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Abstract

The cultivated strawberry (Fragaria xananassa Duch.) is an allo-octoploid considered diffi-
cult to disentangle genetically due to its four relatively similar sub-genomic chromosome
sets. This has been alleviated by the recent release of the strawberry 1IStraw90 whole
genome genotyping array. However, array resolution relies on the genotypes used in the
array construction and may be of limited general use. SNP detection based on reduced
genomic sequencing approaches has the potential of providing better coverage in cases
where the studied genotypes are only distantly related from the SNP array’s construction
foundation. Here we have used double digest restriction-associated DNA sequencing
(ddRAD) to identify SNPs in a 145 seedling F4 hybrid population raised from the cross
between the cultivars Sonata (?) and Babette (). A linkage map containing 907 markers
which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of
the species. Comparing the physical span of the SNP markers with the F. vesca genome
sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F.
xananassa genome. Here, we have developed the first linkage map for F. xananassa using
ddRAD and show that this technique and other related techniques are useful tools for link-
age map development and downstream genetic studies in the octoploid strawberry.

Introduction

Fragaria is an important soft fruit genus, primarily due to the cultivation of the genetically
complex garden strawberry (Fragaria xananassa Duch; 2n = 8x = 56). In 2012, the world pro-
duction of strawberries exceeded 5 million tons and the crop was valued in excess of US$10 bil-
lion [1]. In addition to its aesthetic qualities and nutritional value, strawberry is appreciated for
its flavor, aroma, and content of ‘health-benefitting’ antioxidant compounds [2].

The cultivated strawberry is a genetically complex allo-octoploid (2n = 8x = 56). Very recent
studies of the sub-genome structure of the species have determined that at least three diploid
donors have contributed to the extant genome composition. The genome contains one sub-
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genome which displays similarity to Fragaria iinumae, two additional sub-genomes that are
not clearly distinguishable, but that are clearly segregating disomically, and a single sub-
genome with a strong similarity to F. vesca [3]. In the newly proposed model, the F. iinumae
and undefined sub-genomes existed initially as a hexaploid, which subsequently hybridized at
a much later stage with an F. vesca-like diploid to form the extant octoploid genome configura-
tion [3]. The proposed sub-genome structure of F. xananassa has thus been revised as A-A, b-
b, X-X, X-X, where the A genome is F. vesca-like, the b genome is F. iinumae-like, and the two
X genomes are of unknown origin but are delimited X-X, X-X to reinforce that they segregate
independently in a disomic fashion, and may or may not be derived from the same ancestral
progenitor.

The first sequence characterized linkage maps of the cultivated strawberry were constructed
using microsatellites (simple sequence repeats; SSRs) [4-8]. However, the recent development of
a high-throughput whole-genome genotyping array for F. xananassa has provided researchers
with a more powerful resource for the rapid development of dense linkage maps of the cultivated
strawberry. Bassil et al [9] described the development of the SNP-array, IStraw90, and demon-
strated its utility in the development of a linkage map of a progeny used in the array development
SNP discovery process. The linkage map produced contained a total of 6,594 SNP markers dis-
tributed throughout 35 linkage group fragments that represented the 28 chromosomes of F.
xananassa. Whilst most of the chromosomes were well covered with markers, linkage groups
1D, 2C, 4C and 7C were significantly shorter than their homeologues on the linkage map. As an
explanation, the authors reported that these sections largely corresponded to regions identified as
homozygous on previous SSR maps developed for the mapping population [8].

The IStraw90 array should prove to be a powerful tool for genetics studies in the cultivated
strawberry, however, the cost per sample of the array has implications for its applicability as a
broad genotyping tool, both in very large experiments where the total cost of its implementa-
tion would be prohibitive, as well as in exploratory or pilot studies where initial proof of con-
cept funding might be limited. In these scenarios, other high-throughput genotyping
techniques may be more cost-effective for SNP genotyping and linkage map construction. Such
approaches are based on genomic DNA enrichment using restriction digestion and adaptor
ligation, followed by second-generation sequencing of multiplexed libraries. These techniques,
along with others such as the direct re-sequencing of a sub-set of progeny individuals [10],
allow the rapid generation of large numbers of single nucleotide polymorphisms (SNPs) for
use in genetic analyses and genotyping. Genotyping-by-Sequencing (GBS), described by Elshire
etal [11], has been used effectively to develop linkage maps of relatives of the cultivated straw-
berry including the diploid strawberry F. vesca [12], red raspberry [13], and apple [14], while
RAD-tag sequencing, described by Baird et al [15], has been used to develop maps of barley
[16] and aubergine [17] amongst others. These techniques have advantages over the use of
array technology in that no a priori knowledge of the genomes of the organism under investiga-
tion is required, and are thus not dependent on previously identified SNPs being present in the
genome of the study organism. They are also much cheaper per sample to assay than the use of
arrays, but have the disadvantage of returning fragmented datasets containing high percentages
of missing data. However, this might be resolved by imputation strategies to reduce the noise
in the data used for map construction [13].

