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Abstract
Building on a series of ground breaking reviews that first defined and drew attention to

emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the

multifactorial causality of disease emergence. The model broadly hypothesizes disease

emergence is driven by the co-incidence of genetic, physical environmental, ecological, and

social factors. We developed and tested a model of the emergence of highly pathogenic

avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly

associated with land-use change. Building on previous geospatial statistical studies that

identified natural and human risk factors associated with urbanization, we added new fac-

tors to test whether causal mechanisms and pathogenic landscapes could be more specifi-

cally identified. Our findings suggest that urbanization spatially combines risk factors to

produce particular types of peri-urban landscapes with significantly higher HPAI H5N1

emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of

chicken densities, duck and geese flock size diversities, and fraction of land under rice or

aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate

measure for potential mixing of host populations and other factors that likely influence viral

transmission, significantly improves the model’s predictability. Similarly, landscapes where

intensive and extensive forms of poultry production overlap were found at greater risk.

These results support the convergence hypothesis in general and demonstrate the potential

to improve EID prevention and control by combing geospatial monitoring of these factors

along with pathogen surveillance programs.

Introduction
Two decades after the Institute of Medicine’s seminal report [1] recognized novel and re-
emerging diseases as a new category of microbial threats, the perpetual and unexpected nature
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of the emergence of infectious diseases remains a challenge in spite of significant clinical and
biomedical research advances [2]. Highly Pathogenic Avian Influenza (HPAI) (subtype H5N1)
is the most significant newly emerging pandemic disease since HIV/AIDS. Its eruption in
Southeast Asia in 2003–4 and subsequent spread globally to more than 60 countries fits the
complex systems definition of “surprise” [3]. In this same year that IOM had published its final
report on microbial threats which highlighted H5N1's successful containment in Hong Kong
in 1997 [4], massive outbreaks occurred in Southeast Asia where it remains endemic, along
with Egypt’s Nile Delta. Since 2003, HPAI H5N1 has killed millions of poultry in countries
throughout Asia, Europe, and Africa, and 402 humans have died from it in sixteen countries
according to WHO data as of January 2015. The threat of a pandemic resulting in millions of
human cases worldwide remains a possibility [5].

Lederberg et al. [1] first pointed to the multiplicity of factors driving disease emergence,
which later were elaborated and described in terms of ‘the convergence model’ [6]. The model
proposes emergence events are precipitated by the intensifying of biological, environmental,
ecological, and socioeconomic drivers. Microbial “adaptation and change,” along with “chang-
ing ecosystems” and “economic development and land use” form major themes. Joshua Leder-
berg, the major intellectual force behind the studies summed-up saying “Ecological instabilities
arise from the ways we alter the physical and biological environment, the microbial and animal
tenants (humans included) of these environments, and our interactions (including hygienic
and therapeutic interventions) with the parasites” [6].

Combining such disparate factors and associated concepts from biomedicine, ecology, and
social sciences in a single framework remains elusive. One approach suggested has been to
employ social-ecological systems theory that attempts to capture the behavior of so-called ‘cou-
pled natural-human systems’, including the inevitable unexpected appearance of new diseases,
themselves one of the “emerging properties” of complex adaptive systems (CAS) [7, 8]. The
convergence model can be so adapted by incorporating the dynamics of urban, agricultural,
and natural ecosystem transformations proposed with this framework. These associated multi-
faceted interactions including feedbacks that affect ecological communities, hosts and patho-
gen populations, are the proximate drivers of disease emergence.

The initial HPAI H5N1 outbreaks in Vietnam represent an ideal opportunity to adapt and
test a CAS-convergence model. Emergence risk should be highest in the most rapidly trans-
forming urban areas, peri-urban zones where mixes of urban-rural, modern-traditional land
uses and poultry husbandry coincide most intensely. Specifically we hypothesized a positive
association between the presence of HPAI outbreaks in poultry at the commune level and: 1)
peri-urban areas, as defined by Saksena et al. [9], 2) land-use diversity, and 3) co-location of
intensive and extensive systems of poultry.

We used the presence or absence at the commune level of HPAI H5N1 outbreaks in poultry
as the dependent variable. Vietnam experienced its first HPAI H5N1 outbreak in late 2003,
since then, there have been five waves and sporadic outbreaks recorded over the years [10, 11].
We chose to study the first wave (Wave 1) that ended in February 2004 and the second wave
(Wave 2) that occurred between December 2004 and April 2005. We used data from the Viet
Nam 2006 Agricultural Census to develop an urbanicity classification that used data collected
at a single point in time (2006) but across space (10,820 communes) to infer processes of
change (urbanization, land-use diversification, and poultry intensification) [9]. The 58 prov-
inces in Vietnam (not counting the 5 urban provinces that are governed centrally) are divided
into rural districts, provincial towns, and provincial cities. Rural districts are further divided
into communes (rural areas) and towns, and provincial towns and cities are divided into wards
(urban subdistricts) and communes. A commune in Viet Nam is thus the third level adminis-
trative subdivision, consisting of villages/hamlets. For the purpose of simplicity we will
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henceforth use the term “commune” to refer to the smallest administrative unit whether it is a
commune, town, or ward. We included risk factors documented in previous work. We also
aimed to understand the differences, if any, in risk dynamics at different scales; comparing
risks at the national scale to those at two sub-national agro-ecological zones. For this purpose
we chose to study the Red River and Mekong River deltas, well known hot spots of the disease.
Hence we conducted two sets of analyses (waves 1 and 2) for three places (nation, Red River
Delta, and Mekong Delta) producing a total of 6 wave-place analyses. Data on outbreaks were
obtained from the publicly available database of Viet Nam’s Department of Animal Health.
Given the highly complex dynamics of the epidemics and in keeping with recent methodologi-
cal trends, we used multiple modeling approaches—parametric and non-parametric—with a
focus on spatial analysis. We used both ‘place’ oriented models that can take into account varia-
tions in factors such as policies and administration as well as ‘space’ oriented models that rec-
ognize the importance of physical proximity in natural phenomenon [12].

