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Abstract

In this paper we discuss relationships between causal interactions within the counterfactual 

framework and interference in which the exposure of one person may affect the outcomes of 

another. We show that the empirical tests for causal interactions can in fact all be adapted to 

empirical tests for particular forms of interference. In the context of interference, by recoding the 

response as some function of the outcomes of the various persons within a cluster, a wide range of 

different forms of interference can potentially be detected. The correspondence between causal 

interactions and forms of interference extends to encompass n-way causal interactions, 

interference between n persons within a cluster and to multi-valued exposures. The theory for 

causal interactions provides a complete conceptual apparatus for assessing interference as well. 

The results are illustrated using data from an hypothetical vaccine trial to reason about specific 

forms of interference and spillover effects that may be present in this vaccine setting. We discuss 

the implications of this correspondence for our conceptualizations of interaction and for 

application to vaccine trials.

When considering the joint effects of two exposures, there may be cases in which an 

outcome occurs if both exposures are present but not if only one or the other is present. We 

might refer to such settings as instances of “causal interaction”.1–4 This notion is closely 

related to that of synergism within Rothman’s sufficient cause framework.2,5 Recent work 

has derived empirical tests1,2,6 for such interactions. In general, tests for such causal 

interactions do not correspond to tests for interactions in standard statistical models2,4,7 

unless additional assumptions are made.

There has also been recent interest and methodological development concerning the notion 

of “interference” or “spillover effects” in which the exposure of one person may affect the 
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outcomes of another person. Such would be the case, say, with “herd immunity” in vaccine 

trials. The problem of empirical analysis of causal effects in the presence of interference 

was, until recently, generally considered intractable; however, a number of recent papers8–14 

have shown that progress can in fact be made in certain instances concerning the analysis of 

such spillover effects.

We show that these two apparently distinct areas of inquiry - causal interaction (concerning 

the joint effect of two exposures) and interference (spillover effects concerning the exposure 

of one person affecting the outcomes of another) - are in fact intimately related. In particular 

we show that an entire battery of empirical tests for casual interaction1–4,15,16 have a direct 

mapping onto testing for specific forms of interference.

The remainder of this paper is organized as follows. In the next two sections we review 

notation, results and concepts for causal interaction and interference. We then describe how 

the empirical tests for causal interaction can be applied more or less directly to test for 

specific forms of interference. We consider the case of two persons each possibly receiving 

a binary treatment or exposure and then in the Appendix generalize to cases of an arbitrary 

number of exposures or persons and to multi-valued exposures. We illustrate the results for 

interference using data from an hypothetical vaccine trial. We close with some further 

discussion on the interrelationships between interaction and interference.

Review of Causal Interactions

Let A1 and A2 denote two binary exposures of interest and let D denote a binary outcome. 

Suppose for now that a person’s outcome depends on the values of the two exposures that 

the person receives, but not on the exposures received by other people. Such an assumption 

is generally referred to in the statistics literature as one of “no interference”. We note that 

this use of “interference” is different from that in the infectious disease literature where the 

term connotes interference of the circulation of one infectious agent with the circulation of 

another. Let Da1a2 denote the counterfactual outcome (or potential outcome) for D for a 

person if (possibly contrary to fact) A1 had been set to a1 and A2 had been set to a2. 

VanderWeele and Robins2 said that a sufficient-cause interaction was present between A1 

and A2 if there was some person such that D11 = 1 but D10 = D01 = 0, and they showed that 

if there were such a person then synergism within Rothman’s sufficient cause framework5 

would be present. Note that the condition allows D00 to be 0 or 1. For such a person the 

outcome occurs if both exposures are present, but not if just one or the other is present.

We will assume for simplicity that the effects of the exposures A1 and A2 on D are 

unconfounded (in the sense that Da1a2 is independent of (A1, A2)) and that there is no 

measurement error or selection bias. If the effects of the exposures A1 and A2 on D are 

unconfounded conditional on some set of covariates C, then we will assume that analysis is 

done within strata of C. Let pa1a2 = P(D = 1|A1 = a1, A2 = a2) be the observed probability of 

the outcome among those who actually received A1 = a1, A2 = a2. The standard test for 

interaction on the additive scale is

(1)
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VanderWeele and Robins1,2 showed that if the effects of A1 and A2 on D were 

unconfounded, then a slightly different condition, namely,

(2)

would imply the presence of a sufficient-cause interaction. The test for a sufficient-cause 

interaction in condition (2) is a more stringent condition than the standard additive 

interaction in condition (1), in that we are no longer adding p00 in the probability contrast. In 

fact the magnitude of the contrast p11 − p10 − p01 gives a lower bound on the prevalence of 

persons with a sufficient cause interaction.