Tennessen et al [18] employed the targeted capture of DNA using RNA-derived baits that
were subsequently sequenced using short-read sequencing technology to develop linkage maps
for the two progenitor species of F. xananassa. Whilst it has recently been reported that GBS
libraries have been constructed for the cultivated strawberry [19], to date, no reports have
emerged of GBS, RADseq, or any similar techniques having been used to develop linkage maps
for F. xananassa. In this investigation, we tested the efficacy of a modified RAD-tag protocol
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using double digestion with two restriction enzymes (ddRAD; [20]) for linkage map construc-
tion in the cultivated strawberry and present the first ddRAD based linkage map of cultivated
strawberry, using an F; population derived from the cross ‘Sonata’ x ‘Babette’ (SxB).

Material and Methods
Plant material and DNA extraction

An experimental population comprising 145 F; hybrid seedlings was raised from the cross
between the Dutch cultivar Sonata (?) and the Norwegian cultivar Babette (). The F, seed
were germinated in mist chambers before being transplanted to flats and subsequently to larger
pots. Young leaf tissue from one representative of each of the 145 F; progeny plants and the
two parents was flash frozen in liquid nitrogen and lyophilized for DNA extraction. DNA was
extracted using DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s protocol. The
resulting DNA was quantified using a Qubit Fluorometer (Invitrogen, USA) and the quality
was assessed subjectively by agarose gel electrophoresis.

ddRAD library construction and genotyping

Individual, high-molecular weight DNA samples, were prepared for sequencing according to
the ddRAD protocol of Peterson et al [20]. Briefly, 500ng DNA was digested with EcoRI and
Mspl (NEB, USA) before being purified using AMPure XP Beads (Beckman Coulter, USA).
Paired combinations of double-stranded adapters were used to uniquely tag samples which,
after cleaning to remove un-ligated adapter, were quantified and pooled in equimolar amounts;
one pool included 96 samples, another included 49 while a third included just the parental
genotypes. All three pools were subjected to size selection using a Pippin Prep (Sage Scientific,
USA) and fragments were separated using a 2% agarose cartridge to capture a narrow distribu-
tion around 400bp. Sequencing was performed using an Illumina MiSeq (Illumina, USA) and
V2 sequencing kit chemistry (2x251 nt).

SNPs were detected using Stacks (v1.18) software [21]. Briefly, raw forward reads were nor-
malized to a common length of 240 nt before being aligned with each other to form stacks;
minimum stack depth 5 (-m), minimum distance allowed between stacks 4 (-M), all other
parameters used default values. Data was exported from Stacks in JoinMap format.

Linkage map construction

Data produced by Stacks were coded as an F, segregating population using the genotypes of
the parental lines to assign segregation. Data were filtered for all markers containing more than
50% missing values and a chi-squared analysis was performed to determine segregation distor-
tion at the 5% level of significance (Chi-squared = 3.841 (1 d.f.), 5.991 (2 d.f.) or 7.815 (3 d.f.)).
Initially, only robust markers for which no significant segregation distortion was observed at
the 5% level were used for linkage mapping using JoinMap 4.1 (Kyazma, NL). An initial linkage
map was constructed using the Maximum Likelihood mapping function and assessed for spuri-
ous linkages or inflated genetic distances, with individual genotypes being converted to missing
values where necessary or loci being removed completely where they caused conflicts in the
data. Following scrutiny of the Maximum Likelihood data, linkage mapping was performed
with the initial marker set using regression mapping and v1.0 linkage groups were produced.
Additional data were then added to the dataset for markers exhibiting significant segregation
distortion. Marker placement was determined using regression mapping with a minimum loga-
rithm of odds (LOD) score threshold of 3.0, a recombination fraction threshold of 0.35, ripple
value of 1.0, jump threshold of 3.0 and a triplet threshold of 5.0, and mapping distances were
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calculated using the Kosambi mapping function to produce a v2.0 linkage map. Data from the
v2.0 map were compared to the v1.0 linkage maps, and any markers causing shifts in the place-
ment of the initial robust markers were removed from the linkage groups, following which,
marker ordering was recalculated to produce the linkage map presented. Due to the level of
missing values in the dataset, marker bins were calculated from map positions with no decimal
places. The sequence tags associated with each SNP were used as queries for a BLAST analysis
against the v2.0 (Fvb) genome sequence of F. vesca ‘Hawaii 4’ [22,23]. Linkage groups were
identified and named according to the pseudo-chromosomes to which the mapped SNP
sequence tags were associated and homeologous groups were arbitrarily assigned the suffixes
A, B, Cand D. The linkage maps presented were plotted using MapChart 2.1 [24]. Physical
positions of the SNP sequence tags were used to plot MareyMaps of genetic vs. physical posi-
tion of all mapped genetic markers.