Urbanization
Very few empirical studies have attempted to determine whether urbanization is related to EID
outbreaks or whether urbanization is associated primarily with other factors related to EID out-
breaks. One immediate problem researchers face is defining what is rural, urban, and transi-
tional (i.e., peri-urban). Some studies have used official administrative definitions of urban and
rural areas, but this approach is limited in its bluntness [13]. Other studies prioritized human
population density as a satisfactory surrogate [11, 14–20], but this approach ignores the impor-
tant fact that density is not a risk factor if it is accompanied by sufficient infrastructure to han-
dle the population. Spencer [21] examined urbanization as a non-linear characteristic, using
household-level variables such as water and sanitation services. He found evidence that
increased diversity in water supply sources and sanitation infrastructure were associated with
higher incidences of HPAI. These studies employed a limited definition of urbanization that
lacked a well-defined characterization of peri-urbanization.

Still other studies have mapped the relative urban nature of a place, a broad concept that is
often referred to as ‘urbanicity' [22–25]. While these studies show differences in the rural/
urban nature of communities across space and time, they have been limited to small- to
medium-scale observational studies; and they have failed to distinguish between different levels
of “ruralness”. Perhaps the best known model of peri-urbanization is McGee’s concept of desa-
kota (Indonesian for “village-town”) [26]. McGee identified six characteristics of desakota
regions: 1) a large population of smallholder cultivators; 2) an increase in non-agricultural
activities; 3) extreme fluidity and mobility of population; 4) a mixture of land uses, agriculture,
cottage industries, suburban development; 5) increased participation of the female labor force;
and 6) “grey-zones”, where informal and illegal activities group [26]. Saksena et al. [9] built on
McGee’s desakota concepts and data from the 2006 Viet Nam Agricultural Census to establish
an urbanicity classification. That study identified and mapped the 10,820 communes, the
smallest administrative unit for which data are collected, as being rural, peri-urban, urban, or
urban core. This project used the Saksena classification to assess associations between urbani-
city classes, other risks factors, and HPAI outbreaks.

Land-use diversification
Researchers have estimated that almost 75% of zoonotic diseases are associated with land-
cover and land-use changes (LCLUC) [27, 28]. LCLUC such as peri-urbanization and agricul-
tural diversification frequently result in more diverse and fragmented landscapes (number of
land covers or land uses per unit of land). The importance of landscape pattern, including
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diversity and associated processes, which equate to host species’ habitat size and distribution,
and thus pathogen transmission dynamics is axiomatic though the specific mechanisms
depend on the disease [29, 30]. Landscape fragmentation produces ecotones, defined as abrupt
edges or transitions zones between different ecological systems, thought to facilitate disease
emergence by increasing the intensity and frequency of contact between host species [31] Fur-
thermore, fragmentation of natural habitat tends to interrupt and degrade natural processes,
including interspecies interactions that regulate densities of otherwise opportunistic species
that may serve as competent hosts [32], although it is not clear if reduced species diversity nec-
essarily increases pathogen transmission [33]. Rarely has research connected land-use diversifi-
cation to final health endpoints in humans or livestock; this study attempts to link land-use
diversity with HPAI H5N1 outbreaks.

Poultry Intensification
Human populations in the rapidly urbanizing cities of the developing world require access to
vegetables, fruits, meat, etc. typically produced elsewhere. As theorized by von Thünen in 1826
[34], much of this demand is met by farms near cities [35], many in areas undergoing processes
of peri-urbanization [26]. Due to the globalization of poultry trade, large-scale chicken farms
raising thousands of birds have expanded rapidly in Southeast Asia and compete with existing
small backyard farmers [36]. Large, enterprise-scale (15,000–100,000 birds) operations are still
rare in Viet Nam (only 33 communes have such a facility). On the other hand, domestic and
multinational companies frequently contract farmers to raise between 2,000 and 15,000 birds.

Recent studies have examined the relative role of extensive (backyard) systems and intensive
systems [15, 17–19, 37]. In much of Asia there is often a mix of commercial and backyard
farming at any one location [36]. Experts have suggested that from a biosecurity perspective
the co-location of extensive and intensive systems is a potential risk factor [38]. Intensive sys-
tems allow for virus evolution (e.g. Low Pathogenic Avian Influenza to HPAI) and transforma-
tion, while extensive systems allow for environmental persistence and circulation [39].
Previous studies of chicken populations as a risk factor have distinguished between production
systems—native chickens, backyard chickens; flock density; commercial chickens, broilers and
layers density, etc. [15, 17–19, 37]. In isolation, however, none of these number and/or density
based poultry metrics adequately measures the extent of co-location of intensive and extensive
systems in any given place. Intensive and extensive systems in Viet Nam have their own fairly
well defined flock sizes. A diversity index of the relative number of intensive and extensive sys-
tems of poultry- raising can better estimate the effect of such co-location; this study attempts to
link a livestock diversity index with the presence or absence of HPAI H5N1 outbreaks at the
commune level.

Methods
This study investigated for the 10,820 communes of Viet Nam a wide suite of socio-economic,
agricultural, climatic and ecological variables relevant to poultry management and the trans-
mission and persistence of the HPAI virus. Many of these variables were identified based on
earlier studies of HPAI (as reviewed in Gilbert and Pfeiffer [40]). Three novel variables were
included based on hypotheses generated by this project. All variables were measured or aggre-
gated to the commune level. The novel variables were:

• Degree of urbanization: We used the urbanicity classification developed by Saksena et al. [9]
to define the urban character of each commune. The classification framework is based on
four characteristics: 1) percentage of households whose main income is from agriculture,
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aquaculture and forestry, 2) percentage of households with modern forms of toilets, 3) per-
centage of land under agriculture, aquaculture and forestry and 4) the Normalized Differenti-
ated Vegetation Index (NDVI). The three-way classification enabled testing for non-linear
and non-monotonous responses.

