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Abstract

Background—Psoriasis patients have relatively infrequent cutaneous viral infections compared 

to atopic dermatitis patients. Increased expression of four antiviral proteins (MX1, BST2, ISG15, 

and OAS2) has been reported in psoriatic skin and genetic studies of psoriasis have identified 

susceptibility genes in antiviral pathways.

Objective—To determine if psoriasis is associated with pervasive expression of antiviral genes 

in skin and blood.

Methods—We performed RNA-sequencing on skin samples of 18 subjects with chronic plaque 

psoriasis and 16 healthy controls. We examined the expression of a pre-defined set of 42 antiviral 

genes, each of which has been shown in previous studies to inhibit viral replication. In parallel, we 

examined antiviral gene expression in atopic dermatitis, non-lesional psoriatic skin, and psoriatic 

blood. We performed HIV-1 infectivity assays in CD4+ peripheral blood T cells from psoriatic 

and healthy individuals.

Results—We observed significant overexpression of 16 antiviral genes in lesional psoriatic skin, 

with a greater than two-fold increase in ISG15, RSAD2, IRF7, MX2, and TRIM22 (p<1E-07). 

None of these genes was overexpressed in atopic dermatitis skin (p<0.0001) or non-lesional 

psoriatic skin. In contrast to the skin compartment, no differences in antiviral gene expression 

were detected in the peripheral blood of psoriasis cases compared to healthy controls. CD4+ T 

cells from both psoriatic and healthy patients supported HIV-1 infection at a similar rate.
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Conclusion—Our findings highlight psoriasis as an inflammatory disease with cutaneous but not 

systemic immune activation against viral pathogens.

Introduction

Autoimmune and immune-mediated diseases arise from aberrant activation of host immune 

pathways. However, whether particular autoimmune diseases activate pathways specific for 

certain classes of pathogens remains unclear. Psoriasis, an immune-mediated inflammatory 

disease of the skin, has been recently associated with increased cutaneous expression of 

select antiviral proteins,1 which may explain the relative infrequency of cutaneous viral 

infections observed in these patients. Genetic studies performed by our group have shown 

that certain psoriasis susceptibility alleles such as HLA-B*57 are also associated with host 

control of HIV-1 infection.2 Moreover, a number of psoriasis susceptibility variants 

identified by genome-wide association studies (GWAS) map to genes associated with the 

innate antiviral response.3 Such genes include IFIH1 (MDA5) and DDX58 (RIG-I), which 

code for innate antiviral receptors recognizing cytosolic viral RNA, and RNF114, which 

regulates MDA5/RIG-I signaling.4 Therefore, it is of interest to determine whether psoriasis 

is associated with a systemic antiviral phenotype.

“Restriction factors” are innate antiviral proteins that are produced in the host and oppose or 

“restrict” viral replication. Our current knowledge of restriction factors stems from the large 

body of studies performed in HIV virology.5 The discovery of restriction factors and their 

antiviral nature is relatively recent, but has already been implicated in many host 

mechanisms of antiviral defense. Examples include BST2/Tetherin,6, 7 which blocks the 

release of enveloped viruses; SAMHD1,8 which is thought to inhibit viral replication by 

reducing the cellular levels of dNTP and mediating pro-inflammatory responses to TNF-

alpha signaling; and TRIM5,9 which blocks the uncoating of viral capsid. The different 

expression levels of restriction factors between cell types may explain the varying levels of 

permissiveness of different cell types to HIV-1 infection.

We have recently developed a custom-made quantitative real-time PCR array to characterize 

the expression of different restriction factors in primary human cells10, 11 and have also 

correlated their expression with HIV-1 infectivity.12 A comprehensive table of host antiviral 

genes and their functions is depicted in Table 1.

In this report, we investigated the expression of a large panel of antiviral genes in psoriatic 

skin and blood. To determine whether psoriasis is associated with systemic antiviral 

immunity against HIV-1, we performed ex vivo HIV-1 replication assays in purified CD4+ T 

cells from individuals with psoriasis and healthy controls.