Results

Data analysis and linkage map construction

A total of 66,318 stacks were detected from analysis of the forward reads, 20% of these (13,302)
contained one or more SNPs. To maximize data completeness and minimize false positive
SNPs, stacks were only included if they were detected in both parents and > 100 offspring

(> 69%) and had < 5 SNPs within the 240 nt sequence. This resulted in a list of 1,098 SNP-
containing stacks that were used for mapping.

Of the 1,098 SNPs, 59 did not segregate within the seedlings (they were called as SNPs due to
the presence of a false homozygote call for a small number (< 3 of seedlings), whilst a further
306 exhibited significant segregation distortion. The remaining 733 were used to construct the
initial v1.0 linkage maps. Following scrutiny of the resultant linkage groups, the markers exhibit-
ing significant segregation distortion were added to the dataset and 1,039 markers were analyzed
for linkage and marker ordering. The final linkage map produced contained a total of 902
sequence characterized SNP markers in 650 mapping bins spanning 1,581.5 cM across 31 linkage
group fragments that corresponded to the full complement of 28 chromosomes of the F. xana-
nassa genome (Fig 1). The map resolution corresponded to one marker every 1.68 cM and on
bin every 2.34 cM. Each chromosome was represented by a single linkage group except for three;
LG5D, LG6C and LG7B, which were represented by two linkage group fragments each. The lon-
gest linkage group was LG6A (132.9 cM), whilst the shortest was LG5D2 (3.2 cM). Overall, a
slightly higher proportion of markers were heterozygous in ‘Sonata’ than in ‘Babette’ (67.7% vs.
61.4% respectively). Moreover, the distribution of heterozygous markers was not uniform across
the genomes. The proportion of heterozygous markers on individual linkage groups ranged from
32.1% and 29.4% to 94% and 96.2% in ‘Sonata’ and ‘Babette’ respectively.

Through comparison to the physical span of the SNP markers on the Fvb genome sequence,
the linkage groups resolved covered 656.2 Mb (79%) of the estimated 830 Mb of the F. xana-
nassa genome size. Table 1 lists the lengths of the 31 linkage group fragments that comprise the
SxB linkage map, along with the number of markers each contains, and the physical span of
each group. Visualization of the genetic distances of the mapped SNPs vs. their physical posi-
tions on the Fvb genome sequence on each linkage group (Fig 2) revealed a generally a high
degree of collinearity, however, putative large-scale inversions/rearrangements were observed
on the distal section of LG2A and 2B.

Discussion

The first linkage maps of F. xananassa were developed using arbitrarily-primed markers such
as amplified length-fragment polymorphisms [25]. Whilst these markers facilitated the
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Fig 1. A SNP-based linkage map of a F. xananassa mapping population derived from the cross ‘Sonata’ x ‘Babette’. Map distances are given in centi-
Morgans (cM), marker colours indicate: Red—markers segregating in the ‘Sonata’ genetic background only; Blue—markers segregating in the ‘Babette’
genetic background only; Black—markers segregating in both genetic backgrounds (1:1:1:1 and 1:2:1 segregations are indicated with bold and underscore
respectively).

doi:10.1371/journal.pone.0137746.9g001
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Table 1. Summary statistics for the 31 linkage group fragments that comprise the SxB linkage map, including the total number of markers mapped
per linkage group, the numbers and proportions of the different segregation classes, the proportion of markers heterozygous in each parental
genome, linkage group lengths and the physical distances associated with each group on the v2.0 F. vesca genome sequence.
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Proportion
of markers
in Sonata
32.1
62.1
68.8
73.5
70.6
81.8
54.5
88.5
58.1
47.7
63.6
50.0
52.2
66.7
57.4
57.1
75.0
83.3
56.3
100
0
68.7
51.2
0
35.3
56.5
71.9
50
94.1
33.3
66.7
61.4