• Land-use diversity: We measured land-use diversity using the Gini-Simpson Diversity Index
[41]. The Gini-Simpson Diversity Index is given by 1—λ, where λ equals the probability that
two entities taken at random from the dataset of interest represent the same type. In situa-
tions with only one class (complete homogeneity) the Gini-Simpson index would have a
value equal to zero. Such diversity indices have been used to measure land-use diversity [42].
We used the following five land-use classes: annual crops, perennial crops, forests, aquacul-
ture and built-up land (including miscellaneous uses) for which data were collected in the
2006 Agricultural Census. The area under the last class was calculated as the difference
between the total area and the sum of the first four classes.

• Chicken, duck and geese flock size diversities: We used Gini-Simpson’s Diversity index based
on the flock size classes reported in the Agricultural Census: 1–50, 51–150, 151–2000
and> 2000. Previous studies have shown that in Viet Nam, typical backyard flock sizes are
1–50 animals and typical flock sizes in contract poultry operations are> 2000 [43]. The con-
tract poultry owners are small commercial enterprises.

Other Study Variables
The following variables are listed according to their role in disease introduction, transmission
and persistence, though some of these factors may have multiple roles.

• Human population related transmission.

�Human population density [11, 14–16, 18, 19, 44, 45].

• Poultry trade and market.

� Towns and cities were assumed to be active trading places [10, 18, 37, 44, 46]. So, the dis-
tance to the nearest town/city was used as indicator of poultry trade.

� Trade is facilitated by access to transportation infrastructure [37, 47, 48]. So, the distance
to the nearest a) national highway and b) provincial highway was used as indicator of
transportation infrastructure.

• Disease introduction and amplification.

� The densities of chicken were calculated based on commune area [15, 19, 37, 49].

• Intermediate hosts.

� Duck and geese densities were calculated using total commune area [11, 19, 49].

� As previous studies have shown a link between scavenging in rice fields by ducks and out-
breaks, we also calculated duck density using only the area under rice.

• Agro-ecological and environmental risk factors.

� Previous studies have shown that the extent of rice cultivation is a risk factor, mainly due
its association with free ranging ducks acting as scavengers [10]. We used percentage of
land under rice cultivation as a measure of extent.
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� Rice cropping intensity is also a known risk factor [11, 17, 37]. We used the mean number
of rice crops per year as a measure of intensity.

� The extent of aquaculture is a known risk factor [10], possibly because water bodies offer
routes for transmission and persistence of the virus. The percentage of land under aqua-
culture was used as a metric.

� Proximity to water bodies increases the risk of outbreaks [47, 50–52], possibly by increas-
ing the chance of contact between wild water birds and domestic poultry. We measured
the distance between the commune and the nearest: a) lake and b) river.

� Climatic variables—annual mean temperature and annual precipitation—have been asso-
ciated with significant changes in risk [48, 53].

� Elevation, which is associated with types of land cover and agriculture, has been shown to
be a significant risk factor in Vietnam [10].

� Compound Topographical Index (CTI, also known as Topographical Wetness Index) is a
measure of the tendency for water to pool. Studies in Thailand and elsewhere [54] have
shown that the extent of surface water is a strong risk factor, possibly due to the role of
water in long-range transmission and persistence of the virus. In the absence of reliable
and inexpensive data on the extent of surface water we used CTI as a proxy. CTI has
been used in Ecological Niche Models (ENM) of HPAI H5N1 [55, 56]. However, given
the nature of ENM studies, the effect of CTI as a risk factor has been unknown so far.
CTI has been used as a risk factor in the study of other infectious and non-infectious dis-
eases [57]. Some studies have shown that at local scales, the slope of the terrain (a com-
ponent of CTI) was significantly correlated with reservoir species dominance [58]. CTI is
a function of both the slope and the upstream contributing area per unit width orthogo-
nal to the flow direction. CTI is computed as follows: CTI = ln (As / (tan (β)) where; As =
Area Value calculated as ((flow accumulation + 1) � (pixel area in m2)) and β is the slope
expressed in radians [59].

� Though previous studies have indicated that Normalized Difference Vegetation Index
(NDVI) is a risk factor [10, 20, 55, 60, 61], we did not include it explicitly in our models,
as the urban classification index we used included NDVI [9].

Data sources
We obtained commune level data on HPAI H5N1 outbreaks from the publicly available data-
base of the Department of Animal Health [10]. Viet Nam experienced its first major epidemic
waves between December 2003 and February 2006 [10]. We chose to study the first wave
(Wave 1) that ended in February 2004 and the second wave (Wave 2) that occurred between
December 2004 and April 2005. In Wave 1, 21% of the communes and in Wave 2, 6% of the
communes experienced outbreaks.

We used data from the 1999 Population Census of Viet Nam to estimate human population
per commune. We relied on data from two Agriculture Censuses of Viet Nam. This survey is
conducted every five years covering all rural households and those peri-urban households that
own farms. Thus about three-fourths of all of the country’s households are included. The con-
tents of the survey include number of households in major production activities, population,
labor classified by sex, age, qualification, employment and major income source; agriculture,
forestry and aquaculture land used by households classified by source, type, cultivation area for
by crop type; and farming equipment by purpose. Commune level surveys include information
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on rural infrastructure, namely electricity, transportation, medical stations, schools; fresh water
source, communication, markets, etc. Detailed economic data are collected for large farms. We
used the 2006 Agriculture Census for most variables because the first three epidemic waves
occurred between the Agricultural Censuses of 2001 and 2006 but were closer in time to the
2006 census [10]. However, for data on poultry numbers we used the 2001 Agriculture Census
data set because between 1991 and 2003 the poultry population grew at an average rate of 7%
annually. However, in 2004, after the first wave of the H5N1 epidemic, the poultry population
fell 15%. Only by mid-2008 did the poultry population return close to pre-epidemic levels.
Thus, we considered the poultry population data from the 2001 census to be more representa-
tive. We aggregated census household data to the commune level. A three-way classification of
the rural-to-urban transition was based on a related study [9].

Raster data on annual mean temperature and precipitation were obtained from the World-
Clim database and converted to commune level data. The bioclimatic variables were compiled
from the monthly temperature and precipitation values and interpolated to surfaces at 90m
spatial resolution [62]. This public database provides data on the average climatic conditions of
the period 1950–2000.