VanderWeele and Robins1,2 also noted that the test for a standard additive interaction in 

condition (1) would suffice to conclude the presence of a sufficient-cause interaction under 

an assumption called “monotonicity.” The effects of A1 and A2 are said to be positive 

monotonic if Da1a2 is non-decreasing in a1 and a2 for all persons i.e. if an increase in the 

exposure A1 or A2 would increase or leave unchanged the outcome, not just on average, but 

for all people in the population. Under this assumption that A1 and A2 have positive 

monotonic effects on the outcome, condition (1) would suffice to draw the conclusion of the 

presence of a sufficient-cause interaction2,6 and the contrast p11 − p10 − p01 + p00 then gives 

a lower bound on the prevalence of individuals with a sufficient-cause interaction. Testing 

condition (2) would be necessary without such monotonicity assumptions.1,2 It should be 

noted that conditions (1) and (2) are, under the assumptions given above, sufficient but not 

necessary conditions for a sufficient-cause interaction. A sufficient-cause interaction may be 

present even if these conditions are not satisfied.

VanderWeele15,16 discussed empirical tests for an even stronger notion of interaction. In the 

genetics literature, when gene-gene interactions are in view, “compositional epistasis”17,18 is 

said to be present if there is some person such that D11 = 1 and D10 = D01 = D00 = 0. This 

means that for this person the outcome occurs if and only if both exposures are present. In 

such cases, the effect of one exposure will be masked if the other is absent i.e. the effect of 

the first genetic factor is 0, (and thus masked) unless the second genetic factor is present 

(and vice versa). Note that this is an even stronger notion of interaction than that of a 

sufficient-cause interaction, in that we are now requiring that D00 = 0. We might refer to this 

as an “epistatic interaction”16 or a “singular interaction”.4 Although it is in general a 

stronger notion of interaction, if at least one of the two exposures has a positive monotonic 

effect on the outcome, then the notions of a “sufficient cause” interaction and a “singular/

epistatic” interaction coincide.

VanderWeele15,16 showed that if the effects of A1 and A2 on D were unconfounded, then

(3)

would imply an “epistatic interaction”, i.e. the presence of compositional epistasis; the 

contrast p11 − p10 − p01 − p00 in fact gives a lower bound on the prevalence of individuals 

that manifest such a singular/epistatic interaction. In contrast with condition (1), we subtract 

rather than add p00. If at least one of the two exposures has a positive monotonic effect on 

the outcome, then we can test condition (2) to conclude the presence of a singular/epistatic 
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interaction. If both exposures have positive monotonic effects on the outcome, then we can 

use condition (1) to test for the presence of a singular/epistatic interaction.

Often epidemiologic data are obtained from case-control studies in which it is not possible 

to estimates the risks pa1a2 = P(D = 1|A1 = a1, A2 = a2) directly. Instead, additive interaction 

is often assessed using a measure referred to as the “relative excess risk due to interaction” 

or RERI,19 defined as:

where RRa1a2 = pa1a2/p00. In a case-control study where the odds ratio directly estimates a 

rate ratio or a relative risk (e.g. rare outcome or incidence density sampling), RERI can be 

estimated by RERI ≈ OR11−OR10−OR01+1 where ORa1a2 = {pa1a2/(1−pa1a2)}/{p00/

(1−p00)}. By dividing conditions (1)-(3) all by p00 we see that condition )1) could be tested 

by RERI > 0; condition (2) could be tested by RERI > 1; and condition (3) could be tested by 

RERI > 2. It is relatively straightforward to obtain confidence intervals for the relative 

excess risk due to interaction.20–22

Interference and Spillover Effects

We now consider a somewhat different setting in which only one exposure is in view but in 

which people are clustered such that the exposure that one person receives may affect the 

outcome of another person in the same cluster. For example, this might be the case for 

people living in households if the exposure were a vaccine. Suppose that in a particular 

study there are K households indexed by i = 1, …, K in which there are two people under 

study per household (e.g. husband and wife) indexed by j = 1, 2. Initially let us suppose that 

the two persons are distinguishable from one another (e.g. j = 1 denotes the wife and j = 2 

denotes the husband). We let Aij denote the exposure status for person j in household i. For 

example, for a vaccine we let Aij = 1 denote that the person received the vaccination and Aij 

= 0 that the person did not. We let Yij denote the infection status of person j in household i 

after some suitable follow-up. For reasons that will become clearer below we are now using 

Y rather than D to denote the outcome.

Now let Yij(ai1, ai2) denote the counterfactual outcome for person j in household i if the two 

people in that household i had (possibly contrary to fact) vaccine status of (ai1, ai2). For 

example, Yi2(1, 0) would denote what would have happened to person 2 if person 1 had 

received the vaccine and person 2 had not; Yi1(0, 0) denotes what would have happened to 

person 1 if neither had received the vaccine. Note that under this counterfactual or “potential 

outcomes” notation, the potential outcome for person 1, Yi1(ai1, ai2), depends on the vaccine 

status of both persons. This allows for the possibility that the exposure status of one person 

affects the outcomes of another, sometimes referred to as interference or a spillover effect. 

