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Abstract

The 1(8;21) and Inv(16) translocations disrupt the normal function of core binding factors alpha
(CBFA) and beta (CBFB), respectively. These translocations represent two of the most com-
mon genomic abnormalities in acute myeloid leukemia (AML) patients, occurring in approxi-
mately 25% pediatric and 15% of adult with this malignancy. Both translocations are
associated with favorable clinical outcomes after intensive chemotherapy, and given the per-
ceived mechanistic similarities, patients with these translocations are frequently referred to as
having CBF-AML. It remains uncertain as to whether, collectively, these translocations are
mechanistically the same orimpact different pathways in subtle ways that have both biological
and clinical significance. Therefore, we used transcriptome sequencing (RNA-seq) to investi-
gate the similarities and differences in genes and pathways between these subtypes of pediat-
ric AMLs. Diagnostic RNA from patients with {(8;21) (N = 17), Inv(16) (N = 14), and normal
karyotype (NK, N = 33) were subjected to RNA-seq. Analyses compared the transcriptomes
across these three cytogenetic subtypes, using the NK cohort as the control. A total of 1291
genes int(8;21) and 474 genes in Inv(16) were differentially expressed relative to the NK con-
trols, with 198 genes differentially expressed in both subtypes. The majority of these genes
(175/198; binomial test p-value < 1073°) are consistent in expression changes among the two
subtypes suggesting the expression profiles are more similar between the CBF cohorts than in
the NK cohort. Our analysis also revealed alternative splicing events (ASEs) differentially
expressed across subtypes, with 337 1(8;21)-specific and 407 Inv(16)-specific ASEs detected,
the majority of which were acetylated proteins (p = 1.5x10°" and p = 1.8x10°* for the two sub-
sets). In addition to known fusions, we identified and verified 16 de novo fusions in 43 patients,
including three fusions involving NUP98 in six patients. Clustering of differentially expressed
genes indicated that the homeobox (HOX) gene family, including two transcription factors
(MEIS1 and NKX2-3) were down-regulated in CBF compared to NK samples. This finding sup-
ports existing data that the dysregulation of HOX genes play a central role in biology CBF-AML
hematopoiesis. These data provide comprehensive transcriptome profiling of CBF-AML and
delineate genes and pathways that are differentially expressed, providing insights into the
shared biology as well as differences in the two CBF subsets.
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Introduction

Acute myeloid leukemia (AML) is a hematopoietic malignancy defined by genetic (and epige-
netic) alterations in hematopoietic stem or progenitor cells that lead to dysregulation of critical
signal transduction pathways resulting in clonal expansion without complete differentiation.
The genomic landscape of AML is under investigation. Distinct profiles have been discovered
for different karyotypes and single-nucleotide polymorphisms (SNPs), revealing the heteroge-
neity and complexity of AML[1]. This genomic complexity leads to variability in responses to
chemotherapy and disparate outcomes. Moreover, we and others have found age-dependent
shifts in the genomic abnormalities of AML, some of which [2, 3] may contribute to differential
outcomes observed in adult vs. pediatric AML[4]. Although these previous studies have helped
us to better understand the correlation between genotypes and phenotypes in AML, a more
detailed examination of defined molecular subgroups may yield another level of understanding,
which is not readily attainable by examining more molecular diverse AML populations.

Cytogenetic alterations have been shown to play a critical role in the diagnosis of AML[1].
Fusions involving RUNXI-RUNXITI and CBFB-MYH11, collectively referred to as core bind-
ing factor (CBF) AML, are one of the most frequent and most-studied genomic events in AML
[5, 6]. Despite extensive studies into the biologic implications of these fusion transcripts and
their use for risk stratification,[7, 8] knowledge of the presence of these fusions has not led to
new targeted interventions. Further, despite the fact that t(8;21) and Inv(16) implicate CBFA
and CBFB, respectively, and lead to similar clinical outcomes, potential mechanistic similarities
and differences remain to be well defined.

RNA-seq for whole-transcriptome sequencing has become a powerful approach for study-
ing mRNA transcripts[9, 10]. In contrast to traditional microarray methods, RNA-seq can
identify de novo transcripts that are not represented in the reference genome (i.e., fusion genes)
[11] while quantifying previously described reference transcripts[12] and identifying splicing
alterations[13]. Recently, several adult AML studies using NGS technologies have been
reported. The Cancer Genome Atlas (TCGA) Research Network[14] revealed the genomic and
epigenetic landscapes of 200 adult de novo AML patients using whole-genome, whole-exome,
RNA, and microRNA sequencing, along with DNA methylation studies. In addition, MacRae
etal.[15] used RNA-seq to analyze 55 adult leukemia samples, identifying 119 genes whose
expression is more consistent than the commonly used control genes across those leukemia
samples. Lilljebjorn et al. [16] also used RNA-seq to identify fusion genes in adult leukemia
patients. In contrast, the study of the pathogenesis of pediatric AML using NGS technologies is
still in its earliest stages, and large studies have not extensively evaluated CBF-AML patients
using this technology.