Materials and Methods

Samples

Eighteen adult subjects with chronic, plaque psoriasis with affected body surface area > 10% 

and not on systemic medications were recruited from the University of California San 

Francisco Dermatology Department by a board-certified dermatologist. Five millimeter 
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punch biopsies were taken from the edge of a psoriatic plaque. Sixteen normal skin samples 

were obtained from healthy control surgical discard specimens. All subjects provided 

written, informed consent for study participation under the approval of local Institutional 

Review Boards. Skin samples were stored in RNALater at −80°C, mechanically 

homogenized using a Bio-Gen Pro 200 homogenizer, and total RNA was extracted using the 

Qiagen RNeasy mini kit. The quality of the RNA was assessed using an Agilent 2100 

Bioanalyzer. Ribosomal RNA was depleted using Ribo-Zero Gold rRNA removal kit, 

followed by cDNA synthesis and library preparation using ScriptSeq Complete kits (Human/

Mouse/Rat) from Epicentre. The quality and quantity of library was assessed by Agilent 

2100 Bioanalyzer.

Human primary peripheral blood mononuclear cells (PBMC) were isolated by the use of a 

Ficoll gradient from collected blood obtained from psoriasis patients (N=32) and healthy 

control individuals (N=25). After processing, PBMC were stored and frozen in 10% DMSO-

FCS prior to subsequent analysis. Based on cell numbers and patient availability, a subset of 

samples was destined for ex vivo HIV-1 infectivity assays and CD4+ T cells were enriched 

from PBMCs using the EasySep Human CD4+ T cell enrichment magnetic kit (Stem Cell 

Technologies), according to manufacturer’s instructions.

RNA-sequencing gene expression in psoriatic skin and healthy control skin

RNA-seq on blinded samples was performed on an Illumina HiSeq 2500. We obtained an 

average of 52.3 million 101 bp paired end reads per sample. Quality was validated using 

FastQC. Quality and adapter trimming was performed with Trimmomatic (version 0.3). 

Reads were aligned to the human genome (hg19) using Tophat2 (version 2.0.9). An average 

of 34.8 million paired end reads were aligned for each library (minimum of 25.3 million, 

maximum of 61.4 million). For differential gene expression, the RefSeq gene set (UCSC 

genome browser, January 2013) was used as the genome annotation. Differential gene 

expression was calculated using EdgeR13, with counts per gene measured using htseq-count 

and analyzed as described.

Microarray gene expression analysis in lesional and non-lesional psoriatic skin, control 
skin, and atopic dermatitis skin

We validated top hits using a publically available, independent dataset (Gene Expression 

Omnibus dataset GSE13355) consisting of 58 lesional psoriasis skin samples, 58 non-

lesional psoriasis skin samples, and 64 healthy control samples profiled using the 

Affymetrix HU133 Plus 2.0 Microarray containing >54,000 gene probes. The raw 

microarray data were processed using the Robust Multichip Average (RMA) method. 

Differential gene expression was calculated using the limma (Linear Models for Microarray 

Analysis) R package, which applies multiple-testing corrections on p-values to help correct 

for the occurrence of false positives.

We also examined the same set of antiviral genes in Affymetrix HU133A microarray data 

from atopic dermatitis skin (N=10) and healthy control skin (N=10) (Gene Expression 

Omnibus dataset GSE6012). Differential gene expression was calculated as above for 

psoriatic skin.
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Real-time quantitative PCR from PBMCs

PBMC samples were quickly thawed and total RNA was extracted using Qiazol reagent 

from miRNeasy Mini kit (Qiagen) with the on-column DNAase treatment option using 

Qiagen RNase-Free DNase Set. DNase-treated clean RNA was transcribed into cDNA using 

random primers and the SuperScript VILO™ cDNA Synthesis Kit (Invitrogen) according to 

manufacturer’s instructions. Quantitative real-time PCR on blinded samples utilized custom 

made TaqMan Low Density Array (TLDA) from Applied Biosystems and followed the 

manufacturer’s instructions. Thermal cycling was performed using an ABI ViiA7 Real-Time 

PCR System. Up to 350ng cDNA in 200μl of Applied Biosystems TaqMan Universal PCR 

Master Mix, with UNG was loaded onto the designated ports of the TLDA plates. Data was 

analyzed using ABI ViiA7 software. A panel of 6 housekeeping genes was included in the 

TLDA plates (GAPDH, 18S, ACTB, PPIA, RPLP0, and UBC). RPLP0 was identified as the 

most stably expressed gene from those 6 housekeeping genes among the whole samples 

using the GeNorm algorithm.14 Therefore, raw cycle threshold numbers of amplified gene 

products were normalized to the housekeeping gene, RPLP0, (Ribosomal protein, large, P0) 

to control for cDNA input amounts. Fold induction was determined using the comparative 

Ct method.

