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Abstract

Background

Proton-pump inhibitor-induced hypomagnesemia (PPIH) is the most recognized side effect
of proton-pump inhibitors (PPIs). Additionally, PPIH is associated with hypocalcemia and
hypokalemia. It is hypothesized that PPIs reduce epithelial proton secretion and thereby
increase the pH in the colon, which may explain the reduced absorption of and Mg?* and
Ca?*. Fermentation of dietary oligofructose-enriched inulin fibers by the microflora leads to
acidification of the intestinal lumen and by this enhances mineral uptake. This study aimed,
therefore, to improve mineral absorption by application of dietary inulin to counteract PPIH.

Methods

Here, C57BL/J6 mice were supplemented with omeprazole and/or inulin. Subsequently,
Mg?* and Ca®* homeostasis was assessed by means of serum, urine and fecal electrolyte
measurements. Moreover, the mRNA levels of magnesiotropic and calciotropic genes were
examined in the large intestine and kidney by real-time PCR.

Results

Treatment with omeprazole significantly reduced serum Mg®* and Ca®* levels. However,
concomitant addition of dietary inulin fibers normalized serum Ca®* but not serum Mg®* con-
centrations. Inulin abolished enhanced expression of Trpv6 and S700g in the colon by
omeprazole. Additionally, intestinal and renal mRNA levels of the Tromé6 gene were
reduced after inulin intake.

Conclusions

This study suggests that dietary inulin counteracts reduced intestinal Ca®* absorption upon
PPI treatment. In contrast, inulin did not increase intestinal absorption of Mg?* sufficiently to
recover serum Mg?*. The clinical potential of dietary inulin treatment should be the subject
of future studies.
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Introduction

Since their introduction two decades ago, proton pump inhibitors (PPIs) became the mainstay
in gastro esophageal reflux (GERD), peptic ulcer disease (PUD), persistent non-steroidal anti-
inflammatory drug (NSAID) treatment and generalized dyspepsia (heartburn) [1-3]. PPIs
form a class of drugs that is widely prescribed, with millions of chronic users worldwide. [4].
The most recognized side effect of all marketed PPIs is proton-pump inhibitor-induced hypo-
magnesemia (PPIH) [5, 6]. First described in 2006, thereafter many single case-reports and
small case-series on the subject emerged [7-9]. The U.S. Food- and Drug Administration
(FDA) issued a warning in 2011 and the critical assessment of their adverse events databank
showed that more cases existed than was previously assumed [10]. It is widely anticipated that
PPIH is the consequence of intestinal Mg** malabsorption, since a renal leak was never
detected [6, 11]. An underappreciated aspect of PPIH is frequent secondary electrolyte distur-
bances such as hypocalcemia and hypokalemia [8, 12, 13]. However, the clinical significance of
reduced calcium (Ca**) levels was emphasized by several dozens of studies showing increased
risk of bone fractures after chronic PPI use [14].

The exact mechanism by which PPIs cause mineral deficits is currently under debate. Recent
in vitro data suggest that omeprazole inhibits passive paracellular Mg** fluxes, predominantly
present in the small intestine [15, 16]. Moreover, in vivo studies indicate that omeprazole directly
interferes with important transcellular Mg>* transport mechanisms of the colon [17]. In the tight
epithelium of colon, the epithelial Mg** channel, transient receptor potential melastatin member
6 (TRPMS6), facilitates the absorption of Mngr [18-20]. Omeprazole specifically enhances the
mRNA levels of Trpmé6 as well as Atp12a, which encodes the non-gastric proton potassium aden-
osine triphosphatase (colonic H",K*-ATPase or cHK-o) [17]. It has been suggested that omepra-
zole locally inhibits the cHK-o,, leading to an increased luminal pH in the colon [17]. Given that
TRPM6-mediated Mg** transport is dependent on the protonation of the channel itself, PPI-
induced pH increases will reduce TRPM6-mediated Mg2+ influx [21-23].