In this report, we use whole-transcriptome sequencing to interrogate the transcript profiles
for pediatric CBF-AML, comparing these to transcripts from cases with normal karyotype. The
results reveal that t(8;21) and Inv(16) translocations aberrantly impact a set of common genes
and molecular pathways and there are unique gene-expression signatures, splicing differences,
and fusions observed in the CBF subtype.

Results
Patient characteristics

This cohort includes specimens from 64 patients with de novo AML with either t(8;21), N = 17;
Inv(16), N = 14; or normal karyotype (NK), N = 33 treated on Children’s Oncology Group
(COGQG) pediatric AML clinical trials. Patients with NK were selected for those with and without
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Fig 1. Distribution of aligned reads in the human genome (hg19).

doi:10.1371/journal.pone.0138782.g001

FLT3/ITD Mutation (N = 14 and 19, respectively). Baseline characteristics of the patients are
shown in S1 Table.

RNA sequencing in pediatric AML samples

RNA sequencing was performed using the Illumina platform for all 64 samples, with an aver-
age of 47 million (27,576,734-91,175,150) reads per sample. Ninety-six percent of these reads
were mapped to the human reference sequence (hgl19/NCBI Build 37) using the next-genera-
tion sequencing (NGS) aligner Novoalign (www.novocraft.com); ~26,000 RefSeq genes were
covered by at least one read and ~16,500 RefSeq genes had RPKM (Reads Per Kilobase per Mil-
lion mapped reads) > 1 (S2 Table). Ninety percent of these mapped reads were located within
gene regions, including coding, UTR, and intronic regions, and the distribution was very simi-
lar among different cytogenetic abnormalities (Fig 1).

Identification of differentially expressed genes by RNA sequencing

In order to determine differential gene expression patterns specific to different cytogenetic cat-
egories, we performed principal component analysis (PCA) (Fig 2A). The PCA using all genes
successfully separated out expression profiles for samples with Inv(16), t(8;21), or NK into
three distinct clusters, suggesting that cytogenetic abnormalities profoundly affected gene-
expression patterns. Two patients with NK had expression profiles that clustered with those
with Inv(16). Closer examination of the two cases demonstrated the presence of CBFB-MYH11
through fluorescence in situ hybridization (FISH) in 22% of the studied metaphases in one
case. However, the second case did not show CBFB-MYH11 fusions through FISH or real-time
polymerase chain reaction (RT-PCR). The only fusion event shared by these two cases was the
intergenic fusion NDRGI-ST3GALI, which was also found in one t(8;21) sample and in one
Inv(16) sample, but not in other NK samples.
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Fig 2. Differentially expressed genes characterize different cytogenetic abnormalities. (A) Principal component analysis for samples with different
cytogenetic abnormalities. (B-D) Circular plots were drawn with the in-house software application OmicCircos[18] to represent the t(8;21)-specific, Inv(16)-
specific, and normal-specific differentially expressed genes. The track from outside to inside are the symbols of differentially expressed genes with high
significance (p-value < 1.0E-08); genome positions by chromosomes (black lines are cytobands); average expression level for the samples with specific
cytogenetic abnormalities (yellow); average expression level for the remaining samples (pink); fold change (red: up-regulated; blue: down-regulated); and the
p-values associated with the expression patterns between one subtype and the remaining samples.

doi:10.1371/journal.pone.0138782.9002
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Table 1. Most significantly up- and down-regulated genes in the three cytogenetic categories.

1(8; 21)
Up-regulation

Gene

RUNX1T1
CTC-497E21.4
SIPA1L2
TRH

WIPF3
POU4F1
PALM
AC141928.1
PSD3

IRX6
GAPDHP14
IGSF1
SGPP1
DOCK®6
EVC2
SLCO5A1
PLCG1
GYLTL1B

p-value

2.21E-31
7.55E-22
7.91E-19
3.55E-18
4.34E-14
9.74E-13
1.06E-12
2.37E-12
1.86E-11
1.07E-10
1.24E-10
1.37E-10
1.55E-10
6.10E-10
1.24E-09
1.32E-09
1.67E-09
2.35E-09

Down-regulation

Gene

RFX8
TSPAN32
MEIS1
RP11-556E13.1
HOXB2
Ciiorf21
ARHGEF11
HOXB-AS1
AC004540.5
LAT2
HOXB4
CPVL
HOXA-AS4
HOXA10
Clorf127
HOXA9
DOCK1
HOXB3

doi:10.1371/journal.pone.0138782.1001

Inv(16)