Elevation was generated from SRTM 90 meter Digital Elevation Models (DEM) acquired
from the Consortium for Spatial Information (CGIAR-CSI). Compound Topographical Index
(CTI) data were generated using the Geomorphometry and Gradient Metrics Toolbox for Arc-
GIS 10.1.

Data pre-processing and collinearity
Prior to risk factor analysis we cleaned the data by identifying illogical values for all variables
and then either assigning a missing value to them or adjusting the values. Illogical values
occurred mainly (less than 1% of the cases) for land-related variables such as percentage of
commune land under a particular type of land use. Next we tested each variable for normality
using the BestFit software (Palisade Corporation). Most of the variables were found to follow a
log-normal distribution and a log-transform was used on them. We then examined the bi-vari-
ate correlations between all the risk factors (or their log-transform, as the case may be). Corre-
lations were analyzed separately for each place. Certain risk factors were then eliminated from
consideration when |r|� 0.5 (r is the Pearson correlation coefficient). When two risk factors
were highly correlated, we chose to include the one which had not been adequately studied
explicitly in previously published risk models. Notably, we excluded a) elevation (correlated
with human population density, chicken density, duck density, percentage land under paddy,
annual temperature and compound topographical index), b) human population density (corre-
lated with elevation and CTI), c) chicken density (only at national level, correlated with CTI),
d) duck and goose density (correlated with elevation, chicken density, percentage land under
paddy, land use diversity index and CTI), e) annual temperature (correlated with elevation and
CTI) and f) cropping intensity (correlated with percentage land under paddy).

Analysis
Considering the importance of spatial autocorrelation in such epidemics, we used two model-
ing approaches: 1) multi-level Generalized Linear Mixed Model (GLMM) and 2) Boosted
Regression trees (BRT) [63, 64] with an autoregressive term [65]. GLMM is a ‘place’ oriented
approach that is well suited to analyzing the effect of administrative groupings, while BRT is a
‘space’ oriented approach that accounts for the effects of physical proximity. We began by
deriving an autoregressive term by averaging the presence/absence among a set of neighbors
defined by the limit of autocorrelation, weighted by the inverse of the Euclidean distance [65].

Convergence Model for Emerging Infectious Diseases

PLOS ONE | DOI:10.1371/journal.pone.0138138 September 23, 2015 7 / 21



The limit of the autocorrelation of the response variable was obtained from the range of the
spatial correlogram ρ (h) [66]. To determine which predictor variables to include in the two
models, we conducted logistic regression modeling separately for each of them one by one but
included the autoregressive term each time. We finally included only those variables whose
coefficient had a significance value p�0.2 (in at least one wave-place combination) and we
noted the sign of the coefficient. This choice of p value for screening risk factors is common in
similar studies [15, 18, 45, 67].

We used a two-level GLMM (communes nested under districts) to take account of random
effects for an area influenced by its neighbors, and thus, we studied the effect of spatial autocor-
relation. We used robust standard errors for tests of fixed effects. Boosted regression trees, also
known as stochastic gradient boosting, was performed to predict the probability of HPAI
H5N1 occurrence and determine the relative influence of each risk factor to the HPAI H5N1
occurrence. This method was developed recently and applied widely for distribution prediction
in various fields of ecology [63, 64]. It is widely used for species distribution modeling where
only the sites of occurrence of the species are known [68]. The method has been applied in
numerous studies for predicting the distribution of HPAI H5N1 disease [16, 51, 69–71]. BRT
utilizes regression trees and boosting algorithms to fit several models and combines them for
improving prediction by performing iterative loop throughout the model [63, 64].

The advantage of BRT is that it applies stochastic processes that include probabilistic compo-
nents to improve predictive performance. We used regression trees to select relevant predictor
variables and boosting to improve accuracy in a single tree. The sequential process allows trees
to be fitted iteratively through a forward stage-wise procedure in the boosting model. Two
important parameters specified in the BRT model are learning rate (lr) and tree complexity (tc)
to determine the number of trees for optimal prediction [63, 64]. In our model we used 10 sets
of training and test points for cross-validation, a tree complexity of 5, a learning rate of 0.01,
and a bag fraction of 0.5. Other advantages of BRT include its insensitivity to co-linearity and
non-linear responses. However, for the sake of consistency with the GLMMmethod, we chose
to eliminate predictors that were highly correlated with other predictors and to make log-trans-
forms where needed. In the GLMMmodels we used p� 0.05 to identify significant risk factors.

The predictive performances of the models were assessed by the area under the curve
(AUC) of the receiver operation characteristic (ROC) curve. AUC is a measure of the overall fit
of the model that varies from 0.5 (chance event) to 1.0 (perfect fit) [72]. A comparison of AUC
with other accuracy metrics concluded that it is the most robust measure of model perfor-
mance because it remained constant over a wide range of prevalence rates [73]. We used the
corrected Akaike Information Criteria (AICc) to compare each GLMMmodel with and with-
out its respective suite of fixed predictors.

We used SPSS version 21 (IBM Corp., New York, 2012) for GLMM and R version 3.1.0
(The R Foundation for Statistical Computing, 2014) for the BRT. For calculating the spatial
correlogram we used the spdep package of R.

Results
The fourteen predictor variables we modeled (see tables) were all found to be significantly asso-
ciated with HPAI H5N1 outbreaks (p� 0.2) in at least one wave-place combination based on
univariate analysis (but including the autoregressive term) (Table 1). Land-use diversity,
chicken density, poultry flock size diversity and distance to national highway were found to
have significant associations across five of the six wave-place combinations.

Both the final multivariate GLMM and BRT model results for the previously studied vari-
ables are in agreement with the associations reported by others (Tables 2–7). The predictive
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power of the GLMMmodels, as measured by the AUC, is very good with AUC values ranging
from 0.802 to 0.952 (Tables 2–7). The predictive power of the national models was higher than
that of the delta models. The predictive power of the BRT models is good, with AUCs ranging
from 0.737 to 0.914. The BRT models also had a better predictive power at the national level
than at the delta level. These values are higher than those reported for Wave 1 (AUC = 0.69)
andWave 2 (AUC = 0.77) by Gilbert et al. [11]. Both Gilbert et al. [11] and this study found
that at the national level the predictive performance for Wave 2 was higher than that for Wave
1. Wave 2 mainly affected the Mekong River Delta. Previous studies indicated the duck density
was an important predictor [11]; our results, however, indicated that the diversity of duck flock
size was a more important predictor than duck density.