To date, defined intervention strategies preventing PPTH have not been established in clini-
cal practice. Local luminal acidification of the colon may rescue intestinal Mg** absorption
and, therefore, provides a promising approach to prevent PPIH. Interestingly, the dietary appli-
cation of the fructan fiber inulin has been proposed to reduce intestinal pH [24]. Ingested inu-
lin fibers are fermented in the large intestine by bifidogenic gut bacteria, resulting in short-
chain fatty acids (SCFA), which in turn acidify the colon [25]. The stimulating action of SCFA
on intestinal Mg** absorption by reducing the luminal pH has already been described decades
ago, but has been largely overlooked since then [26, 27]. However, inulin fibers have been
shown to stimulate MgZJr and Ca®* absorption in the colon of mice and humans [28, 29]. More-
over, inulin fibers are capable of modulating intestinal and renal Trpm6 mRNA expression
[30].

Here, an intervention study was performed using dietary oligfructose-enriched inulin fibers
in control- and omeprazole-treated wildtype C57BL/6] male mice. The aim was to enhance
intestinal Mg>" and Ca** absorption in order to counteract omeprazole-induced defects in
mineral uptake. Additionally, the mRNA expression pattern of the Mg>" and Ca*" transporting
proteins expressed in the cecum, colon and kidney was determined by qRT-PCR.

Materials and Methods
Animal studies

This study was carried out in strict compliance with the legal Dutch animal welfare act. All
experimental procedures were approved by the animal ethics board of the Radboud University
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Nijmegen (permit-no: RU-DEC 2014-032) and all efforts were made to minimize suffering of
the animals. Wild-type C57BL/6] mice (n = 40 males, 9 weeks old) were purchased from
Charles River, the Netherlands. The animals were randomly allocated into four experimental
groups of n = 10 mice. Before the experiment was started, the animals underwent acclimatiza-
tion for one week under temperature- and light-controlled conditions with ad-libitum access
to standard pellet chow (SSNIFF Spezialdidten GmbH, Germany) and drinking water. The con-
trol diet consisted of standard pellet chow, the experimental inulin diet additionally contained
10% (w/w) inulin fiber product (Orafti Synergyl, Beneo-Orafti, Belgium). Omeprazole
(Fagron, the Netherlands) was dispersed in a solution (vehicle) containing 0.5% (w/v) methyl-
cellulose and 0.2% (w/v) NaHCOj; (adjusted with NaOH to pH 9.0). During the 14 days of the
experimental phase, the mice received a daily dose of 20 mg omeprazole per kilogram body-
weight, administered via oral gavage once a day, or vehicle. The health of the animals was regu-
larly checked. For urine and feces collection, animals were housed individually in metabolic
cages for 24 h. At the experimental endpoint, animals were anesthetized with isoflurane (5% v/
v), blood sampling was performed by orbital sinus bleeding and subsequently the mice were
sacrificed by cervical dislocation. Kidneys, cecum and colon segments were extracted and
cleaned, fecal contents of cecum and colon were preserved and all samples were snap frozen in
liquid nitrogen.

Analytical procedures

Serum Mg2+, Ca®*, K" and Na* concentrations were determined at the university hospital cen-
tral clinical lab on an automated system according to the manufacturer's protocol (Abbott
Diagnostics, Belgium). Feces were homogenized and digested in nitric acid (concentrated with
65% (w/w) Sigma-Aldrich, USA) by a 2 h pre-incubation at 50°C, followed by an overnight
incubation at room temperature. Urinary and fecal Mg*" concentrations were determined with
a colorimetric xylidyl-II blue kit (Cobas Roche Diagnostics, UK) on a Nanodrop 2000c¢ spectro-
photometer (Thermo Fisher Scientific, USA) at 600 nm wavelength. Urinary and fecal Ca**
concentrations were spectrometrically determined with a colorimetric chromogenic/bufter
dual-component kit (Sigma Aldrich, UK) on a Biorad plate reader (Biorad, USA) at 570 nm
wavelength. The obtained values for Mg>* and Ca>" were cross-verified using a serum standard
solution (Precinorm U, Roche, Switzerland).

The SCFA profile of cecal and colonic contents was determined on a Chrompack Model CP
9001 gas chromatograph (Agilent, USA) equipped with a 2 m x 2 mm column, packed with
10% SP 1200/1% H2PO4 on 80/100 Chromosorb W AW (Sigma, UK). Samples were centri-
fuged at 15,000 x g for 10 min. Subsequently fecal water (supernatant) was extracted and 1:1
(v/v) diluted with a solution (internal standard) of 30 mmol/L of 2-ethylbutyric acid in 100%
formic acid, resulting in a 9% (v/v) formic acid suspension used for injection into the gas
chromatograph.