Up-regulation

Down-regulation

Normal

Up-regulation

Down-regulation

p-value Gene p-value Gene p-value Gene p-value Gene p-value

7.18E-20 MMP14 7.06E-22 COL23A1 1.02E-09 NKX2-3 6.60E-17 ADARB2-AS1 7.85E-11
5.14E-19 AK5 5.32E-21 RP1-249H1.4 5.98E-09 RP11-129J12.2 1.73E-10 MMP28 5.70E-10
7.02E-17 XPNPEP2 2.79E-16 RP11-1055B8.6 1.47E-08 RP11-1055B8.6 7.16E-10 RP11-1134114.2 1.51E-09
5.44E-16 EMILIN1 3.26E-16 RANBP17 3.05E-07 PRDM16 1.51E-09 KIRREL 2.42E-09
8.00E-14 CHI3L1 9.33E-11 DBN1 8.50E-06 BAHCC1 2.42E-09 LAMB2 2.42E-09
2.28E-13 CD9 2.44E-10 TANC2 2.08E-05 RP1-163G9.1 2.91E-09 DLGAP3 4.84E-09
1.19E-11 SPARC 2.44E-10 DNAJC12 3.50E-05 TSPAN32 1.25E-07 CD52 6.48E-09
2.77E-11 TGFBI 2.44E-10 CD59 5.15E-05 PLXNC1 2.86E-07 RUNX1T1 8.99E-09
2.99E-11 LPAR1 4.57E-10 CYP7B1 5.39E-05 CTD-3179P9.1 5.31E-07 PEAR1 1.44E-08
3.96E-11 ME1 1.18E-09 SPATA6 6.71E-05 SEL1L3 1.21E-06 AADAT 1.63E-08
1.70E-10 GPR12 2.14E-09 NR6A1 7.13E-05 AIG1 2.17E-06 PSD3 2.58E-08
2.56E-10 COBLL1 2.67E-09 CTC-455F18.3 1.52E-04 CTSG 3.26E-06 CERS4 1.42E-07
3.69E-10 CLIP3 5.54E-09 RP11-480D4.3 1.72E-04 MIR4740 5.05E-06 RP11-567J24.4 1.11E-06
5.79E-10 LSAMP 7.66E-09 PCNXL2 1.83E-04 RP11-1055B8.4 1.86E-05 ST18 1.62E-06
8.84E-10 CcDiB 8.22E-09 LRRC37A16P 1.83E-04 TRGC1 2.27E-05 TPO 1.71E-06
1.80E-09 EMP1 2.93E-08 BAHCC1 1.94E-04 OCLN 2.63E-05 SGK110 3.89E-06
2.79E-09 CYP2E1 3.19E-08 NKX2-3 2.47E-04 BEND6 2.63E-05 ALS2CL 3.89E-06
9.41E-09 NT5E 6.47E-08 RP5-862P8.2 2.47E-04 HOXA10 2.85E-05 CCDC50 5.05E-06

To identify differentially expressed genes specific to each of the cytogenetic cohorts, we per-
formed differential expression analysis using DESeq package[17], which uses a model based on
the negative binomial distribution with variance and mean linked by local regression. Compar-
ing t(8;21) samples with the remaining samples, a total of 827 t(8;21)-specific genes were found
to be differentially expressed with an adjusted p-value (multiple testing using the Benjamini-
Hochberg method) of less than 0.05 (Fig 2B). Among these, 365 genes were up-regulated, with
the RUNXITI gene most significantly up-regulated (p = 2.21x10"; Table 1). RNA-seq reads
were uniquely mapped into the entire coding regions of RUNX1T1 for the 17 samples with t
(8;21), with very few reads mapping to this gene in patients with Inv(16) or NK (S1 Fig). Addi-
tionally, 462 genes were down-regulated in samples with t(8;21), with the RFX8 gene being the
most under-expressed (p = 7.18 x 10~%°). Eight of the top 20 under-expressed genes belonged
to the HOX family (Table 1).

Similarly, AML samples with Inv(16) displayed 279 genes that were differentially expressed
as compared to the remaining samples, with 181 of these genes up-regulated and 98 down-reg-
ulated at the adjusted p-value of 0.05 (Fig 2C). Matrix metallopeptidase 14 (membrane-
inserted) (MMP14) mRNA was most significantly up-regulated (p = 7x107>?). Conversely, col-
lagen type XXIII, alpha 1 (COL23AI) mRNA was the most significantly down-regulated. Three
hundred and eighty normal-specific genes were also found (Fig 2D), indicating a widespread
presence of differentially expressed genes among different cytogenetic abnormalities.

RUNXT binding sites were enriched in differentially expressed genes

RUNX1 has shown to play a crucial role in haematopoiesis during embryonic development
[18] and the two subunits of the core binding factors (CBFs), i.e., CBFA and CBFB, have been
suggested to modify the transcriptional regulator functions of AML by either altering the nor-
mal RUNX1 transcription program, interfering with the RUNX1 assembly, or recruiting his-
tone deacetylases and inhibiting the RUNXI activity [19-21]. To study the expression of the
RUNX1 targeted genes in the three cytogenetic categories, RUNXI ChIP-Seq data in the ME-1
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T R 3 INTERPRO Homeobox protein, antennapedia type, conserved site 10 35617 39E15
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GOTERM_MF_FAT sequence-specific DNA binding 15 A6E09 0.0000006