Most literature in causal inference makes a “no-interference” assumption that one person’s 

outcome does not depend on the exposure of other people. In the current context this would 

imply that Yi1(ai1, ai2)= Yi1(ai1) and Yi2(ai1, ai2)= Yi2(ai2) so that each person’s outcome 

depends only on his or her own exposure status. We will allow for such interference here, 

but will assume that the vaccine status of people in one household do not affect the 
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outcomes of those in other households. This assumption is sometimes referred to as “partial 

interference”.8,11 This would not be an unreasonable assumption if the source population in 

the study were very large and a relatively small number of households were randomly 

selected for inclusion in the study. (As noted above, this use of “interference” is different 

from that in the infectious disease literature.)

If we allow for such interference between people within a household we can define various 

causal effects of interest beyond the overall effect of vaccinating versus not vaccinating 

households. For example we might consider a person effect or “direct effect”11,23 of having 

one person (e.g. the wife) vaccinated while holding the vaccine status of the other person 

(e.g. the husband) constant. In counterfactual notation this would be Yi1(1, ai2)− Yi1(0, ai2); 

if we hold the husband’s vaccine status to vaccinated this is Yi1(1, 1)− Yi1(0, 1); if we hold 

the husband’s vaccine status to unvaccinated this is Yi1(1, 0)− Yi1(0, 0). Alternatively we 

could consider indirect or spillover effects such as the effect on the wife’s outcome of 

having the husband vaccinated versus unvaccinated while holding the wife’s vaccine status 

constant. In counterfactual notation this would be Yi1(ai1, 1)− Yi1(ai1, 0); if we hold the 

wife’s vaccine status to vaccinated this is Yi1(1, 1)− Yi1(1, 0); if we hold the wife’s vaccine 

status to unvaccinated this is Yi1(0, 1)− Yi1(0, 0). We could also define analogous effects for 

the husband. In general we cannot hope to estimate these individual/direct and spillover/

indirect effects for a particular household, but we may be able to estimate these effects on 

average, at least in various randomized trials in which both the husband’s and the wife’s 

exposures are randomized. We could do so by simply comparing the sample average of the 

wife’s or husband’s outcome across the various subgroups defined by the wife’s and 

husband’s vaccination status. Settings in which clusters have more than two people and with 

other randomization schemes are discussed elsewhere.11,12,14

If any of the various spillover/indirect effects in this setting are non-zero, then we would say 

that interference is present. For example if we found on average that

we would know that there was a spillover effect of the husband’s vaccine on the wife’s 

outcome. In the following section, by relating the notions of interference to causal 

interaction, we give new results on detecting specific forms of interference. These results 

will also shed light on the relationship between interference and causal interactions.

Tests for Specific Forms of Interference Using Causal Interactions

Suppose now that we are interested in trying to detect patterns of interference of a particular 

form. For example, we might be interested in whether there are any households such that the 

wife is not infected if and only if both the husband and the wife are vaccinated. Expressed in 

terms of counterfactuals, we would be asking whether there is some household i such that 

Yi1(1, 1) = 0 but Yi1(1, 0) = Yi1(0, 1) = Yi1(0, 0) = 1. This pattern is somewhat analogous to 

the epistatic/singular interaction considered above. In fact, by redefining our outcome, we 

can test for it empirically. For each household i, define Di(ai1, ai2) = 1 − Yi1(ai1, ai2); i.e. 

Di(ai1, ai2) is an indicator that the wife is not infected if the wife and husband receive 
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vaccines corresponding to ai1 and ai2, respectively. Suppose that both the wife’s and 

husband’s vaccine status were randomized. If we then let pa1a2 = P(D = 1|A1 = a1, A2 = a2) 

= P(Y1 = 0|A1 = a1, A2 = a2), then by using the tests for causal interaction we would have 

that if

there must be some households such that the wife is not infected if and only if both the 

husband and the wife are vaccinated. In fact, the contrast p11 − p10 − p01 − p00 will be a 

lower bound on the prevalence of such households. This is now a conclusion concerning a 

much more specific form of interference than simply the presence of some spillover effect, 

as in the previous section. By redefining Di(ai1, ai2) = 1 − Yi2(ai1, ai2), we could test for 

similar patterns of interference for the husband. Similarly, by yet other alternative 

definitions for Di we could attempt to detect yet other forms of potential interference. If we 

define Di(ai1, ai2) = [1 − Yi1(ai1, ai2)] × [1 − Yi2(ai1, ai2)] and find, for pa1a2 = P(D = 1|A1 = 

a1, A2 = a2) with D so defined, that p11 − p10 − p01 − p00 > 0, then we could conclude that 

there were households such that the husband and the wife both remain uninfected if and only 

if both receive the vaccine. By defining Di as other combinations of the wife’s and 

husband’s outcomes, other forms of interference or response patterns could potentially be 

tested for. As with causal interactions, however, so also here with tests for specific forms of 

interference, the conditions tested are sufficient for the specific form of interference in 

question, but they are not necessary. Such forms of interference might be present even if the 

condition on the probabilities is not satisfied.

