.

Next, we mutated the histidine in the H-K pair of Bris HA with
various residues. As shown in Fig. 4B, the HA containing an ala-
nine at residue 205 (H205A, A-K pair) or a glutamine at residue
205 (H205Q, Q-K pair) displayed a fusion curve similar to that of
wild-type HA, while an HA containing a tyrosine at residue 205
(H205Y, Y-K pair), a glutamic acid at position 205 (H205D, D-K
pair), or a phenylalanine at position 205 (H205F, F-K pair) re-
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quired a more acidic pH for fusion. The HAs containing the last
three pairs mediated cell-cell fusion similarly to the E-K pair (Fig.
4A). Consistent with these observations, we found that HAs con-
taining A-K and Q-K pairs underwent a conformational transition
at a pH of less than 5.5, similar to the pH required for wild-type
HA, but the HAs containing the Y-K, D-K, and F-K pairs under-
went a conformational transition at a pH lower than that for wild-
type HA (Fig. 6A). The dose-response curve of trypsin digestion of
HA showed that the pH for 50% conversion to the postfusion
conformation of the HAs containing A-K and Q-K pairs was the
same as the pH 5.2 for wild-type HA, while pH 5.0 is needed for the
HA containing the Y-K pair and pH 4.9 is needed for the HAs
containing the D-K and F-K pairs (Fig. 6B), which is the same as
that for the HA containing the E-K pair (Fig. 3A). These results
suggest that the A-K and Q-K pairs do not alter the HA stability
according to the pH but that the Y-K, D-K, and F-K pairs make the
HA more stable. However, all these pairs reduced HA pseudovirus
infectivity relative to that of the wild type (Fig. 6C). The pseudo-
viruses bearing more stable HAs (Y-K, D-K, and F-K pairs) exhib-
ited even less infectivity, suggesting that these HAs are too stable
and do not effectively undergo pH-induced conformational
changes in endosomes prior to transport to lysosomes. Similar
results were observed with the NCD HA (data not shown).

Intermolecular interactions between residue 205 in HA1 and
residue 72 in HA2 have no effects on receptor binding of HA. In
addition to the change of the pH of fusion, the R-K pair that
destabilized HA may also change HA binding to receptors to de-
crease HA pseudovirus infectivity. To investigate this possibility,

we performed a hemagglutination assay with HA pseudoviruses
using turkey, sheep, and horse erythrocytes. Turkey erythrocytes
are known to contain a mixture of �2,3- and �2,6-linked sialic
acids as HA receptors, whereas sheep and horse erythrocytes pri-
marily have only �2,3-linked sialic acids (53, 54). Using these
erythrocytes, we could thus also identify the difference of HA
binding to �2,3- and �2,6-linked sialic acids. However, compared
to wild-type Bris and NCD HAs, neither the R-K nor E-K pair
changed the ability of HA to bind to receptors or the profile of HA
binding to receptors (Table 1).

DISCUSSION

The acidic environment of the endosome triggers a large-scale
conformational change in HA2, including transition of the B loop
in HA2 to a helix. This transition creates an extended coiled-coil
that repositions the fusion peptide at the N terminus of HA2 ap-
proximately 100 Å toward the endosomal membrane to initiate
fusion. The acid stability of HA is influenced by the residues in the
fusion peptide, the fusion peptide pocket, the coiled-coil regions
of HA2, and local interactions between the HA1 and HA2 subunits
(20–27, 31, 32, 55). It therefore seems likely that different combi-
nations of interactions among residues in these regions act to-
gether in various ways among different influenza virus strains to
regulate the fusogenic conformational changes needed for virus
entry. Such a network of interacting residues across HA subunits
and between monomers may provide the plasticity needed for the
virus to adapt to various host conditions. Here, using chimeric
H1N1 HA pseudoviruses, we found that intermonomer interac-
tions between residue 72 in the B loop of HA2 and residue 205 in
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HA1 play an important role in the acid stability of HA and that a
histidine residue appears to finely tune HA stability at acidic pH
for the infectivity for H1N1 viruses.