PIR_SUPERFAMILY PIRSFO02612:homeotic protein Hox AS/D4 5 25608 77607

Fig 3. Commonly expressed genes in CBF AML. (A) Differentially expressed genes (red dots in the MA
plot) in t(8;21) and Inv(16) vs. those with NK. 198 genes are shared in the two subtypes. (B) Gene Set
Enrichment Analysis (GSEA) shows enriched functions for shared down-regulated genes between them.

doi:10.1371/journal.pone.0138782.g003

cell line were analyzed [19](GEO accession number GSE46044). 34,654 peaks were identified
using HOMER ChIP-Seq analysis package (http://homer.salk.edu/) and 11,844 out of 20,805
(56.9%) ensemble coding genes (GRCh37) were targeted by these ChIP-Seq peaks. Compared
with the differentially expressed genes in the three cytogenetic categories, 72.8% of differen-
tially expressed genes in the t(8;21) samples; 73.8% of differentially expressed genes in the Inv
(16) samples and 69.0% of differentially expressed genes in the normal samples were targeted
by these ChIP-Seq peaks. There is significant enrichment for the RUNX1I binding sites in the
differentially expressed genes in these three cytogenetic categories (Binomial test p-value is
2.1E-17,7.1E-08 and 2.1E-05 respectively; S3 Table).

Genes commonly expressed in CBF AML

Because those cases referred to collectively as CBF AML share a common biology, clinical pre-
sentation, and outcome, we inquired whether the two cohorts also shared an expression profile.
To this purpose, we detected differentially expressed genes in t(8;21) and Inv(16) using NK
cohort as the control. Of the total of 1567 genes that are differentially expressed in all CBF
AML cases [1291 in t(8;21) and 474 in Inv(16)], compared to samples with normal karyotype
(NK), 198 differentially expressed genes are shared by the two subtypes in CBF AML (Fig 3A):
87 of these genes are up-regulated, 88 are down-regulated in both subtypes (54 Table), while
another 23 genes have opposing expression profiles (down-regulated in one subtype but up-
regulated in the other). More genes share expression profiles between these two subtypes (175 /
198; binomial test p-value < 10°) than do not. Furthermore, the 88 shared down-regulated
genes include many HOX genes and are enriched in genes involved in morphogenesis, specifi-
cally embryonic skeletal system development (Fig 3B). In contrast, no gene sets are significantly
enriched for the 87 shared up-regulated genes.

Expression profile in samples with normal karyotype (NK)

Evaluation of distinct expression profiles of those with NK from those with t(8;21) or Inv(16)
identified 175 significantly up-regulated and 205 down-regulated genes. We further studied the
expression profiles for those with and without FLT3/ITD mutation in the NK cohort to deter-
mine whether FLT3/ITD mutation is associated with a specific expression pattern. Although
the expression signature for those with NK was distinct from those with CBF AML, expression
PCA failed to define a distinct expression profile for those with and without FLT3/ITD

PLOS ONE | DOI:10.1371/journal.pone.0138782 September 23,2015 6/18
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Fig 4. Comparison of expression profiles for those with and without FLT3/ITD mutation. (A) PCA for the
two groups. (B) Genes with the most significant adjust p-value between the two groups.

doi:10.1371/journal.pone.0138782.9g004

mutation (Fig 4A). HOXB7 was the only gene whose expression was significantly associated
with FLT3/ITD mutation (adjusted p-value 0.034) (Fig 4B) with an adjusted p-value < 0.05.

Co-expressed genes define gene networks

Clustering of differentially expressed genes for each cytogenetic abnormality indicates the exis-
tence of co-expressed gene networks (Fig 5A, S2A and S2B Fig). To study the functionality of
these networks, we calculated the correlation coefficient (R) for each pair of differentially
expressed genes in each subtype and used Cytoscape[22] to identify co-expressed genes with R
> 0.6 and to determine subsets of the co-expressed gene networks with specific molecular func-
tions (Fig 5B, S2C and S2D Fig). Up-regulated genes and down-regulated genes were clustered
into different groups for the t(8;21)-specific differentially expressed genes. A sub-group con-
taining 39 genes, located in the group with down-regulated genes, is enriched in the

homeobox (HOX) gene family (Fig 5B). The group includes two HOX gene clusters on human
chromosomes 7p15 (HOXA) and 17q21 (HOXB), the HOX cofactor myeloid ecotropic viral
integration site 1 (MEISI) and the NK2 homeobox 3 (NKX2-3). MEISI is a common leukemic
collaborator[23] and NKX2-3 is a homeobox transcription factor[24]. All of these HOX genes
were down-regulated in the samples with t(8;21) (Fig 5C). Most HOX genes were also down-
regulated in the samples with Inv(16) except for HOXB2, HOXB3, HOXB4 and MEISI. Fur-
thermore, although samples with NK had higher expression levels in the HOX gene family,
most genes in the HOXB gene cluster and NKX2-3 had even higher expression levels when they
contained the FLT3-ITD mutation.