However, as was also the case of “causal interactions”, so too here, when testing for various 

forms of interference, monotonicity conditions will allow one to test weaker conditions. 

Consider again trying to test for whether there are any households such that the wife is not 

infected if and only if both the husband and the wife are vaccinated. Suppose that we 

thought the wife’s vaccine would never cause the wife to be infected, so that monotonicity 

held for Ai1 (i.e. if Di(ai1, ai2) = 1 − Yi1(ai1, ai2) denotes the absence of the wife being 

infected, then Ai1 will have a positive monotonic effect on Di). By the results on causal 

interaction it follows that for pa1a2, defined as pa1a2 = P(D = 1|A1 = a1, A2 = a2) = P(Y1 = 0|

A1 = a1, A2 = a2), if we found that

then at least some households would have to be such that the wife is not infected if and only 

if both the husband and the wife are vaccinated. Similarly if we also thought that the 

vaccination of the husband would never, for any household, cause the wife to be infected, 

then to test for households with this specific interference pattern for the wife we could test

Note that in this case the monotonicity assumptions for the wife’s and the husband’s vaccine 

are somewhat different insofar as both pertain to the outcome status of the wife. These 
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monotonicity assumptions would be violated if the vaccine might itself cause the infection. 

But if, in a specific context, the monotonicity assumptions are thought reasonable, then these 

weaker conditions, p11 − p10 − p01 > 0 or p11 − p10 − p01 + p00 > 0, could be tested; without 

these monotonicity assumptions the more stringent condition p11 − p10 − p01 − p00 > 0 

would be tested. Other forms of interference corresponding to the outcome occurring for one 

person but not the other could be formed by simply redefining Di as the relevant function of 

Yi1 and Yi2. It should be noted that when one is testing for other forms of interference or 

other response patterns - such as whether both remain uninfected if and only if both receive 

the vaccine or whether at least one remains uninfected if and only if both receive the vaccine 

- the monotonicity assumptions that are considered will change because the definition of the 

outcome Di(ai1, ai2) changes.

We have thus far been considering forms of interference analogous to those of epistatic/

singular interactions, but similar results pertain to patterns of interference analogous to 

sufficient-cause interactions. For example, if we were interested in whether there are 

households such that the wife would be uninfected if both received the vaccine but would be 

infected if only one or the other of the spouses received the vaccine then this would be 

analogous to a sufficient-cause interaction. We then could, for example, test for such a form 

of interference, without making monotonicity assumptions, using the condition for 

sufficient-cause interaction without monotonicity, namely, p11 − p10 − p01 > 0. Note that for 

these forms of interference corresponding to sufficient-cause interactions, conclusions are 

not being drawn regarding what occurs if both persons are unvaccinated as they were with 

the analog of the epistatic/singular interactions. Further variations on these ideas are also 

possible insofar as we could draw conclusions about what sorts of outcomes might occur if 

and only if one person is vaccinated and the other unvaccinated by recoding exposure status 

and not simply outcomes. Such forms of interference would then be somewhat analogous to 

antagonism24 in the context of causal interactions.

The discussion to this point has assumed that we can distinguish between people in the 

household (e.g. the husband and the wife), i.e. that the subscript labelings j = 1 and j = 2 are 

meaningful. This may not always be the case; for example, we may have data only on the 

number vaccinated in each household and the number who have the outcome in each 

household. Alternatively, we may be considering siblings such that there is no clear 

classification of j = 1 and j = 2. Suppose once again that both exposures are randomized. We 

could then define Di as, say, that both people have the outcome (or, alternatively, don’t have 

the outcome; or that at least one has the outcome; etc.). If in each cluster we arbitrary select 

one person as j = 1 and the other as j = 2 (as will be seen below it will not matter which is 

which) then we could define Di(ai1, ai2) as, for example, both persons having the outcome if 

we set Ai1 = ai1 and Ai2 = ai2 and let pa1a2 = P(D = 1|A1 = a1, A2 = a2). Now let Ai denote 

the number who received the exposure in cluster or household i (i.e. Ai = 0, 1 or 2) and let pa 

= P(D = 1|A = a); furthermore note if the exposures received by both people are randomized 

with the same probability of receiving the exposure, then 

. 