Quantitative real-time PCR

Total RNA was extracted from tissues using TRIzol reagent (Invitrogen, UK) according to the
manufacturer’s protocol. Obtained RNA was subjected to DNase treatment (Promega, USA).
Subsequently, the purified RNA was reverse transcribed with murine leukemia virus reverse
transcriptase (Invitrogen, the Netherlands).

The mRNA expression was quantified by SYBR Green (BioRad, USA) real-time PCR on a
CFX96 real-time detection system (BioRad, USA). Real-time PCR primers (Biolegio, the Neth-
erlands) were designed with Primer 3 software (Whitehead Institute for Biomedical Research,
USA). Primer sequences are provided in S1 Table. Obtained mRNA levels were normalized by
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glyceraldehyde 3-phosphate dehydrogenase (Gapdh) as an endogenous control. Relative
mRNA expression was analyzed according to the Livak method (244)
times-fold change of expression compared to control [31].

and annotated as

Statistics

Values are expressed as means + SEM. The differences between single groups of control, inu-
lin-only, omeprazole-only and omeprazole + inulin treated mice were tested by using one-way
ANOVA with a Tuckey correction. Differences between groups were regarded to be statistically
significant when P < 0.05. The analysis of the datasets was performed using GraphPad Prism
(PC version 6).

Results
Omeprazole treatment results in reduced serum Mg?*

In this study, we aimed to evaluate the application of dietary oligofructose-enriched inulin
fibers as a means to prevent PPTH. Therefore, wildtype C57BL6/] mice were supplemented
with vehicle or omeprazole for 14 days. In addition, the vehicle group and the omeprazole
group were subdivided into two groups fed with a normal diet or with a diet containing 10% w/
w oligofructose-enriched inulin fructan fibers, making a total of four experimental groups
(Table 1). After 14 days of experimental procedure, the mean bodyweight of the animals was
equal (Table 1). Compared to the control group, food intake, water intake and diuresis did not
change due to omeprazole or inulin treatment. The mean fecal output of the inulin-omepra-
zole-treated group was significantly elevated compared to mice receiving only omeprazole

(1.5 £ 0.2 gand 1.05 + 0.06 g, respectively, P < 0.05).

To study the effect of omeprazole and a possible combinatory effect of the inulin diet on
Mg** homeostasis, serum Mg”* concentration, 24 h urinary Mg>" and fecal Mg** excretion
were determined. Omeprazole-treated and inulin-omeprazole-treated mice had significantly
lower serum Mg2+ levels compared to control mice ((1.26 + 0.03 mmol/L, 1.23 £ 0.04 mmol/L)
and 1.39 + 0.02 mmol/L, respectively, P < 0.05 Fig 1A). Urinary Mg>" excretion was signifi-
cantly increased in the inulin-omeprazole group compared to omeprazole-treated group
(1.0 £ 0.1 mmol/L and 1.23 + 0.08 mmol/L, respectively, P < 0.05 Fig 1B). Fecal Mg”* excretion
was equal among all groups (Fig 1C).

Table 1. Metabolic parameters of the animals.

Control Inulin Omeprazole Inulin-Omeprazole
Diet normal inulin normal inulin
Omeprazole treatment vehicle vehicle omperazole omeprazole

Mean SEM Mean SEM Mean SEM Mean SEM

Body weight (g) 23.8 0.4 242 0.5 24.0 0.4 23.7 0.4

Food intake (g) 3.8 0.3 4.2 0.2 3.2% 0.2 42 0.2

Fecal dry weight (g/24h) 1.13 0.06 1.26 0.05 1.05 0.06 1.5% 0.2
Water intake (mL/24h) 3.9 0.4 4.1 0.1 3.9 0.4 4.1 0.4
Diuresis (mL/24h) 1.30 0.07 1.38 0.10 1.02 0.11 1.23 0.08

The results are expressed as means + SEM (n = 10). Significant differences between the two omeprazole-treated groups are indicated by
# with P < 0.05. Mice have been fed a control diet or a diet containing 10% (w/w) oligofructose enriched inulin fibers. Treated mice received 20 mg/kg
bodyweight omeprazole.