Proportion
of markers
in Babette
85.7
75.9
68.8
471
50.0
455
79.5
96.2
93.5
72.7
68.2
62.5
78.3
66.7
85.1
67.9
50.0
33.3
65.6
0
100
41.8
90.7
100
100
78.3
78.1
75
29.4
81.5
47.6
67.7

LG
physical
start (bp)*
1796261
2782522
81441
2096561
1171481
259771
1847152
2085375
519132
2994561
8200628
52228
3456977
3608485
28438154
19244446
198137
178230
1540359
5146419
11458264
561802
240060
4133962
15102989
11457218
1413873
2344369
16028826
811074
2344358
n/a

LG
physical
end (bp)*
20896488
20477424
23060693
22681981
28736730
28580973
27959937
27233633
31515269
32529792
32611773
8533244
32172047
32405198
29816896
32484863
28991129
28161007
22337882
8718906
18444476
38607442
38607442
7585971
38305762
38499401
22338810
15726500
22918771
23361834
23486539
n/a

Total
physical
span (bp)*
19100227
17694902
22979252
20585420
27565249
28321202
26112785
25148258
30996137
29535231
24411145
8481016
28715070
28796713
1378742
13240417
28792992
27982777
20797523
3572487
6986212
38045640
38367382
3452009
23202773
27042183
20924937
13382131
6889945
22550760
21142181
656193698

“LG physical start: Position of the first mapped marker on the Fvb genome sequence. LG physical end: Position of the last mapped marker on the Fvb
sequence. Total physical span: The distance between these markers.

doi:10.1371/journal.pone.0137746.t001

development of linkage maps containing many markers spanning the majority of the F. xana-
nassa genome they were not sequence-characterized and thus not reliably transferrable
between investigations. Second-generation linkage maps for the species incorporated SSR
markers and other arbitrary marker types [26,27], or were exclusively composed of SSRs [4-

6,8] which proved to be highly transferrable, even between linkage maps of different Fragaria
species [28-30]. However, the relatively high development and screening costs of SSRs resulted
in only a few studies producing saturated linkage maps for Fragaria species [6].

PLOS ONE | DOI:10.1371/journal.pone.0137746 September 23,2015

6/10



@. PLOS ‘ ONE Strawberry ddRAD Linkage Map

1A o 1B 1C o 1D
& &
o ] o ]
o o
i Ll T 7 . %o, ** Q1 o R oo
»®s 5 * o . 3 ®
’.’ ] L 4 ] »*
® ol e ® o4 @
2A o 2B 2C o 2D
& o
4 2 "* 2]
o 1 o / 1 oy
“pe o, 31, %e%” oo™ g ° "
1% ¥, 1 RNee
‘O o 4 ‘ ] [) S o * :
3A S 3B 3C ] 3D
c =] S
je) Q | Q |
= o o
n 'S 1 o oo, .
o) o * o 2 . @ ®*,° ® Q-
o o ® o | ’ d [ 13 {%_oo
o C g P
Q. .00. o4 e® el ® o-' Y )
g 4A 8_ 4B 4C 8_ 4D
o 2 2
o * o] L o ]
3 ” <) s o <
P . ™
3 eee o° 820 i o %°© o oot ] 8‘0
o ° o] e o0 o 1 soaly
> 5A o] 5B 5C o] 5D
@ = ] =y
= o o
g [ @ o [ @
o0 1 J
A ek Sl e <]
4 4 ®&e .’ 1 o o
[ o e® [ d o 1 o ®
6A | B 6C o 6D
o ~ | A
. o0 ® o | o |
o?’f..‘ ® o~ v
- PY d. g.
! < Sq0® o ° ° LIRS ®
o Qe ”* %
® 1% v 1 ¢ s
° ode .‘ o 1 w oo °*
7A o 7B 7C o 7D
& &
o ] o ]
o < o
J - J .o
" 2 o’ o o g oot
o oo R 1T o® ¢® o
Lt hd o A [ X 1ad o4 ®
o ~ ~ ~ ~NO ~ ~ ~ ~NO ~ ~ ~ ~O ~ ~ ~ ~
3 S S S (SYs) S S (SYs) S S S (SYs) S S S S
I I I I T I I I T I I I T I I I I
o [ o o DO [ o o DO [ o o DO [ o o o
IS - ~ I <o - ~ I <o - ~ I <o - ~ I <