By the arguments above, we could test whether there are clusters where both persons would 
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have the outcome if and only if both were exposed by testing p11 − p10 − p01 − p00 > 0 

which since  is equivalent to

Under the assumption that the exposure for at least one person in each cluster had a positive 

monotonic effect on the outcome Di we could, by similar arguments, instead test

to conclude that this form of interference was present and if the exposure for both persons in 

each cluster had a positive monotonic effect on the outcome Di we could test

As before, by recoding the outcome Di or the exposures, we could also form tests for other 

forms of interference.

We note that these tests apply to settings in which there are more than two people per cluster 

(e.g. there may be varying number of children within each household), provided that the 

randomization of the exposure for persons j = 1 and j = 2 does not depend on the exposure 

status of the other people in the household. In the Appendix we generalize these results 

further, and consider settings in which more than two people are potentially randomized to 

the exposure or in which the exposure may have more than two levels. We in fact show that 

the entire theory of causal interaction for n-way interactions between exposures4 and also for 

multivalued exposures3,15,16 maps onto tests for specific forms of interference.

Illustration

Consider a hypothetical vaccine trial with two persons per household as described above, in 

which each of the two persons is randomized to receiving the vaccine or a placebo with 

probability 1/2. Let  and suppose that the results from 

the vaccine trial, consisting of the infection status probabilities, , are as given in the 

Table. We will assume a very large trial and, for the purposes of the illustration, ignore 

sampling variability, i.e. assume that the Table represents the true infection-status 

probabilities.

Suppose we are interested in whether there are households such that both persons become 

infected if and only if neither were vaccinated. Without making any assumptions about 

monotonicity, by the arguments above, we could evaluate
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In this case, we would have 

which would indicate that there were households such that both persons became infected if 

and only if neither were vaccinated.

Suppose now instead we were interested in examining whether there are households such 

that neither person would be infected if and only if both were vaccinated. By the arguments 

above, we would be able to draw this conclusion without monotonicity assumptions if 

; or, under the assumption that for at least one person, administering 

the vaccine was never causative of infection for either, if ; or, under the 

assumption that for both people administering the vaccine was never causative of infection 

for either, if . In this case, neither of the first two empirical 

conditions hold; however, for the third we have that 

. Thus if we were willing to assume that 

for both people receiving the vaccine was never causative of infection for either, we could 

draw the conclusion that there were households such that neither person would be infected if 

and only if both were vaccinated.

Discussion

We have considered the correspondence between various forms of causal interaction and 

specific forms of interference in which the exposure of one person may affect the outcome 

of another. We have seen how empirical tests for causal interactions1–4,15,16 can be applied 

almost immediately to detect various forms of interference. In the context of interference, by 

defining a new outcome as some function of the outcomes of the various people in each 

cluster, such tests can be adapted to attempt to detect a wide range of different forms of 

interference. The approach applies to settings in which the people within a cluster are or are 

not distinguishable from one another. Similar ideas also extend to correspondences between 

n-way causal interactions for multiple exposures and interference patterns amongst n 

persons per cluster and also extend further to multivalued exposures. The entire theory of 

causal interaction has an analog within the context of detecting various forms of 

interference.

The results here have generally been cast within the context of randomized exposures. 

However, all of the results are still applicable if randomization is conditional on strata of 

cluster covariates Ci and analysis is done conditional on Ci (or, somewhat more generally, if 

the effects of the exposure status for a cluster is unconfounded conditional on cluster 

covariates Ciand analysis is again done conditional on Ci). However, modeling difficulties 

arise in cases in which Ci contains numerous confounding variables, or continuous 

covariates, or distinct covariate values for each person in a cluster. The conceptual issues 

concerning confounding control become somewhat more subtle in the context of 

interference than in the simple no-interference setting;12 further development of these ideas 

will be pursued in future work.

The work here is also subject to the limitation of the assumption about “partial interference”, 

i.e. that there is no interference between clusters. In the case of a vaccine trial, where a few 
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households are randomly sampled from a large city and the cluster is treated as the 

household, this assumption is perhaps not unreasonable - but it is unlikely to hold exactly. In 

other settings, however, additional complications will likely arise. The present work (and the 

general approach taken in statistical work on interference to date8–14) has assumed the 

existence of well-defined clusters. In many settings this assumption too will not be 

reasonable. Recent work on social networks in effect relaxes this assumption of well-defined 

clusters, but the use of social networks to draw inferences about causality is still 

controversial.25–29 In settings in which clusters are not well defined or where partial 

interference is clearly an unreasonable assumption, traditional transmission system models 

in the infectious disease literature constitute a much more adequate modeling approach.30,31

Before closing, we would like to note that the train of thought that led to the exploration of 

the correspondence between interaction and interference had a somewhat unlikely origin. 