Histidine residues have been reported to be important molec-

ular switches in regulating the conformational changes of viral
fusion proteins (46, 56–59). Histidines can be protonated in the
acidic milieu of the endosome. However, nearby residues influ-
ence the susceptibility of histidine to protonation. Here, we have
identified for the first time that the 205-72 residue pair in HAs
from influenza A H1N1 viruses can regulate pH-induced confor-
mational changes. Significantly, the residues in the 205-72 pair are
conserved among H1N1 viruses. More than 90% of human sea-
sonal H1N1 virus HAs contain a histidine in this pair, and the
A(H1N1)pdm09 virus HA contains only the R-H or K-H pair at
residues 205 and 72. In contrast, the K-N pair is favored in avian
viruses. The K-Q pair, which is structurally similar to the K-N pair,
reduced the infectivity of human Bris and NCD HA pseudoviruses,
further suggesting the importance of the histidine residue. The HAs
from swine influenza viruses, however, display more diversity in this
residue pair. While histidines are predominant, the K-N and K-Q
pairs are present in a small percentage of virus isolates from swine. We
note that the codons for H, Q, and N have only 1 base pair difference,
which may facilitate adaptive changes in swine.
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FIG 6 A histidine in the 205-72 pair is important for HA stability and virus infectivity. (A) HA pseudoviruses were treated with acidic pH and digested with
TPCK-trypsin. Nonreducing Western blots were used to compare TPCK-trypsin-digested Bris HA pseudoviruses containing A-K, Q-K, Y-K, D-K, and F-K pairs.
Full-length HA (HA0) and HA fragments (disulfide-bonded HA1 and HA2 proteolytic fragments) were detected with rabbit antisera against the HA2 C helix. (B)
The contents of the undigested HA in panel A were quantified at different pHs. (C) Infectivities of HA pseudoviruses containing the A-K, Q-K, Y-K, D-K, and
F-K pairs. (Bottom) The levels of mature HA (HA2) in pseudoviruses shown by Western blotting were detected with rabbit antisera against the HA2 C helix. Data
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TABLE 1 Summary of hemagglutination by HA pseudoviruses

HA (amino acids at 205-72 pair)

Agglutinationa (no. of HAU/50 ml)

Turkey RBCs Sheep RBCs Horse RBCs

Wild-type Bris HA (H-K) 16 	2 	2
Bris HA.205R (R-K) 16 	2 	2
Bris HA.205E (E-K) 16 	2 	2
Wild-type NCD HA (H-K) 32 	2 	2
NCD HA.205R (R-K) 32 	2 	2
NCD HA.205E (E-K) 32 	2 	2
a Hemagglutination assays were performed using standard techniques. Red blood cell
(RBC) numbers and the HA levels of HA pseudoviruses were controlled and similar
within each set of experiments. Turkey red blood cells contain a mixture of �2,3- and
�2,6-linked sialic acids as HA receptors, whereas sheep and horse red blood cells
primarily have only �2,3-linked sialic acids.
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The influence of the R-K pair on reducing HA stability may
explain why Mex.HA1-Bris.HA2 (or Mex.HA1-NCD.HA2) HA
pseudoviruses have low infectivity. A less stable HA may be more
prone to premature inactivation. An unstable HA might lead to a
lower level of fusion due to a lack of sufficient numbers of fusion-
competent HAs to efficiently support cooperative conformational
changes within an HA trimer or between the multiple HA trimers
that are likely needed for fusion. Alternatively, it is conceivable
that fusion may need to take place in a particular endosomal com-
partment to proceed to the next step of the infection. In this case,
the pH of HA activation may need to be closely matched to the pH
of the proper (infection-permissive) endosomal compartment.