Ex vivo HIV-1 infectivity assay

pNL-LucR.T2A-Bal.ecto was a kind gift from Dr. Christina Ochsenbauer (University of 

Alabama at Birmingham). The plasmid encodes an infectious molecular clone that has Tat-

regulated Renilla luciferase (rLuc is between Env and Nef) and it contains the entire 

ectodomain and a portion of the transmembrane region of Bal.15 Briefly, viral stocks were 

generated by transfecting proviral DNA into 293T cells using FuGENE6 according to 

manufacturer’s instructions. Viral supernatants were harvested 60h post-transfection, span 

and filtered through a 0.45μm pore size, before being frozen at −80°C.

On the day before infection, CD4+ T cells were enriched from frozen PBMCs, as described 

above and placed over-night in complete media (RPMI1640, 10% FCS, Pen/Strep and L-

glutamine). The next day, a viable cell count was performed and 100,000 CD4+ T cells were 

infected in duplicate for 7 days in the presence of 50 U/ml IL-2 in a total volume of 200μl in 

U-bottom 96-well plates. Mock infections were also performed. After 7 days of infection, 

cells were lysed in 1x Renilla Luciferase assay lysis buffer and 50μl of each cell lysate was 

transferred to a solid-white flat bottom 96-well plate and analysed for LucR activity. 

Samples were analysed using a Veritas luminiometer (Promega) programed to inject 100μl 

of LucR assay reagent per well with an integration time of 2.5s/well and reporting relative 

light units (RLU).

Results

Elevated antiviral gene expression in psoriatic but not atopic dermatitis skin

We selected a panel of 42 antiviral genes for investigation in this study; the function and 

activity of these genes have been documented in the literature (Table 1).
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To evaluate the expression of these genes in psoriasis, we obtained punch biopsies from the 

edge of a psoriatic plaque in subjects (N=18) with chronic psoriasis not on systemic 

medications. In parallel, normal skin samples (N=16) were obtained from healthy control 

surgical discard specimens. RNA-seq was performed using an Illumina HiSeq 2500 

resulting in an average of 52 million paired-end reads per sample.

We observed statistically significant up-regulation of 16 of 42 antiviral genes (Table 2), 

including ISG15 (9.93 fold increase, p=1.05E-25), RSAD2/Viperin (9.95 fold increase, p = 

2.11E-20), TRIM21 (2.21 fold increase, p = 8.68E-17), IRF7 (3.40-fold increase, p = 

3.60E-14) and MX2 (3.52-fold increase, p = 9.25E-12). In contrast, SLFN11 (0.64-fold 

decrease, p=2.44E-04), TRIM32 (0.75-fold decrease, p = 9.97E-04), SUN2 (0.76-fold 

decrease, p=0.001), and BRD4 (0.72-fold decrease, p = 0.020) were among the genes that 

were down-regulated in psoriatic skin. Several members of the APOBEC3-family (A3A, 

A3B, A3D, A3G and A3H) were not differentially expressed between psoriatic and healthy 

skin.

To confirm our RNA-seq results, we validated top hits using an independent dataset of 58 

lesional psoriasis skin samples and 64 healthy control samples profiled using the Affymetrix 

HU133 Plus 2.0 Microarray containing over 54,000 gene probes. We found that 18 out of 

our 20 most significant hits were replicated (Table 2).

To determine whether the differential antiviral gene expression observed in psoriatic skin 

was due to generalized skin inflammation, we examined the same set of antiviral genes in 

atopic dermatitis skin (N=10) and healthy control skin (N=10) profiled on the Affymetrix 

HU133A microarray data. Atopic dermatitis is an inflammatory skin disorder characterized 

clinically by erythema and itch and histologically by a lymphocytic infiltrate and the 

presence of intercellular edema. Among the 36 target genes for which data were available in 

the atopic dermatitis dataset, only 6 genes were differentially expressed (p < 0.05) between 

atopic dermatitis skin and healthy control skin (APOBEC3A, CH25H, IFITM1, IRF7, 

ISG15 and LGALS3BP). All six genes showed significant under-expression in atopic 

dermatitis skin (Supplementary Table 1). This contrasted with psoriasis in which a 

significant number of antiviral genes were elevated compared to control skin (16 of 42 in 

psoriasis vs 0 of 36 in atopic dermatitis, p < 0.0001, Fisher’s exact test). Furthermore, we 

examined antiviral gene expression in non-lesional psoriatic skin and found none to be 

significantly elevated (Supplementary Table 1). These data suggest that lesional psoriatic 

skin exhibits a selective overexpression of antiviral genes that is not a general feature of 

inflammatory skin disease or of non-lesional psoriatic skin.