Several immunoglobulin-related gene families, including the Leukocyte Immunoglobulin-
like Receptor (LIR) gene family and the Immunoglobulin Heavy (IGH) gene family, were also
enriched in down-regulated genes for the t(8;21) AML samples, while no molecular processes
or functions were enriched in up-regulated genes for the t(8;21) AML samples.

Alternative splicing is common in AML and is affected by acetylation

In addition to evaluating differential expression patterns, we assessed alternative splicing
among the three cytogenetic cohorts. We used the Multivariate Analysis of Transcript Splicing
(MATS) application[25] to identify alternative splicing characteristic of samples from the cyto-
genetic subtypes. MATS is a computational tool that uses a statistical model with multivariate
uniform prior to detecting differential alternative splicing events using RNA sequencing data.

PLOS ONE | DOI:10.1371/journal.pone.0138782 September 23,2015 7/18
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Fig 5. Co-expression of t(8;21)-specific genes. (A) Heatmaps showing the clustering of 827 t(8;21)-specific genes in 64 pediatric AML samples. (B) Co-
expressed genes were determined based on the coefficient of determination (R2 > 0.6). The co-expression gene networks were generated using Cytoscape
2.8.3[19]. Node color is based on the fold change of the differentially expressed gene (red: up-regulated; green: down-regulated), and node size corresponds
to the degree of the node (i.e., the number of edges incident to it). (C) Gene expression of the HOX gene family for three types of cytogenetic abnormalities,
where NK is separated into two groups based on the mutation of FLT3/ITD.

doi:10.1371/journal.pone.0138782.9005

Five different alternative splicing events were detected by MATS, including skipped exon (SE),
alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive exons
(MXE), and retained intron (RI).
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In our study, 337 t(8;21)-specific, 407 Inv(16)-specific, and 272 NK-specific alternative
splicing events were detected. Skipped exon (SE), mutually exclusive exons (MXE) and retained
intron (RI) seemed to be the predominant alternative splicing events in pediatric AML samples
(Fig 6A and 6B). Furthermore, MATS separated all alternative splicing events into inclusion or
skipping groups based on whether the alternative exon was included or skipped in the samples.
Samples with t(8;21) and NK tended to include the alternative exons (Fig 6A), while samples
with Inv(16) were likely to skip them (Fig 6B). 216 genes were affected by t(8;21)-specific alter-
native splicing events (Most significant events involving genes including RAB10, SERF2,
HNRNPC, HNRNPD, HNRPDL, HINT1, NACA, PABPCI, RPL10, RPS12, RPS27, ARPC3, EIF1,
STMN1, and ARPC4). 233 and 158 genes were also affected by Inv(16)-specific and normal-spe-
cific alternative splicing events, respectively. Gene Set Enrichment Analysis (GSEA) indicated that
the majority of the affected genes are acetylated proteins: 127 genes (59%; p-value = 1.5E-51) for
t(8;21)-specific; 135 genes (58%; p-value = 1.8E-54) for Inv(16)-specific; and 98 genes (62%;
p-value = 1.2E-42) for normal-specific, and are enriched in the KEGG pathway ribosome.

Identification of fusion transcripts in pediatric AML samples

RNA sequencing has also been successfully used to identify gene-fusion events in cancers[26,
27], and many computational tools have been developed to detect these events[11, 28-30].
Most detection methods, however, have proved problematic because of high false-positive rates
[31, 32]. We used four gene-fusion detection methods—Defuse[28], Tophat-Fusion[29],
FusionMap[30] and Snowshoes-FTD[11] to identify gene-fusion events in our pediatric AML
samples. The number of putative fusion events identified ranged from 300 to more than 2000
for each detection method, while only a few fusion events (2%-5%) overlapped between any
two methods (Fig 7A). To reduce the high rate of false positives, only 69 putative fusion events
(Fig 7B; S5 Table), identified by at least two detection methods or by one method with a Chi-
merDB hit[33], were used in our study. ChimerDB is a knowledgebase of fusion genes identi-
fied using bioinformatics analysis of transcript sequences based on various public resources,
including GenBank, the Sanger Cancer Genome Project (CGP), OMIM, PubMed, and the
Mitelman database. Fifty-one of the 69 putative fusion events (74%), were intra-chromosomal
(Fig 7B), and the remaining 18 (26%) were found in inter-chromosomal junctions. Fifty-nine
of the 69 identified fusions involved the coding regions of the affected gene (S4 Table). Eight
putative fusion events were found in ChimerDB and six of them were previously reported in
AML[34-37], suggesting that the combination of multiple gene-fusion detection methods and
ChimerDB can accurately identify fusion events. The CBFB-MYH11 fusion event was identified

A Inclusion Skipping

mt(8; 21) P mt(8; 21)
60 120
50 = inv(16) 100 = inv(16)
40 Normal 80 Normal
30 60 '_'
20 40
: Jan l1 : ‘7 - -