Independent observations amongst co-authors on the formal similarity between empirical 

tests for causal interaction and one of the forms of Bell’s inequality32 in quantum mechanics 

(concerning the interference of the measurement of the spin of one electron on the other) had 

two consequences. First, it led to the insight that theory for causal interaction could provide 

a very simple proof of Bell’s inequality.33 Second, the formal similarity led to questions 

about the possible implications for epidemiology of this formal relation, and whether such 

formal relations might have implications for the phenomenon known as interference or 

spillover effects. Further reflection led to the realization that, in fact, the entire theory of 

causal interactions had analogs in the context of interference.

One further point concerning a resemblance in language is also worth noting. In the 

econometrics literature the phenomenon of “interference” or “spillover effects” is sometimes 

referred to as “social interactions”.34–36 This phenomenon arises in the study of 

neighborhoods, classrooms, judicial panels and elsewhere, whenever people interact with 

one another in such a way that the outcome of one person depends on the exposure of 

another. The results of this paper show that such “social interactions” may in some instances 

also be cases of “causal interaction.” The use of the word “interaction” to describe both the 

joint action of two exposures and also the phenomenon of interference is, however, not 

simply a linguistic coincidence, nor merely indicative of a conceptual similarity, but instead 

(as we have now shown) connotes an extensive formal correspondence between various 

forms of causal interaction on the one hand and specific forms of interference on the other. 

The theory of causal interactions1–4,15,16 turns out to provide a theoretical framework and 

analytical tool by which to reason about interference. Interference arises not simply in the 

context of vaccines but in the study of neighborhoods, classrooms, and judicial panels, as 

well as in various forms of economic behavior. The tests we have described here may be of 

use in detecting specific forms of interference in all of these settings. Here we have 

illustrated the results in discerning what can be learned about spillover effects from certain 

forms of vaccine trials. The broader implications of the correspondence we have described 

remains to be worked out.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix. Generalizations to Many People per Cluster and to Multi-Valued 

Exposures

Here we show that the relationships between causal interaction and specific forms of 

interference extend to settings with multiple persons per cluster. For causal interactions with 

three binary exposures of interest, let Da1a2a3 denote the counterfactual outcome for a 

person for some binary variable D if A1, A2, and A3 had been set, possibly contrary to fact, to 

a1, a2 and a3 respectively. We say that there is a 3-way sufficient-cause interaction between 

A1, A2, and A3 if there is a person such that D111 = 1 and D110 = D101 = D011 = 0. 

VanderWeele and Robins2 noted that if we let pa1a2a3 = E(D|A1 = a1, A2 = a2, A3 = a3), then 

if the effects of A1, A2 and A3 on D are unconfounded, and if

(4)

then a sufficient cause interaction must be present between A1, A2 and A3. If the effects of 

A1, A2 and A3 on D are positive monotonic and unconfounded, then any of the following 

three conditions imply the presence of a three-way sufficient cause interaction2,4:

(5)

If just two of the exposures, say A1 and A2, have positive monotonic effects on the outcome, 

then the following condition suffices:

(6)

Consider now instead the context of interference in which there are three people per cluster 

and Ai1, Ai2 and Ai3 denote the exposures received by persons 1, 2 and 3, respectively in 

cluster i, and let Yij(ai1, ai2, ai3) denote the counterfactual outcome for person j in cluster i if 

Ai1, Ai2 and Ai3 had been set to ai1, ai2, ai3, respectively. We could then define Di(ai1, ai2, 

ai3) as some function of Yi1(ai1, ai2, ai3), Yi2(ai1, ai2, ai3), Yi3(ai1, ai2, ai3). For example, 

Di(ai1, ai2, ai3) might simply be whether person 1 has the outcome when Ai1 = ai1, Ai2 = ai2, 

Ai3 = ai3 i.e. Di(ai1, ai2, ai3) = Yi1(ai1, ai2, ai3). Alternatively Di(ai1, ai2, ai3) could be taken 

as an indicator of all three persons having the outcome or at least two having the outcome, 

or the first and the second person but not the third, etc. In any case, regardless how Di(ai1, 

ai2, ai3) is defined, if we let pa1a2a3 = P(D = 1|A1 = a1, A2 = a2, A3 = a3), we could test 

whether there are clusters such that Di(ai1, ai2, ai3) = 1 whenever all three people have the 

exposure present, but not when just two of the three have the exposure, by testing condition 

(4). For example, if we let pa1a2a3 = P(Y1 = 1|A1 = a1, A2 = a2, A3 = a3) and found that 

inequality (4) held then we could conclude that there were clusters in which the first person 

would have the outcome if all three people had the exposure but not if just two of three did.
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As before, once Di(ai1, ai2, ai3) is defined, if we thought that the exposure for all three 

people had a positive monotonic effects on the outcome Di, as defined, then we could test 

condition (5) instead of condition (4); if it were thought that the exposures of persons 1 and 