No antiviral signature in PBMC from psoriatic patients

Since psoriatic skin was enriched for antiviral genes, we investigated whether peripheral 

blood mononuclear cells (PBMC) from psoriatic patients might also possess increased 

expression of host restriction factors. We obtained PBMC from psoriatic patients (N=32) 

and healthy control individuals (N=25) and quantified the expression of 42 different 

antiviral genes using quantitative real-time PCR.
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In contrast with the increased gene expression levels detected in the skin of psoriatic 

patients, PBMC from psoriatic patients did not exhibit statistically significant increase in the 

expression of antiviral genes compared to healthy controls (Supplementary Table 2). These 

data suggest a compartmentalization of the antiviral gene signature in psoriasis whereby 

expression of antiviral genes is up-regulated in skin but not in peripheral blood.

Ex vivo HIV infectivity assay

We then investigated whether peripheral blood CD4+ T cells from psoriatic patients would 

support HIV-1 replication at the same rate as control CD4+ T cells. Based on cell 

availability, we infected CD4+ T cells from psoriatic patients (N=7) and healthy control 

individuals (N=10) with HIV-1BaL encoding Renilla Luciferase (LucR) reporter gene. After 

7 days of infection we quantified LucR activity using a luminometer and detected no 

statistically significant differences in HIV-1 infectivity in CD4+ T cells from psoriatic and 

healthy individuals (p > 0.05, Mann-Whitney) (Supplementary Figure 2).

Discussion

Here we have examined a large panel of antiviral genes in psoriasis and identified 

overexpression of innate antiviral genes in psoriatic skin. Our findings were determined 

using two independent cohorts and two technical approaches: RNA sequencing and 

microarrays.

Our findings build on a previous observation that four antiviral proteins, MX1, BST2, 

ISG15, and OAS2, are increased in psoriatic skin and induced by IL-29.1 The type I 

interferon signaling pathway is activated in psoriatic lesional skin16 and the blocking of 

IFN-alpha signaling or blocking the ability of plasmacytoid dendritic cells to produce IFN-

alpha prevented the development of disease in a xenograft model of human psoriasis.17 The 

significant up-regulation of antiviral genes in psoriatic skin is in agreement with the role of 

interferon-alpha in inducing antiviral gene expression. Moreover, the two most up-regulated 

genes in our study, ISG15 and RSAD2/Viperin, are strongly induced by exogenous 

interferon-alpha in vivo.18

We did not observe the same differential expression of antiviral genes in atopic dermatitis 

skin. Psoriasis, a Th1 and Th17 driven disease, activates distinct immune pathways 

compared to atopic dermatitis, a Th2 driven disease. Furthermore, psoriasis more than atopic 

dermatitis is associated with expansion of keratinocytes and it is possible that antiviral genes 

are expressed robustly in keratinocytes. However, prior studies in HIV (Table 1) have shown 

innate antiviral genes to be highly expressed in immune cells; thus our results may reflect a 

combination of antiviral activity in both immunocytes and keratinocytes.

In chronic HIV-1 infection, CD4+ T cell activation is elevated in viremic non-controller 

patients and it gradually decreases from ART-suppressed to elite controllers; it is low in 

HIV-1 seronegative individuals.19 We have previously reported a strong correlation between 

the levels of CD4+ T cell activation and the expression of antiviral genes.10, 20 Curiously, 

we did not observe elevated antiviral gene expression in psoriatic peripheral blood, despite 

the increased activation levels previously shown in psoriatic PBMCs.21 It is possible that 
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psoriatic autoantigens are expressed primarily in the skin and thus the observed antiviral 

immune responses localize preferentially in skin.

An important clinical question is whether psoriasis patients have enhanced immunity to 

systemic viral infections. Here, we specifically examined the effect of psoriasis on infection 

by HIV-1. Addition of HIV-1 reporter virus to psoriatic and non-psoriatic peripheral CD4+ 

T cells did not reveal any differences in viral replication. This suggests the antiviral 

phenotype of psoriatic skin does not impact viral replication within the blood. In agreement, 

we observed no significant difference in the viral loads of HIV positive patients with 

psoriasis and without psoriasis (see companion manuscript, Wu et al).