ASSS A3sS XE ASSS A3SS RI

Counts
Counts

Fig 6. Alternative splicing for pediatric AML samples. Alternative splicing events detected by MATS for
three cytogenetic abnormalities. Five different alternative splicing events were detected: skipped exon (SE),
alternative 5’ splice site (A5SS), alternative 3’ splice site (A3SS), mutually exclusive exons (MXE) and
retained intron (RI). All events were further separated into two groups based on whether the alternative exon
was included (A) or skipped (B) in the samples.

doi:10.1371/journal.pone.0138782.9g006
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Fig 7. Identification of gene-fusion events in pediatric AML samples. (A) Gene-fusion events were detected using four gene fusion detection methods.
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doi:10.1371/journal.pone.0138782.9g007

in 12 out of 14 samples with clinically annotated Inv(16) (Fisher's exact test; p-value = 1.25E-
11). Closer interrogation of the two cases without the CBFB-MYH11 fusion event demon-
strated the presence of reads consistent with the fusion transcripts, but due to their low
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coverage, these cases did not meet the statistical threshold for identification. In addition,
RUNXI-RUNXITI transcript fusions were identified in all 17 samples with clinically annotated
t(8;21) (Fisher's exact test; p-value = 2.23E-16), further suggesting that the identification of
putative fusion events was accurate.

In addition to the known fusion transcript for the 31 patients with CBF AML
(CBFB-MYH11 and RUNXI-RUNXI1T1), an additional 132 fusion transcripts (for 47 fusion
events) were identified, including 21 inter- and 111 intra-chromosomal translocations. In 33
patients without known karyotypic alterations (NK), a total of 126 fusion transcripts (for 53
fusion events) was detected, including 30 inter- and 96 intra-chromosomal fusions. In total,
287 fusion transcripts were identified. These included intra-chromosomal junctions of three
fusion variants of NUP98 in 6 patients (NUP98-NSD1, N = 4; NUP98-HOXD13, N = 1; and
NUP98-HMGB3, N = 1; Fig 7C). Frequent high-confidence in-frame fusions (i.e., PIM3-SCO2,
ADSL-SGSM3 and SIDT2-TAGLN (Fig 7D), as well as all NUP98 variants) were confirmed by
secondary methodology (PCR and Sanger sequencing).

There were 119 genes involved in the 69 fusion events and gene set enrichment analysis of
these 119 genes using the Database for Annotation, Visualization, and Integrated Discovery
(DAVID)[38] (Huang et al. 2009) indicated that these fusion genes are enriched in genes that
code for proteins which are post-translationally modified by the attachment of at least one
methyl, phosphate, or acetyl group.

Discussion

Fusion transcripts resulting from genomic translocations between RUNXI-RUNXITI in t
(8;21) and CBFB-MYHI11 in Inv(16), collectively referred to as CBF AML, have similar clinical
outcomes, but the similarities and differences between the two entities have not been studied in
detail. We investigated the transcriptome profiles of specimens from children with AML char-
acterized by t(8;21) or Inv(16), and also from a third subset of patients with normal karyotype
(NK) in order to define transcript-expression patterns as well as isoforms and pathways that
are differentially expressed in these genomic subsets and to delineate the similarities and differ-
ences in these groups of patients. Hundreds of differentially expressed genes were found in
each cohort indicating a widespread presence of differential expression among different cyto-
genetic abnormalities. Using the NK cohort as our control, we established expression profiles
for each of the two subtypes [i.e., t(8;21) and Inv(16)] in CBF AML to define genes whose
expression patterns are shared or differ between the two subtypes. A large number of differen-
tially expressed genes were identified for the subsets of t(8;21) and Inv(16) compared to the
NK cohort. We then demonstrated that the majority of the shared differentially expressed
genes (175 / 198; binomial test p-value < 107%%) between t(8;21) and Inv(16) are consistent in
the two subtypes (genes are up- or down-regulated in both subtypes) and these genes are
enriched for a number of HOX genes involved in morphogenesis, specifically the development
of the embryonic skeletal system. Additionally, each of the subgroups were enriched for differ-
entially expressed genes that contained RUNX1 binding sites; 72.8% of genes in the t(8;21)
samples; 73.8% of genes in the inv(16) samples and 69.0% of genes in the normal samples.
Besides karyotype-specific expression patterns, alternative splicing patterns among the cyto-
genetic cohorts were assessed. We identified a large number of specific alternative splicing
events associated with each cytogenetic subset. Our data demonstrated that several types of
splicing exist in our cohorts, with skipped exon (SE), mutually exclusive exons (MXE), and
retained intron (RI) predominating. This suggests that splicing patterns in AML could be kar-
yotype-specific. Different splicing events can modulate gene function by introducing or delet-
ing functional gene domains or silencing genes by causing frame-shifts or introducing early-
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termination codon. Defining the functional isoforms that would be translated from those des-
tined for nonsense-mediated decay is likely to prove critical in distinguishing biologically sig-
nificant spliced-gene products from non-functional ones. Additionally, we demonstrated that
the protein products of a significant majority of alternatively spliced genes are determined to
be substrates of post-translational acetylation. Previous studies have demonstrated that acetyla-
tion strongly influences alternative splicing[39, 40], implicating acetylation in the karyotype-
specific differential expression of alternative splicing. Gene set enrichment analysis of the genes
altered by splicing indicated varied members of the KEGG pathway ribosome are involved.
This is consistent with previous studies that show the fusion proteins, RUNX1-RUNXITI and
CBFB-MYHI11, to regulate ribosomal RNA transcription [41, 42]. The dysregulation of these
processes is thought to aid in the fusion proteins’ role in altering differentiation, proliferation
and disrupting normal hematopoiesis.