doi:10.1371/journal.pone.0138881.1001
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Fig 1. Effects of inulin diets and omeprazole treatment on the Mg®* homeostasis of C57BL/6J mice. Serum Mg?* concentration (A), 24 h urinary Mg>*
excretion (B) and 24 h fecal Mg?* excretion (C). All values are presented as means + SEM (n = 10 per group). Significant differences between control vs. both
omeprazole groups are indicated by * with P < 0.05, significant differences between the omeprazole-treated groups are annotated by # with P < 0.05.

doi:10.1371/journal.pone.0138881.g001

Dietary inulin reduces the expression of Trom6

To identify the effect of omeprazole treatment and inulin-enriched diets, the mRNA levels
of genes involved in Mg>* transport were evaluated. In cecum, addition of inulin to the diet
significantly reduced Trpm6 mRNA levels by 32 + 7% compared to vehicle-treated mice on
the normal diet and by 40 £ 3% in mice that received inulin combined with omeprazole
(Fig 2A). In colon, the Trpm6 mRNA levels were not significantly different between the
groups (Fig 2B). Accordingly, Trpm6 mRNA levels were reduced by 29 + 5% in the inulin
group compared to the control group, and the mice of the inulin-omeprazole group had

29 + 4% lower Trpm6 mRNA levels compared to the omeprazole only treated mice

(Fig 2C).

The expression of the nongastric H,K*-ATPase encoded by Atp12a was reduced from
149 + 12% in the omeprazole-only group down to 58 + 14% in the inulin-omeprazole
group (Fig 2D). In colon and in kidney there were no significant differences present (Fig 2D
and 2E).

Dietary inulin rescues omeprazole-induced low serum Ca®*

Serum Ca’" of the omeprazole-treated mice was slightly, but, significantly reduced compared
to the vehicle-treated control group (2.19 + 0.01 mmol/L and 2.27 + 0.01 mmol/L, respectively,
P < 0.05, Fig 3A). Importantly, application of the inulin diet during omeprazole treatment
resulted in a correction of serum Ca*" to the level of control mice and inulin-only treated mice.
This is reflected in the 24 h urinary Ca** excretion; omeprazole treated mice displayed a
reduced urinary Ca** excretion compared to the mice on the inulin diet 2.7 + 0.3 umol/24 h
and 4.3 + 0.5 umol/24 h, respectively, P < 0.05 Fig 3B). The fecal excretion of Ca®" in all groups
was significantly lower compared to control mice (for inulin 0.55 + 0.03 mmol/24 h, for omep-
razole 0.48 + 0.03 mmol/24 h, for inulin-omeprazole 0.55 + 0.03 mmol/24 h vs. control

0.93 + 0.07 mmol/24 h, Fig 3C).
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Fig 2. Effects of omeprazole treatment and diets enriched with 10% (w/w) inulin on mRNA levels of PPIH candidate genes. Expressional levels of
Trom6 and Atp12a, encoding the nongastric H*,K*-ATPase in cecum (A + D), colon (B + E) and kidney (C + F) of C57BL/6J mice compared to control
(corrected for Gapdh expression). Significant differences compared to control are indicated by * with P < 0.05, significant differences between the
omeprazole-treated groups are annotated by # with P < 0.05. All values represent means + SEM, with n = 10 mice per group.

doi:10.1371/journal.pone.0138881.9002

The serum K™ level of the inulin-omeprazole group was significantly lower than that of the
control group (4.8 £ 0.1 mmol/L and 5.08 + 0.05 mmol/L, respectively, P < 0.05, Fig 3D).
There were no significant differences in serum Na* levels observed (Fig 3E).

Inulin prevents PPI-induced upregulation of calciotropic genes

In order to investigate if the treatment regimens induced differential gene regulation, the
mRNA levels of the main calciotropic genes in the intestine, Trpv6 together with S100g and,

Trpv5 and Calbl expressed in the kidney were quantified. In cecum no significant differences
were observed for Trpv6 mRNA levels within the respective diet groups, however in colon
Trpv6 expression was significantly increased to 170 £ 14% compared to the control group (Fig
4A and 4B). Addition of inulin completely abolished this increase. In the kidney Trpv5 mRNA
levels of both omeprazole-treated groups were not significantly different from the respective
control groups on normal diets.