A limitation of the present study is that psoriasis is a genetically heterogeneous disease and 

with our sample size we were not able to stratify psoriasis patients by genetic subtype. For 

example, only about 25% of psoriasis patients in the North American population are positive 

for the psoriasis susceptibility allele HLA-B*57, which is also associated with control of 

both HIV-122 and hepatitis C virus.23 We have previously shown that the presence of the 

HLA-B*57 allele is associated with increased expression of antiviral restriction factors in the 

PBMCs of healthy individuals.11 A second limitation to this study is that we did not perform 

HIV-1 infectivity assays on CD4+ T cells derived from psoriatic skin, as it is technically 

difficult to obtain a requisite numbers of cells from skin. Thus, we were not able to directly 

ascertain whether the high antiviral gene expression in psoriatic skin could impact HIV-1 

replication. However, it has been clinically observed that psoriasis patients have decreased 

occurrence of cutaneous bacterial and viral skin infections compared to atopic dermatitis 

patients24 and have significant overproduction of antimicrobial peptides with both 

antibacterial and antiviral activity.25

Our findings highlight psoriasis as an immune-mediated, inflammatory disease with 

compartmentalized immune activation against viral pathogens.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Host antiviral genes and their functions.

NAME GENE DESCRIPTION KEY ANTI-HIV-1 ROLE(S) REFS

APOBEC3 (A,B,C,D,F,G,H) Apolipoprotein B mRNA editing enzyme, 
catalytic polypeptide-like3

Hypermutation; lethal mutations in viral DNA
Inhibition of reverse transcription
Inhibition of integration

26–34

BRD4 Bromodomain-containing protein 4 Transcriptional repression of HIV-1 35

BST-2/Tetherin Bone marrow stromal cell antigen 2 Blocks release of enveloped viruses 6, 7

CD74 HLA-DR antigens-associated invariant chain 
or CD74 (Cluster of Differentiation 74)

Inhibits viral replication in a cellular 
overexpression assay

36

CDKN1A (P21) Cyclin-dependent kinase inhibitor 1A (p21, 
Cip1)

Blocks reverse transcription
Blocks RNA transcription by reducing activity 
of CDK9

37, 38

CH25H Cholesterol 25-hydroxylase Inhibits viral entry. 39

CNP 2′,3′-Cyclic Nucleotide 3′ Phosphodiesterase Blocks HIV-1 particle assembly. 40

CTR9 Ctr9, Paf1/RNA polymerase II complex 
component

Inhibits early events of viral life cycle from 
reverse transcription to integration

41

EIF2AK2 (PKR) Eukaryotic translation initiation factor 2-alpha 
kinase 2

Inhibits viral protein translation by protein 
phosphorylation; promotes innate immune 
signaling

42

HERC5 HECT domain and RLD 5 Blocks early stage of retroviral particle assembly 43

IFITM Family (3 members) Interferon induced transmembrane protein Inhibition of cytosolic entry 43

IRF1 Interferon regulatory factor 1 Inhibits viral replication in a cellular 
overexpression assay

36

IRF7 Interferon regulatory factor 7 Inhibits viral replication in a cellular 
overexpression assay

36

ISG15 ISG15 ubiquitin-like modifier
Blocks interaction between HIV-1 Gag and 
Tsg101 (ESCRT-I) required for efficient 
budding of HIV-1

44

LGALS3BP lectin, galactoside-binding, soluble, 3 binding 
protein

Interferes with the maturation and incorporation 
of HIV-1 Env molecules into virions.

45

MOV10 Mov10, Moloney leukemia virus 10, homolog Inhibits proteolytic processing of Gag and 
reverse transcription

46

MX2 Myxovirus resistance 2 Inhibits capsid-dependent nuclear import of 
subviral complexes.

47–49

PAF1 Paf1, RNA polymerase II associated factor Inhibits early events of viral life cycle from 
reverse transcription to integration

41

RNASEL Ribonuclease L (2′,5′-oligoisoadenylate 
synthetase-dependent)

Cleave single-stranded RNA in U-rich 
sequences; activate antiviral innate immunity

50

RSAD2 (Viperin) Radical S-adenosyl methionine domain 
containing 2 Inhibits viral production 51

RTF1 Rtf1, Paf1/RNA polymerase II complex 
component

Inhibits early events of viral life cycle from 
reverse transcription to integration

41

SAMHD1 SAM domain and HD domain 1 Inhibits HIV replication in myeloid cells, 
probably by regulating cellular dNTP supply

8

SLFN11 Schlafen family member 11 Inhibits viral protein synthesis 52

SUN2 Sad1 and UNC84 domain containing 2 Inhibits viral replication in a cellular 
overexpression assay

36
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NAME GENE DESCRIPTION KEY ANTI-HIV-1 ROLE(S) REFS

TNFRSF10A Tumor necrosis factor receptor superfamily, 
member 10a

Inhibits viral replication in a cellular 
overexpression assay

36

TRIM family (9 members) Tripartite motif family Targeting of viral capsid
Inhibition of viral transcription

9, 53–55
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