2 had positive monotonic effects on the outcome, then one could test condition (6) instead of 

condition (4) to test for the particular form of interference or pattern of outcome responses 

under question. As with two people per cluster, when there are three persons per cluster but 

they are indistinguishable from one another if Ai denotes the number who received the 

exposure in cluster or household i (i.e. Ai = 0, 1, 2 or 3) and we let pa = P(D = 1|A = a) then 

if the exposure is randomized for each person with the same probability then conditions (4), 

(5) and (6) can be rewritten respectively as:

for condition (4);

for condition (5) and

for condition (6). Analogs of the epistatic/singular interaction for three binary exposures are 

given in VanderWeele and Richardson4 and could likewise be applied to test for 

corresponding forms of interference. VanderWeele and Richardson4 also consider both 

sufficient cause and epistatic/singular n-way interactions, and these could likewise be used 

to test for various forms of interference when there are n persons per cluster. The entire 

theory of causal interaction for n-way exposures maps onto tests for specific forms of 

interference among clusters with n persons.

Likewise the theory for causal interactions for two multi-valued exposures maps onto tests 

for specific forms interference for multivalued exposures between two people in a cluster. 

Theory has been developed for both sufficient-cause interaction for two exposures each with 

three levels3 and for epistatic/singular interactions for two exposures each with three 

levels15,16. For example, for two exposures, A1 and A2, each with three levels, with Da1a2 
denoting the counterfactual outcome setting A1 to a1 and A2 to a2 and pa1a2 = P(D = 1|A1 = 

a1, A2 = a2) then if the effects of A1 and A2 on D are unconfounded there will be people such 

that Da1a2 = 1 if and only if a1 = a2 = 2 if

Considerably weaker conditions can be tested under monotonicity assumptions or if 

sufficient-cause interactions, rather than epistatic/singular interactions, are in view. 

However, as before, these various empirical tests all have analogs for detecting various 

forms of interference between clusters with two people when the exposures have three levels 

(e.g. no vaccine, low-dose vaccine, high-dose vaccine). Here again, Yij(ai1, ai2) would 
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denote the counterfactual outcome for person j in cluster i if Ai1 and Ai2 had been set to ai1 

and ai2 respectively, Dij(ai1, ai2,) could be defined as some function of Yi1(ai1, ai2) and 

Yi2(ai1, ai2), and the the tests for either sufficient-cause or epistatic/singular interactions for 

categorical or ordinal variables could once again essentially be applied directly either with 

or without monotonicity assumptions. Conditions in which one exposure has two levels and 

the other three are also available.3,15,16 Once we consider exposures with three or more 

levels, the number of possible forms of causal interaction (and forms of interference) and 

conditions that may be tested under varying monotonicity assumptions increases 

considerably; the interested reader can find these tests for causal interactions 

elsewhere.3,15,16 Analogous extensions are conceivable for multivalued exposures in 

clusters with an arbitrary number of people. We see that the close correspondence between 

causal interaction and forms of interference thus extends considerably further: the entire 

theory of causal interaction for n-way interactions between exposures4 and also for 

multivalued exposures3,15,16 maps onto tests for specific forms interference.

References

1. VanderWeele TJ, Robins JM. The identification of synergism in the sufficient-component cause 
framework. Epidemiol. 2007; 18(3):329–339.

2. VanderWeele TJ, Robins JM. Empirical and counterfactual conditions for sufficient cause 
interactions. Biometrika. 2008; 95(1):49–61.

3. VanderWeele TJ. Sufficient cause interactions for categorical and ordinal exposures with three 
levels. Biometrika. 2010; 97:647–659. [PubMed: 22822251] 

4. VanderWeele TJ, Richardson TS. General theory for interactions in sufficient cause models with 
dichotomous exposures. Annals of Statistics. conditionally accepted. 

5. Rothman KJ. Causes. Am. J. Epidemiol. 1976; 104(6):587–592. [PubMed: 998606] 

6. Rothman, KJ.; Greenland, S.; Lash, TL. Modern Epidemiology. 3rd edition. Lippincott Williams 
and Wilkins; Philadelphia: 2008. 

7. VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiol. 2009; 20(1):
6–13.

8. Sobel ME. What do randomized studies of housing mobility demonstrate?: Causal inference in the 
face of interference. Journal of the American Statistical Association. 2006; 101:1398–1407.

9. Hong G, Raudenbush SW. Evaluating kindergarten retention policy: A case study of causal 
inference for multilevel observational data. Journal of the American Statistical Association. 2006; 
101:901–910.

10. Rosenbaum PR. Interference between units in randomized experiments. Journal of the American 
Statistical Association. 2007; 102:191–200.

11. Hudgens MG, Halloran ME. Towards causal inference with interference. Journal of the American 
Statistical Association. 2008; 103:832–842. [PubMed: 19081744] 

12. Tchetgen Tchetgen EJ, VanderWeele TJ. Estimation of causal effects in the presence of 
interference. Statistical Methods in Medical Research - Special Issue on Causal Inference. in press. 