PLOS ONE | DOI:10.1371/journal.pone.0138881
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Fig 3. Effects of the combinatory application of omeprazole and 10% inulin enriched diets on electrolytes. Serum Ca?* concentration (A), 24 h urinary
Ca?* excretion (B), 24 h fecal Ca2* excretion, serum K* concentration (D) and serum Na* concentration (E). Significant differences compared to control are

indicated by * with P < 0.05, significant differences between the omeprazole-treated groups are annotated by # with P < 0.05. Bars represent means + SEM,
with n = 10 mice per group.

doi:10.1371/journal.pone.0138881.9003

In the intestine, the expression pattern of S100g was similar in cecum and colon. In both
segments, the mRNA levels in omeprazole-only treated mice were significantly increased com-
pared to all the other groups (Fig 4D and 4E). In cecum, S100g mRNA levels were increased to
284 + 32% compared to the control group and in colon to 291 + 24%. In contrast, no significant
differences were observed for the mRNA levels of Calb1 in the kidney (Fig 4F).

Dietary inulin enhances short-chain fatty acid production

To verify whether inulin stimulated intestinal bifidogenic fermentation, SCFA profiles of cecal
and colonic contents were determined. In cecum, inulin significantly increased n-butyric acid
concentration from 20 + 2 mmol/L in the control group to 41 + 3 mmol/L in the inulin group
and to 28.7 + 0.6 mmol/L in the inulin-omeprazole group (P < 0.05, Fig 5A). Likewise, in colon
inulin significantly increased n-butyric acid concentration from 23.1 + 0.9 mmol/L in the control
group to 43 = 3 mmol/L in the inulin group and to 33 + 2 mmol/L in the inulin-omeprazole
group (P < 0.05, Fig 5C). No differences between the groups were observed for propionic acid in
both intestinal segments (Fig 5B and 5D). Moreover, in cecum and colon no differences were
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Fig 4. Effects of omeprazole and 10% inulin-enriched diets on mRNA expression levels of the calciotropic genes. Trpov6 and S700g mRNA in cecum
(A + D), colon (B + E) and mRNA of Trpv5 and Calb1 in the kidney (C + F), corrected for Gapdh and normalized to control. Significant differences compared to
control are indicated by * with P < 0.05, significant differences between the omeprazole-treated groups are annotated by # with P < 0.05. All values represent
means + SEM, with n = 10 mice per group.

doi:10.1371/journal.pone.0138881.9004

observed in the other minor SCFA fractions (with concentrations < 1.5 mmol/L) consisting of
iso-propionic acid and iso-butyric acid (data not shown).

Discussion

This is the first study evaluating a treatment strategy for PPI-induced mineral disturbances in
mice. PPI-induced hypocalcemia was counteracted by dietary inulin application. However, a
correction of serum Mg>" was not achieved by this approach.

There is a large body of literature showing that dietary inulin fibers stimulate Mg** and
Ca’" absorption in rodents and humans [28, 32]. The most potent stimulation of mineral
absorption is achieved by a mixture of long- and short-chain oligofructose-enriched inulin,
since certain strains of gut bacteria have a preference for inulin fibers based on chain length
[33, 34]. In accordance with several other studies, the inulin product was given at a 10% (w/w)
dose added to regular chow [30, 35]. In rats and mice, it has been demonstrated before that at
this dose inulin induces luminal acidification in less than one week, enhancing the solubiliza-
tion of minerals and which subsequently results in osmotic attraction of water in the colon [34,
36]. In the present study a similar effect was demonstrated, since humidification of the feces of
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Fig 5. Effects of the combinatory application of omeprazole and inulin-enriched diets on short-chain
fatty acid production. Depicted are n-butyric acid (A + C) and propionic acid concentrations (B + D) in
cecum (top panels) and colon (bottom panels) in mmol/L. Significant differences compared to the control
group are indicated by * with P < 0.05, significant differences between the omeprazole-treated groups are
annotated by # with P < 0.05. Bars represent means + SEM, with n = 10 mice per group.

doi:10.1371/journal.pone.0138881.g005

the inulin-treated mice was observed, indicating that inulin activated bacterial fermentation
also under omeprazole treatment. Indeed, irrespective of the omeprazole treatment n-butyric
acid, the main end-metabolite of bifidogenic inulin fermentation, was increased in cecum and
colon of the mice on an inulin diet (Fig 5A and Fig 5C) [37, 38]. This result supports previous
findings that SCFA, and in particular n-butryic acid, increase Ca** and Mg”* absorption [27,
39].