Both the GLMM and BRT models found annual precipitation to be a significant factor. The
GLMMmodel indicated a negative association; similar to what was found by studies in China
[51] and in the Red River Delta [53]. A global study of human cases also found occurrence to
be higher under drier conditions [74]. Generally, the role of precipitation was found to be far
more significant in the deltas than for the country as a whole.

The unadjusted Relative Risk (RR) of peri-urban areas in comparison with non-peri-urban
areas was 1.41 and 1.60 for Waves 1 and 2, respectively. In terms of urbanicity, we found that
chicken density, percentage of land under rice, percentage of land under aquaculture, flock size
diversity for duck and geese, and the Compound Topographical Index (CTI) to be highest in
peri-urban areas (Fig 1a–1e). We also found that land-use diversity was higher in rural areas,

Table 1. Unadjusted coefficients (β) for the final set of predictors based on autologistic regression.

Predictor Wave 1 (December ‘03 –February ‘04) Wave 2 (December ‘04 –April ‘05)

Viet Nam Red River
Delta

Mekong River
Delta

Viet Nam Red River
Delta

Mekong River
Delta

Urbanicity: rural† 00.000# 00.027 00.462 00.000 00.027 00.683

Urbanicity: peri-urban 0.3220.000 0.2850.011 -0.1050.507 0.5910.000 0.6560.007 0.0270.871

Urbanicity: urban 0.2310.112 -0.1860.571 0.3780.321 -0.0770.792 0.0850.909 -0.3530.401

Percentage land under rice* 2.1250.000 1.4540.084 0.2150.770 5.6330.000 1.9370.346 5.6460.000

Percentage land under aquaculture* 1.5350.086 0.9120.739 4.6300.000 -1.1150.503 4.2800.438 -4.3140.019

Land-use diversity (Gini-Simpson index) 0.8020.000 1.3990.000 0.6780.107 1.2160.000 0.7590.383 1.3450.007

Chicken density* 0.3990.000 0.4950.000 0.0300.747 0.5360.000 1.1580.015 0.4890.000

Duck-rice area density 0.0600.511 -0.2880.743 0.2470.223 0.1050.059 -14.2220.558 -0.8800.341

Chicken flock size diversity (Gini-Simpson
Index)

2.2300.000 3.8430.000 -0.2110.770 1.2950.032 3.5230.012 1.7410.046

Duck & goose flock size diversity (Gini-
Simpson Index)

0.6310.004 0.9590.068 0.0000.994 2.2750.000 2.3930.005 2.8460.000

Annual precipitation* 1.2870.001 6.6990.172 3.0800.015 0.1610.823 13.7430.184 0.2340.834

Compound Topographical Index* 3.8900.000 -1.5610.660 -3.9120.619 6.3660.000 16.9590.116 -6.0190.504

Shortest distance to nearest national
highway*

-0.0200.318 -0.0410.161 0.0630.061 -0.0390.169 -0.1840.006 -0.0400.260

Shortest distance to nearest provincial
highway*

-0.0410.009 -0.0200.436 0.0000.919 -0.1190.000 -0.1140.140 -0.0650.074

Shortest distance to nearest town* -0.0090.683 0.1570.002 0.0600.181 -0.0730.044 0.0550.607 -0.0730.120

Shortest distance to nearest lake* -0.0740.009 0.0580.433 -0.0100.591 0.0690.330 -0.1410.298 0.0610.629

† Reference level,

* Transform of the type log10(1+x) was used,
#p values

doi:10.1371/journal.pone.0138138.t001
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but peri-urban areas had diversity levels only marginally lower (Fig 1f). The urbanicity variable
alone, however, was not found to be significantly associated with HPAI H5N1 in any place
according to the GLMMmodel except for the urban level in Red River Delta for Wave 2 and in
the Mekong River Delta for Wave 1. The BRT model ranked urbanicity as one of the least influ-
ential variables.

Land-use diversity was found to be significantly associated with HPAI H5N1 in both waves
for Viet Nam according to the GLMMmodel, but at the delta level the association was signifi-
cant only for Wave 2 in the Mekong River Delta. The BRT model indicated that land-use diver-
sity highly influenced HPAI H5N1 at the national level in Wave 2. For the remaining wave-
place combinations land-use diversity had middle to below-middle rank of influence.

Both the GLMM and BRT models indicated that the diversity of chicken flock-size had a
strong association with HPAI H5N1 for both waves at the national level. This was generally
found to be true at the delta levels with some exceptions. The diversity of duck and goose flock
size was also significantly associated with HPAI H5N1 in all places, but the associations were
much stronger in Wave 2 than in Wave 1.

The GLMMmodel indicated that the CTI had a very strong association with HPAI H5N1 at
the national level in both waves although this was not true in the two deltas. The CTI is a steady
state wetness index commonly used to quantify topographic control on hydrological processes.
Accumulation numbers in flat areas, like deltas, are very large; hence the CTI was not a relevant
variable in the GLMMmodel in these areas. The BRT model however indicated that CTI had
middle to low influence in all waves and places.

Table 2. Model results for Viet Nam, Wave 1 (December ‘03 –February ‘04).