13. VanderWeele TJ, Tchetgen Tchetgen EJ. Bounding the infectiousness effect in vaccine trials. 
Epidemiology. 22:686–693. [PubMed: 21753730] 

14. VanderWeele TJ, Tchetgen Tchetgen EJ. Effect partitioning under interference for two-stage 
randomized experiments. Statistics and Probability Letters. 2011; 81:861–869. [PubMed: 
21532912] 

15. VanderWeele TJ. Empirical tests for compositional epistasis. Nature Reviews Genetics. 2010; 
11:166.

16. VanderWeele TJ. Epistatic interactions. Statistical Applications in Genetics and Molecular 
Biology. 2010; 9:1–22. Article 1. 

VanderWeele et al. Page 13

Epidemiology. Author manuscript; available in PMC 2015 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Phillips PC. Epistasis – the essential role of gene interactions in the structure and evolution of 
genetic systems. Nature Reviews Genetics. 2008; 9:855–867.

18. Cordell HJ. Detecting gene-gene interaction that underlie human diseases. Nature Reviews 
Genetics. 2009; 10:392–404.

19. Rothman, KJ. Modern Epidemiology. 1st ed.. Little, Brown and Company; Boston, MA: 1986. 

20. Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992; 
3:452–56. [PubMed: 1391139] 

21. Richardson DB, Kaufman JS. Estimation of the relative excess risk due to interaction and 
associated confidence bounds. Am J Epidemiol. 2009; 169:756–60. [PubMed: 19211620] 

22. VanderWeele TJ, Vansteelandt S. A weighting approach to causal effects and additive interaction 
in case-control studies: marginal structural linear odds models. American Journal of 
Epidemiology. 2011; 174:1197–1203. [PubMed: 22058231] 

23. Halloran ME, Struchiner CJ. Causal inference for infectious diseases. Epidemiology. 1995; 6:142–
51. [PubMed: 7742400] 

24. VanderWeele TJ, Knol MJ. Remarks on antagonism. American Journal of Epidemiology. 2011; 
173:1140–1147. [PubMed: 21490044] 

25. Carrington, PJ.; Scott, J.; Wasserman, S. Model and methods in social network analysis. 
Cambridge University Press; New York: 2005. 

26. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. New 
England Journal of Medicine. 2007; 357:370–379. [PubMed: 17652652] 

27. Shalizi CR, Thomas AC. Homophily and contagion are generically confounded in observational 
social network studies. Sociological Methods and Research. 2011; 40:211–239. [PubMed: 
22523436] 

28. VanderWeele TJ. Sensitivity analysis for contagion effects in social networks. Sociological 
Methods and Research. 2011; 40:240–255. [PubMed: 25580037] 

29. Lyons R. The spread of evidence-poor medicine via flawed social network analysis. Statistics, 
Politics, and Policy. 2011; 2 Article 2. 

30. Diekmann, O.; Heesterbeek, JAP. Mathematical Epidemiology of Infectious Diseases: Model 
Building, Analysis and Interpretation. Wiley; New York: 2000. 

31. Riley S. Large-scale spatial-transmission models of infectious disease. Science. 2007; 316:1298–
1301. [PubMed: 17540894] 

32. Bell JS. On the Einstein Podolsky Rosen paradox. Physics. 1964; 1:195–200.

33. Robins, JM.; VanderWeele, TJ.; Gill, RD. A proof of Bell’s inequality in quantum mechanics 
using causal interactions. Collection of Biostatistics Research Archive; Preprint Series, Article 83. 
http://biostats.bepress.com/cobraffps/art83

34. Graham B. Identifying social interactions through conditional variance restrictions. Econometrica. 
2008; 76:643–660.

35. Manski CF. Economic analysis of social interactions. Journal of Economic Perspectives. 2000; 
14:115–136.

36. Manski, CF. Identification of treatment response with social interactions. Northwestern University 
Technical Report. 

VanderWeele et al. Page 14

Epidemiology. Author manuscript; available in PMC 2015 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://biostats.bepress.com/cobraffps/art83


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

VanderWeele et al. Page 15

Table

Probabilities of infection (Yi1, Yi2) by vaccination status (Ai1, Ai2)

Yi1 = 0, Yi2 = 0 Yi1 = 0, Yi2 = 1 Yi1 = 1, Yi2 = 0 Yi1 = 1, Yi2 = 1

Ai1 = 0, Ai2 = 0 0.69 0.10 0.09 0.12

Ai1 = 0, Ai2 = 1 0.81 0.05 0.09 0.05

Ai1 = 1, Ai2 = 0 0.83 0.10 0.03 0.04

Ai1 = 1, Ai2 = 1 0.96 0.02 0.01 0.01
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