The mice on the normal diet showed a significant reduction of serum Ca** values after 14
days of omeprazole-treatment (Fig 3A). Importantly, concomitant application of dietary inulin
prevented this reduction of serum Ca®* values. A pronounced decrease of intestinal Ca**
absorption by PPIs has already been evidenced in early studies and has been confirmed in
recent reports [13, 40]. To the authors knowledge, this is the first time that a treatment is suc-
cessful to prevent PPI-induced Ca** disturbances.

Although direct measurements of intestinal Ca** absorption were not performed in this
study, the expression profile suggests that intestinal Ca** transport is affected. In cecum and in
colon, omeprazole induced strong increases of intestinal Trpv6, together with its Ca**-binding
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protein encoded by S100g in order to correct reduced serum Ca** levels (Fig 4D and 4E). The
addition of inulin completely abolished this increment, which is also reflected in normalized
serum Ca’* (Fig 4A). Of note: TRPVG is the principal epithelial Ca®* channel of the large intes-
tine [41]. It is constitutively open and selective for Ca®* and its expression is highly regulated
by the needs for intestinal Ca®" absorption. The absence of differences in renal Trpv5 and
Calb1 expression and normal urinary Ca®* values indicate that the renal handling of Ca** was
normal in all groups.

Despite the beneficial effect of dietary inulin supplementation on Ca®* absorption, serum
Mg** was still reduced in mice receiving combined omeprazole/inulin treatment. Intestinal
Mg** uptake is mainly facilitated by the epithelial Mg** channel TRPM6 that is predominantly
expressed in cecum and colon [19]. Interestingly, Trpm6 mRNA expression in cecum was sig-
nificantly decreased in mice receiving inulin-enriched diets independently of omeprazole treat-
ment (Fig 2A). Given that Trpm6 mRNA levels are inversely responsive to dietary Mg>*
availability, these findings may suggest that dietary inulin stimulated intestinal Mg>* absorp-
tion [42]. However, the serum Mg2+ level was not restored to normal values.

Urinary Mg”* excretion was increased in mice receiving both inulin and omeprazole com-
pared to mice treated with only omeprazole, which is reflected in a reduced expression of
Trpm6 in the kidney. Although these findings are in line with previous experiments of Rondon
and colleagues, reduced renal Mg>" reabsorption is difficult to interpret given the low serum
Mg** values [30]. Because the nephron is devoid from any microbiota, inulin will not directly
affect the intratubular pH in the nephron. This is confirmed by the absence of effects of inulin
on Atpl2a expression in the kidney.

Food intake was increased in inulin-omeprazole-treated mice compared to omeprazole-
treated mice. However, it is unlikely that this explains the increased serum Ca** values since
serum values of Na*, Mg®" and K* were not altered in inulin-omeprazole-treated mice. In our
study, serum K values were reduced in both omeprazole-treated groups, following the same
pattern as serum Mg”" values. In the clinic, hypokalemia is often secondary to hypomagnese-
mia and frequently observed in PPTH patients [5, 8, 12, 13]. The general accepted hypothesis to
explain this phenomenon is that hypomagnesemia results in increased K™ secretion in the
nephron. Given that intracellular Mg>" inhibits the renal ROMK K* channel to reduce renal
K" secretion, hypomagnesemia may relieve this inhibition and thus increases K" secretion [43].

The outcomes of our study highlight the need for reissuing the impact of PPIs on Ca**
homeostasis, which recently got neglected by the clinical attention drawn by PPIH. In conclusion,
this in vivo study provides a treatment perspective for PPI-induced mineral disturbances. Dietary
oligofructose enriched inulin fibers prevented the omeprazole-induced reduction of Ca** absorp-
tion and improved intestinal Mg>" absorption in mice. Future clinical studies should investigate
whether dietary inulin could prevent PPI-induced mineral deficits in patients.
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