GLMM BRT

Coefficient p s.e. Relative Influence (%) s.e. Rank

Intercept -6.633 0.001 4.21 n/a

Urbanicity 0.63 0.03 11

Urbanicity: rural 0

Urbanicity: peri-urban 0.061 0.627 0.13

Urbanicity: urban 0.419 0.108 0.26

Land-use diversity (Gini-Simpson index) 0.779 0.032 0.36 1.38 0.04 5

Duck-rice area density 0.086 0.006 0.03 1.19 0.03 6

Chicken flock size diversity (Gini-Simpson Index) 1.706 0.003 0.57 5.58 0.03 1

Duck & goose flock size diversity (Gini-Simpson Index) 0.439 0.164 0.32 1.72 0.09 3

Percentage land under rice* 2.193 0.021 0.95 1.17 0.10 7

Percentage land under aquaculture* 2.143 0.245 1.84 1.43 0.09 4

Annual precipitation* -1.967 0.083 1.14 2.35 0.10 2

Compound Topographical Index* 9.874 0.000 2.12 0.78 0.09 8

Shortest distance to nearest national highway* 0.006 0.809 0.03 0.13 0.09 13

Shortest distance to nearest provincial highway* -0.015 0.499 0.02 0.37 0.04 12

Shortest distance to nearest town* -0.057 0.183 0.04 0.72 0.09 9

Shortest distance to nearest lake* -0.052 0.270 0.05 0.64 0.10 10

Autoregressive term n/a 81.91 0.04

AUC-ROC 0.907 Trg = 0.856, Eval = 0.839

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t002
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We found very high spatial clustering effects as indicated by the fact that in all waves and
places the BRT model found the spatial autocorrelation term to have the highest rank of influ-
ence. As expected, the relative influence of the autocorrelation term at the national level was
higher (60–78%) than at the delta levels (14–35%). In the GLMMmodels we found the Akaike
Information Criterion (AIC) using the entire set of 14 variables to be much lower than the
AICs of a GLMMmodel without fixed effects. This indicated that though clustering effects
were significant, our theory driven predictor variables improved model performance.

A limitation of using surveillance methods for the dependent variable (poultry outbreaks) is
that the data may have reporting/detection biases [11]. Under-reporting/detection in rural
areas as compared to peri-urban areas is possible. We believe that the urbanicity and the short-
est distance to nearest town risk factors serve as rough proxies for reporting/detection effi-
ciency. Previous studies have tended to use human population density as a proxy for this
purpose. In our study we found a strong association between human population density and
urbanicity. But we acknowledge that a categorical variable such as urbanicity may provide less
sensitivity than a continuous variable such as human population density in this specific
context.

Discussion
This study explored the validity of a general model for disease emergence that combined the
IOM ‘convergence model’ [6] and the social-ecological systems model [7, 8], for investigating

Table 3. Model results for Viet Nam, Wave 2 (December ‘04 –April ‘05).

GLMM BRT

Coefficient p s.e Relative Influence (%) s.e. Rank

Intercept -6.700 0.355 7.24

Urbanicity 0.70 0.07 13

Urbanicity: rural 0

Urbanicity: peri-urban 0.219 0.212 0.18

Urbanicity: urban 0.179 0.757 0.58

Land-use diversity (Gini-Simpson index) 1.885 0.002 0.61 1.44 0.11 8

Duck-rice area density 0.205 0.065 0.11 4.11 0.11 4

Chicken flock size diversity (Gini-Simpson Index) 1.023 0.189 0.78 4.98 0.07 3

Duck & goose flock size diversity (Gini-Simpson Index) 2.245 0.000 0.49 5.36 0.05 1

Percentage land under rice* 5.322 0.000 1.31 5.32 0.10 2

Percentage land under aquaculture* 1.852 0.536 3.00 2.73 0.10 5

Annual precipitation* -4.716 0.001 1.41 2.50 0.05 6

Compound Topographical Index* 11.487 0.002 3.68 1.68 0.07 7

Shortest distance to nearest national highway* -0.031 0.389 0.04 1.80 0.10 9

Shortest distance to nearest provincial highway* -0.114 0.001 0.04 1.20 0.10 11

Shortest distance to nearest town* -0.128 0.052 0.07 1.31 0.10 10

Shortest distance to nearest lake* 1.058 0.014 0.43 0.77 0.05 12

Autoregressive term n/a 66.09 0.10

AUC-ROC 0.952 Trg = 0.935, Eval = 0.913

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t003
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the specific case of HPAI in Vietnam. We sought to test the hypotheses that measures of urban-
ization, land-use diversification, and poultry intensification are correlated with outbreaks in
poultry. Our results generally support the hypothesis that social-ecological system transforma-
tions are associated with H5NI outbreaks in poultry.

The results presented here highlight three main findings: 1) when relevant risk factors are
taken into account, urbanization is generally not a significant independent risk factor; but in
peri-urban landscapes emergence factors converge, including higher levels of chicken densities,
duck and geese flock size diversities, and fraction of land under rice or aquaculture; 2) high
land-use diversity landscapes, a variable not previously considered in spatial studies of HPAI
H5N1, are at significantly greater risk for HPAI H5N1 outbreaks; as are 3) landscapes where
intensive and extensive forms of poultry production are co-located.

Only one other study has explicitly examined urbanicity in the context of HPAI H5N1. Loth
et al. [17] found peri-urban areas in Indonesia were significantly associated with HPAI H5N1
cases, even based on multivariate models. Our study, however, attempted both to associate
HPAI H5N1 with degree of urbanicity and to determine the features of peri-urban areas that
place them at risk. When those features (i.e., chicken densities, duck and geese flock size diver-
sities, and the fraction of land under rice or aquaculture) are included in multivariate models,
the role of the urbanization variable per se diminishes. We found in the main river deltas in
Viet Nam (Red River and Mekong), urbanization had no significant association with HPAI

Table 4. Model results for Red River Delta, Wave 1 (December ‘03 –February ‘04).