The importance of interactions between residues in the 205-72
pair is confirmed by the demonstration that an E-K pair in Bris,
Mex, and NCD HAs, which has the potential to form a salt bridge,
conferred greater acid stability to HA and reduced the infectivity
of the respective pseudoviruses. Similarly, the low infectivity of
HA pseudoviruses with a K-D pair indicates an interaction be-
tween the pair of amino acids at residues 205 and 72. In addition,

structural analysis indicates that the A-K and Q-K pairs likely have
little interference (Fig. 7A), which may explain why they do not
obviously change HA stability. On the other hand, the Y and F
residues have a benzene ring that could form H bonds with K (Fig.
7A), thus increasing the stability of the HAs with Y-K and F-K
pairs and reducing infectivity. HAs that are too stable may not
efficiently undergo fusion-inducing conformational changes be-
fore delivery to the lysosome for degradation.

We also looked for potential interactions between the corre-
sponding amino acids at residues 205 and 72 in other subtypes
using coordinates available for high-resolution HA structures for
H1-H3 and H5-H6 subtypes (Fig. 7B and C). We first noted that
the general orientation of the side chain of residue 72 in these
other structures and their distance to nearby HA1 residues resem-
bles that seen in HAs from the H1 subtype. However, these dis-
tances are variable; sometimes approach a residue further C ter-
minal to residue 205, as in the case of H3 (Fig. 7D); and are often
just outside the range needed to make polar contacts. However,
because these residues reside in a loop structure, there is potential

FIG 7 Intermonomer interactions between HA1 and HA2. (A) The intermonomer interactions between HA1 residue 205 and HA2 residue 72 are modeled for
the A-K, Q-K, Y-K, and F-K pairs using the structure with PDB accession number 3M6S. The HA1 residues (A, Q, Y, and F) at position 205 are shown in green.
The K residue at residue 72 of HA2 is shown in red. (B and C) Different rotational perspectives of the local environment surrounding the intermonomer interface
between HA1 residue 205 and HA2 residue 72 of different HA subtypes (H1, PDB accession number 1RU7; H2, PDB accession number 3QQB; H3, PDB accession
number 2HMG; H5, PDB accession number 2IBX; H6, PDB accession number 4XKF). For clarity, only residues 198 to 213 in HA1 are shown and illustrated as
purple ribbons. Positions 72 and 205 from the H1 subtype are shown in yellow. For other subtypes, residue 72 of HA2 is shown in red, while residue 205 of HA1
is shown in blue. The blue dotted lines indicate the direction between C alpha carbons for the respective residue pairs. (D and E) Alternate interfaces between HA1
and HA2 are shown for subtype H3 (PDB accession number 2HMG) (D), and alternate interfaces between two adjacent HA2 monomers and HA1 are shown for
subtype H6 (PDB accession number 4XKF) (E). Residue positions are indicated. Magenta, HA1; green, HA2.
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for interactions in solution due to thermal conformational sam-
pling. Second, in some structures, for example, HA from subtype
H6 (Fig. 7E), there is often a histidine near but more N terminal in
the loop to position 72 that is in the vicinity of positively charged
residues in the neighboring HA1 and HA2 subunits. These obser-
vations underscore the structural complementarity between resi-
dues in the HA2 B loop and residues in the HA1 subunit among
different subtypes. Further experiments are needed to confirm the
functional interactions in these other subtypes that may be anal-
ogous to those that we demonstrated for H1N1 under physiolog-
ical conditions. Altogether, these finding suggest that combina-
tions of pairs of amino acids involving pH-sensitive intermononer
interactions between HA1 and B-loop residues in HA2 serve as
important regulators of HA conformational changes.

In summary, we identified two key residues in the HA1 and
HA2 subunits of influenza A H1N1 viruses involved in inter-
monomer interactions that facilitate the acid pH-induced release
of the HA2 B loop needed for virus entry. Our data further suggest
that there may be a window of pH activation of HA that needs to
match the timing of fusion-inducing conformational changes
with the timing of virus transport in the endocytic pathway.
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