F vesca genomic position

Fig 2. Marey Map plots of SNPs mapped to positions on the 28 F. xananassa chromosomes vs. their physical positions on the v2.0 F. vesca (Fvb)
pseudomolecules. Linkage sub-group fragments for groups LG5D, LG6C and LG7B have been joined with an artificial gap of 10 cM between fragments to
facilitate data visualization.

doi:10.1371/journal.pone.0137746.9002

The availability of a reference genome sequence for F. vesca [22] and advances in re-
sequencing technologies permitted the development of a high throughput whole genome geno-
typing array for F. xananassa [9], which in turn led to the construction of ‘next-generation’
SNP-based linkage maps for the species with a minimum of experimental research effort [3].
Whilst the cost per SNP on such maps is low, the cost per sample is relatively high, making
genotyping of large populations relatively expensive. Sequencing of reduced representation
genomic libraries using short-read sequencing technology represents a compromise between
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sample screening cost-effectiveness and robust, abundant sequence-characterized marker
genotyping.

Previously, we used GBS to develop a linkage map of a diploid F. vesca progeny for the pur-
poses of studying disease resistance [12], and the technique has also been used to develop link-
age maps of another close diploid relative of F. xananassa, red raspberry [13]. Tennensen et al
[18] used target-capture sequencing to develop linkage maps for octoploid Fragaria species,
however, this is the first time, to our knowledge that a linkage map has been produced for one
of the complex allo-octoploid Fragaria species using restriction-based genome enrichment
techniques. We demonstrate here that robust linkage map development in the cultivated straw-
berry is achievable using the ddRAD genotyping approach first reported by Peterson et al [20].
Using two restriction enzymes and a strict fragment size limitation in the ddRAD method
reduced the proportion of the genome sampled and led to a higher sequencing coverage. In the-
ory, this reduces the number of false homozygote calls and missing values in the dataset pro-
duced. The approach led to a smaller number of identified segregating SNPs than in studies of
other Rosaceous species [13], but with a higher proportion of those identified SNPs mapping
to one of the linkage groups defined.

The SxB linkage map has a total genetic distance over the 31 linkage groups of 1,581.5 cM,
which is comparable to other maps produced using regression mapping. The SNP-based ‘Dar-
select’ x ‘Monterrey’ F; linkage map of Sargent et al [3] was 1,820 cM, and the SSR maps of
Zorrilla-Fontanesi et al [27] 1,400.1 cM, and van Dijk [8] was 1846 cM. All these were smaller
than the SSR map of Sargent et al [4] (2140.3 cM). The SNPs mapped in the SxB population
displayed a high degree of collinearity with the v2.0 F. vesca (Fvb) pseudomolecules indicating
that the map positions of the ddRAD markers was reliable. This, along with the total length of
the linkage map, and the estimated proportion of the F. xananassa genome it covered (79%)
indicates that the map represents the majority of the ‘Sonata’ and ‘Babette’ genomes, and will
provide a useful resource for future studies of segregating traits of interest in the progeny. As in
other F. xananassa linkage maps, the proportion of markers heterozygous in each of the paren-
tal genotypes varied between linkage groups, but no clear patterns were observed that would
permit us to speculate on the effects of breeding and selection as in previous studies [5,8].

Concluding Remarks

We have developed the first linkage map for F. xananassa using ddRAD, a technique exploit-
ing the power of short read sequencing technology and reduced representation genome cover-
age to call sequence variation in the progeny of a segregating mapping population. Whilst the
number of markers we were able to score using this approach was less than when using the
IStraw90 whole genome genotyping array, the map produced covered the genomes of the two
parental cultivars adequately, spanning some 79% of the total estimated genome size, and
placement of markers was robust and reliable, evidenced through a good correlation between
the genetic positions of the markers mapped and their physical positions on the Fvb genome
sequence. Our investigation provides clear evidence that ddRAD, and by extension, other
related techniques such as RADseq and GBS, are useful tools for linkage map development in
cultivated strawberry, and permit the rapid development of good quality linkage maps for
downstream genetic studies of segregating traits.

Supporting Information

S1 Table. Presents tag number, segregation type, diploid chromosome homeolog, linkage
group, diploid chromosome position, SNP position(s), and tag sequences.
(XLSX)
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