GLMM BRT

Coefficient p s.e. Relative Influence (%) s.e. Rank

Intercept 108.702 0.001 33.225 n/a

Urbanicity 0.91 0.04 13

Urbanicity: rural 0

Urbanicity: peri-urban 0.009 0.986 0.518

Urbanicity: urban 0.179 0.383 0.205

Land-use diversity (Gini-Simpson index) 0.959 0.338 1.000 4.26 0.04 8

Chicken density* 0.970 0.012 0.385 8.28 0.06 2

Duck-rice area density -6.879 0.129 4.525 6.07 0.04 5

Chicken flock size diversity (Gini-Simpson Index) 2.424 0.073 1.352 10.62 0.05 1

Duck & goose flock size diversity (Gini-Simpson Index) 0.051 0.920 0.511 5.61 0.05 6

Percentage land under rice* -1.643 0.362 1.802 5.03 0.06 7

Percentage land under aquaculture* -0.974 0.799 3.832 6.30 0.04 3

Annual precipitation* -32.626 0.003 11.114 6.21 0.09 4

Compound Topographical Index* -7.193 0.355 0.119 3.36 0.04 10

Shortest distance to nearest national highway* -0.079 0.082 0.045 1.59 0.06 12

Shortest distance to nearest provincial highway* -0.027 0.472 0.038 0.49 0.09 14

Shortest distance to nearest town* 0.173 0.034 0.082 2.27 0.05 11

Shortest distance to nearest lake* -0.041 0.730 0.119 3.57 0.09 9

Autoregressive term n/a 35.43 0.04

AUC-ROC 0.802 Trg = 0.827, Eval = 0.737

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t004
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H5N1. This may be due to the fact that the deltas are more homogenous, in terms of urbaniza-
tion, than the country as a whole.

This is the first study to examine land-use diversity as a risk factor for HPAI H5N1. Mea-
sured by the Gini-Simpson Diversity Index of the five land-use classes on which data were col-
lected in the 2006 Viet Nam Agricultural Census, and the presence or absence of HPAI
outbreaks at the commune level, our results indicate a strong association between land-use
diversity and HPAI H5N1 at the national level and in the Mekong River Delta. This metric cap-
tures both the variety of habitats and of the complexity of geospatial patterning likely associ-
ated with transmission intensity. Our results are similar to what has been observed by studies
of other EIDs using fragmentation metrics (e.g. [75–77]. This is one of the few studies, how-
ever, to link landscape fragmentation to an EID disease in poultry and not just to the vector
and/or hosts of the EID.

Previous studies have focused on poultry production factors such as type of species, size of
flocks, and extent of commercialization (e.g. [15, 17–19]. This study expands on those findings
by providing evidence that when intensive and extensive systems of chicken and/or duck and
geese production co-exist in the same commune, the commune experiences higher risk of dis-
ease outbreak. Future studies need to examine the biological causal mechanisms in this
context.

We suggest that national census data (particularly agricultural censuses) compiled at local
levels of administration provide valuable information that are not available from remotely
sensed data (such as poultry densities) or require a large amount of labor to map at national to

Table 5. Model results for Red River Delta, Wave 2 (December ‘04 –April ‘05).

GLMM BRT

Coefficient p s.e. Relative Influence (%) s.e Rank

Intercept 68.171 0.142 46.439

Urbanicity: rural 0 2.13 0.04 13

Urbanicity: peri-urban 0.240 0.530 0.382

Urbanicity: urban 0.041 0.033 1.245

Percentage land under rice* -7.892 0.046 3.944 6.81 0.09 6

Percentage land under aquaculture* -2.552 0.688 6.362 6.31 0.07 7

Land-use diversity (Gini-Simpson index) 1.592 0.451 2.113 5.62 0.08 9

Chicken density* 1.017 0.033 0.476 10.34 0.07 2

Duck-rice area density -70.094 0.030 32.181 7.95 0.08 4

Chicken flock size diversity (Gini-Simpson Index) 0.935 0.571 1.651 12.86 0.09 1

Duck & goose flock size diversity (Gini-Simpson Index) 1.934 0.087 1.130 8.07 0.04 3

Annual precipitation* -32.390 0.038 15.625 7.85 0.28 5

Compound Topographical Index* 26.477 0.258 23.375 4.66 0.28 10

Shortest distance to nearest national highway* -0.081 0.294 0.077 2.56 0.07 12

Shortest distance to nearest provincial highway* -0.136 0.085 0.079 0.96 0.08 14

Shortest distance to nearest town* 0.093 0.619 0.188 2.72 0.09 11

Shortest distance to nearest lake* -0.262 0.054 0.136 6.27 0.04 8

Autoregressive term n/a 14.9 0.28

AUC-ROC 0.902 Trg = 0.987, Eval = 0.755

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t005
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larger scales (land-use diversity). Mapping land-use classes at the national scale for local
administrative units (i.e., the 10,820 communes in Viet Nam) is not an insignificant task.
Future studies, however, could examine the correlation between a census-based metric with
metrics derived from remote sensing used to measure proportional abundance of each land-
cover type within a landscape [78]. Vietnam is relatively advanced in making digital national
population and agricultural census data available in a format that can be linked to administra-
tive boundaries. While other nations are beginning to develop similar capacities, in the short
term the application of this method to other countries may be limited. Ultimately, both census
and remotely sensed data can be used independently to map the urban transition and diversity
of land use; these tools, however, may provide their greatest insights when used together.

Another important contribution of this study was the discovery of the importance of CTI.
So far CTI had been used only in ecological niche modeling studies of HPAI H5N1; the specific
role and direction of influence of CTI had has so far been unknown. Our study, the first to use
CTI as a risk factor, found it had a large positive influence on HPAI H5N1 risk at the national
level. Previous studies have highlighted the role of surface water extent in the persistence and
transmission of the HPAI H5N1 virus. These studies measured surface water extent as area
covered by water, magnitude of seasonal flooding, distance to the nearest body of water, or
other variables that are often difficult to map using remotely sensed data, especially for large
area studies. CTI on the other hand has the potential to serve as an excellent surrogate which
can easily be measured in a GIS database.

Table 6. Model results for Mekong River Delta, Wave 1 (December ‘03 –February ‘04).