We further assessed the presence of fusion transcripts found in our study population. Given
the high false-positive rate for most current gene-fusion detection methods[10, 31], our inte-
gration of four distinct gene-fusion detection methods with ChimerDB, a knowledgebase of
fusion genes, allowed us to identify fusion transcripts more accurately than is possible with
approaches that use a single method. (We accurately identified 29 out of 31 cases for those
known fusion events (CBFB-MYH]11 and RUNXI-RUNXITI) in CBF AML.) In addition to
identifying the 29 known fusion transcripts, we detected an additional 258 fusion transcripts
(67 fusion events in 115 genes). Fusions of high interest include those involving NUP98, a
nucleoporin gene that encodes a building block of the nuclear pore complex which mediates
the transport of mediators of cellular function across the nuclear membrane. Three fusion vari-
ants of NUP98 were identified (NUP98-NSD1, NUP98-HOXD13, and NUP98-HMGBS3).
NUP98-NSD1 has been shown to co-occur with the mutation of FLT3/ITD and to be strongly
associated with adverse outcomes[43], though NUP98-HOXD13 and NUP98-HMGB3 are less-
known variants whose prevalence and clinical implications are yet to be determined. Further,
we identified a large number of intra-chromosomal fusions whose true functionality needs be
evaluated. Some of these fusions may result from transcriptional read-throughs that may or
may not be functionally significant. Studies of the protein products and functional significance
of these lesions is ongoing. Our study also indicates that the identified fusion transcripts are
enriched in genes that encode proteins undergoing post-translational modification by acetyla-
tion, methylation, or phosphorylation, suggesting potential functional implications. A previous
study has shown that chromatin proteins and metabolic enzymes are highly represented in
acetylated, methylated, or phosphorylated proteins[44], suggesting that gene fusions may pro-
foundly affect gene expression and metabolism in pediatric AML subtypes.

This study also highlights the significance of homeobox (HOX) genes in CBF AML. Dysre-
gulation of HOX genes contributes to the perturbation of normal hematopoiesis[45, 46], and
the overexpression of HOX genes in hematopoietic cells can contribute to leukemogenesis[47,
48]. Our results demonstrate that the expression levels of all HOX genes were down-regulated
in the t(8;21) subtype, whereas in contrast, four HOX genes (HOXB2, HOXB3, HOXB4 and
MEISI) had much higher expression levels in the Inv(16) subtype than that in the t(8;21) sub-
type. The potential implication of differential HOX expression in CBF AML subtypes may
cooperate with the leukemogenic potential of the two fusion events (CBFB-MYH]I11 and
RUNXI1-RUNXIT1I)[49]. Furthermore, given our observations of high HOX expression in
patients with FLT3/ITD mutation and previous reports of association of elevated HOX expres-
sion with adverse outcomes[8, 50], the hypothesis that HOX expression may mediate the evolu-
tion of resistance should be considered.

This study provides comprehensive transcriptome profiles for CBF AML subtypes alpha [t
(8;21)] and beta [Inv(16)]. It delineates differential gene-expression profiles, transcript splice
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isoforms, and fusion transcript profiles for CBF AML subtypes, and it also identifies specific
genes and pathways that may provide targets for therapeutic intervention.

Materials and Methods
Pediatric AML samples

64 diagnostic samples derived from either bone marrow (n = 59) or peripheral blood (n = 5)
were used in this study. All samples were obtained by written consent from the parents/guard-
ians of minors from three consecutive Children’s Oncology Group clinical trials (CCG-2961,
AAML-03P1, and AAML-0531). The Institutional Review Board at Fred Hutchinson Cancer
Research Center has reviewed and approved this study. It is filed under protocol 1642 (Biology
of the Alterations of the Signal Transduction Pathway in Pediatric Cancer), IR File #5236. Col-
lectively, the percentage of leukemic blasts in the samples is very high with a median of 77.5%
(range 40-100%). Age range is 0.83-20.82 years with a median of 12.29 years. Males represent
42 out of 64 (66%) patients.

RNA preparation and sequencing

Genetic material from AML specimens was extracted using AllPrep DNA/RNA Mini Kits
(Qiagen, Valencia, CA). At Hudson Alpha Institute (Huntsville, AL), 1 ug of high-quality total
RNA was used for the conversion of mRNA into a cDNA library of template molecules based
on mRNA capture with poly(T) magnetic beads, fragmentation, and reverse transcription to
first-strand cDNA with reverse transcriptase and random primers using Illumina's TruSeq
RNA Sample Prep kit (Illumina, San Diego, CA) according to the manufacturer's instructions.
After adaptor ligation, each cDNA library was purified and enriched by PCR amplification; the
final average fragment size, including adaptors, was 280 bases. Each library was then subjected
to 50-cycle paired-end sequencing on the Illumina HiSeq, with four samples multiplexed into
each flow cell lane.

Alignment of RNA-sequencing reads to the human genome

Paired-end RNA-sequencing reads were aligned to the human reference genome (hg19/NCBI
Build 37). Both the human reference genome and the splicing junction sequences were com-
bined to form the reference sequences using the USeq MakeTranscriptome program[51], and
RNA-sequencing reads were aligned to the whole genome and splice junctions using Novoalign
(Novocraft 2010). Novoalign used a structural-variation penalty to determine whether paired-
end reads should be reported when they did not form proper fragments. Finally, the aligned
reads were sorted and indexed using SAMTools[52] and were stored in the SAM/BAM format.
All BAM files have been deposited at The database of Genotypes and Phenotypes (dbGaP,
http://www.ncbi.nlm.nih.gov/gap) under substudy, phs000465.v10.p3, TARGET: Acute Mye-
loid Leukemia (AML).

Identification of differentially expressed genes

Aligned reads were annotated using the HTSeq package (http://www-huber.embl.de/users/
anders/HTSeq/). We used the HTSeq-count program to calculate the number of reads mapped
in each gene based on the Homo_sapiens.GRCh37.69.gtf annotation file downloaded from
ensembl.org. A union overlap resolution mode was used to remove ambiguous reads. DESeq
[17] was used to calculate the p-value among samples with different cytogenetic abnormalities
for each gene. We applied the Benjamini-Hochberg procedure [53] to correct multiple testing
and reported genes with an adjusted p value < 0.05 as differentially expressed genes (S6 Table).

PLOS ONE | DOI:10.1371/journal.pone.0138782 September 23,2015 13/18


http://www.ncbi.nlm.nih.gov/gap
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/
http://www.ensembl.org

@’PLOS ‘ ONE

Transcriptome Profiling of Pediatric CBF AML

Gene set enrichment analysis and visualization

We used DAVID(38] to perform gene set enrichment analysis (GSEA) in order to associate
molecular functions with the set of differentially expressed genes as well as with sets of alterna-
tive splicing and fusion genes. Furthermore, we used OmicCircos[54] and Cytoscape[22] to
visualize the results of the analysis.

Detection of alternative splicing among different cytogenetic
abnormalities

We used the MATS program to detect five distinct alternative splicing events. Putative alterna-
tive splicing events were identified from the RNA-sequencing data using the annotation file
that HTSeq had downloaded from ensembl.org. TopHat[55] was used to identify alternative
splicing events, MATS was used to calculate the p-value for each alternative splicing event, and
the false-discovery rate (FDR) control was applied to find differential alternative splicing events
among samples with distinct cytogenetic abnormalities (S7 Table).

Identification of fusion events

Four gene-fusion detection methods—Defuse[28], Tophat-Fusion[29], FusionMap[30] and
Snowshoes-FTD[11] were used to identify gene-fusion events in the pediatric AML samples.
Fusion events identified by more than one methods were chosen as putative fusion events (S8
Table). Moreover, a knowledgebase of fusion genes, ChimerDB[33], was used to include those
fusion events, which were only detected by a gene-fusion detection method. Visualization of
fusion events was created using an in-house Perl program, which is based on the GD graphics
library and uses UCSC hg19 known gene as gene and exon reference.

RT-PCR validation for putative fusion events

RNA was reverse-transcribed using Thermo Scientific’s Maxima H Minus First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, Pittsburgh, PA). The resulting cDNA was used in PCR
amplification of fusion junctions with primers listed in S9 Table. Fusion transcripts were veri-
fied by Sanger sequencing.

Supporting Information

S1 Fig. An example showing the differential expression of genes between samples with dif-
ferent cytogenetic abnormalities. RNA-seq reads were mapped to the region of RUNX1T1 for
64 pediatric AML samples (red: high read density; green: low read density).

(TIF)

S2 Fig. Co-expression of Inv(16)-specific and normal-specific genes. (A-B) Heatmaps show-
ing the clustering of differentially expressed genes among 64 pediatric AML samples for Inv
(16)-specific and normal-specific differentially expressed genes. (C-D) Co-expression gene net-
works for Inv(16)-specific and normal-specific differentially expressed genes. Co-expressed
genes were determined based on the coefficient of determination (R* > 0.6). The co-expression
gene network was generated using Cytoscape 2.8.3 (Smoot et al. 2011). Node color is based on
the fold change of the differentially expressed gene (red: up-regulated; green: down-regulated)
and node size corresponds to the degree of the node (the number of edges incident to the
node).

(TTF)
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(XLSX)

S5 Table. List of 69 putative fusion events.
(XLSX)

S6 Table. Differential expression analysis using DESeq.
(XLSX)

S7 Table. Multivariate Analysis of Transcript Splicing (MATS).
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