GLMM BRT

Coefficient p s.e. Relative Influence (%) s.e. Rank

Intercept 35.702 0.129 23.528 n/a

Urbanicity. 1.43 0.08 14

Urbanicity: rural 0

Urbanicity: peri-urban 0.149 0.592 0.277

Urbanicity: urban 1.292 0.025 0.575

Percentage land under rice* 3.632 0.021 1.571 4.32 0.06 8

Percentage land under aquaculture* 5.393 0.063 2.898 6.47 0.06 3

Land-use diversity (Gini-Simpson index) -0.059 0.956 1.069 5.39 0.04 5

Chicken density* -0.082 0.791 0.308 4.59 0.07 6

Duck-rice area density 0.297 0.454 0.396 4.46 0.07 7

Chicken flock size diversity (Gini-Simpson Index) 0.689 0.642 1.481 6.50 0.07 2

Duck & goose flock size diversity (Gini-Simpson Index) -0.057 0.935 0.704 6.25 0.08 4

Annual precipitation* -12.623 0.000 3.288 15.67 0.07 1

Compound Topographical Index* 3.183 0.863 18.482 3.52 0.08 9

Shortest distance to nearest national highway* 0.141 0.036 0.067 1.82 0.06 13

Shortest distance to nearest provincial highway* 0.012 0.825 0.054 2.06 0.07 11

Shortest distance to nearest town* 0.074 0.504 0.111 2.04 0.07 12

Shortest distance to nearest lake* 0.077 0.135 0.569 2.88 0.04 10

Autoregressive term n/a 32.63 0.04

AUC-ROC 0.891 Trg = 0.911, Eval = 0.811

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t006
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The national and regional (delta) models differed quite considerably, both in terms of per-
formance and significant risk factors. In the deltas we commonly found only chicken density,
duck flock size diversity and annual precipitation to be significant. This suggests dynamics of
risk at the commune level are strongly dependent on the spatial range of analysis, consistent
with another study in the Mekong Delta [61]. Though that study’s model initially included
three dozen commonly known risk factors, the significant risk factors were limited to poultry
flock density, proportion households with electricity, re-scaled NDVI median May-October,
buffalo density and sweet potato yield. Another study in the Red River Delta [79] found that in
addition to the typical poultry density metrics, only the presence of poultry traders was signifi-
cant. We speculate that for smaller regions, especially for known hot-spots, the relevant risk
factors are those that reflect short-range, short-term driving forces such as poultry trading,
presence of live bird markets and wet markets etc. Improving model performance for smaller
regions would require highly refined and nuanced metrics for poultry trading, road infrastruc-
ture, water bodies, etc.—data that are typically not available through census surveys. The differ-
ences between the national and regional models suggest that our results can inform planners
making decisions at different hierarchical levels of jurisdiction: national, region and local.

Our study has the potential to inform the design of future research related to the epidemiol-
ogy of other EIDs in Viet Nam and elsewhere. For example, we speculate that in Southeast
Asia, Japanese encephalitis, the transmission of which is associated with rice cultivation and
flood irrigation [80], may also show a strong association with peri-urbanization. In some areas

Table 7. Model results for Mekong River Delta, Wave 2 (December ‘04 –April ‘05).

GLMM BRT

Coefficient p s.e. Relative Influence (%) s.e. Rank

Intercept -10.082 0.554 17.043

Urbanicity 0.72 0.07 14

Urbanicity: rural 0

Urbanicity: peri-urban 0.105 0.641 0.225

Urbanicity: urban 0.176 0.758 0.569

Percentage land under rice* 5.009 0.001 1.529 9.04 0.05 3

Percentage land under aquaculture* 0.936 0.781 3.360 6.75 0.07 6

Land-use diversity (Gini-Simpson index) 1.956 0.018 0.823 6.85 0.07 5

Chicken density* 0.364 0.145 0.250 7.20 0.07 4

Duck-rice area density 0.597 0.239 0.507 9.70 0.08 2

Chicken flock size diversity (Gini-Simpson Index) 1.674 0.147 1.153 5.91 0.08 7

Duck & goose flock size diversity (Gini-Simpson Index) 2.533 0.000 0.704 10.21 0.07 1

Annual precipitation* -2.719 0.277 2.498 5.80 0.05 8

Compound Topographical Index* 8.874 0.529 14.076 4.13 0.07 9

Shortest distance to nearest national highway* -0.019 0.716 0.052 3.84 0.07 10

Shortest distance to nearest provincial highway* -0.149 0.005 0.053 2.14 0.05 13

Shortest distance to nearest town* -0.074 0.433 0.094 3.36 0.07 11

Shortest distance to nearest lake* 1.006 0.005 0.382 3.20 0.08 12

Autoregressive term n/a 21.14 0.07

AUC-ROC 0.849 Trg = 0.926, Eval = 0.763

* Transform of the type log10(1+x) was used

s.e. = standard error, Rank = rank of relative influence excluding the rank of the autoregressive term, AUC-ROC = Area Under the Curve of the Receiver

Operating Characteristic, Trg = Training, Eval = Evaluation

doi:10.1371/journal.pone.0138138.t007
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Fig 1. Variations in variables across urbanicity classes for all of Vietnam. a: Variation of chicken density across urbanicity. b: Variation of fraction of land
under rice across urbanicity. c: Variation of fraction of land under aquaculture across urbanicity. d: Variation of duck and geese flock size diversity across
urbanicity. e: Variation of CTI across urbanicity. f: Variation of land-use diversity across urbanicity.

doi:10.1371/journal.pone.0138138.g001
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of Asia these ecological conditions occur near, or occasionally within, urban centers. Likewise,
Hantaan virus, the cause of Korean hemorrhagic fever, is associated with the field mouse Apo-
demus agrarius and rice harvesting in fields where the rodents are present [80]. Our work has
demonstrated that the percentage of land under rice in peri-urban areas and rural areas is simi-
lar. Hence diseases associated with rice production are likely to peak in peri-urban areas given
other risk factors such as land-use diversity, CTI, and distance to infrastructure. Our poultry
flock-size diversity findings may also be relevant to understanding the dynamics of other poul-
try related infections such as Newcastle disease.

Finally, these results suggest the validity of a general model of zoonotic disease emergence
that integrates IOM’s convergence model with the subsequently proposed social-ecological sys-
tems and EID framework. Thus, convergence represents the coalescence in time and space of
processes associated with land-cover and land-use changes. Project results question whether
the urban/rural land-use dichotomy is useful when large areas and parts of the population are
caught between the two. Planners need better tools for mapping the rural-urban transition, and
for understanding how the specific nature of peri-urban environments creates elevated health
risk that require adaptation of existing planning, land use, and development practices.
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