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Abstract

Purpose

To describe a methodology, based on cluster analysis, to partition multi-parametric func-

tional imaging data into groups (or clusters) of similar functional characteristics, with the aim

of characterizing functional heterogeneity within head and neck tumour volumes. To evalu-

ate the performance of the proposed approach on a set of longitudinal MRI data, analysing

the evolution of the obtained sub-sets with treatment.

Material and Methods

The cluster analysis workflow was applied to a combination of dynamic contrast-enhanced

and diffusion-weighted imaging MRI data from a cohort of squamous cell carcinoma of the

head and neck patients. Cumulative distributions of voxels, containing pre and post-treat-

ment data and including both primary tumours and lymph nodes, were partitioned into k

clusters (k = 2, 3 or 4). Principal component analysis and cluster validation were employed

to investigate data composition and to independently determine the optimal number of clus-

ters. The evolution of the resulting sub-regions with induction chemotherapy treatment was

assessed relative to the number of clusters.

Results

The clustering algorithm was able to separate clusters which significantly reduced in voxel

number following induction chemotherapy from clusters with a non-significant reduction.

Partitioning with the optimal number of clusters (k = 4), determined with cluster validation,

produced the best separation between reducing and non-reducing clusters.
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Conclusion

The proposed methodology was able to identify tumour sub-regions with distinct functional

properties, independently separating clusters which were affected differently by treatment.

This work demonstrates that unsupervised cluster analysis, with no prior knowledge of the

data, can be employed to provide a multi-parametric characterization of functional heteroge-

neity within tumour volumes.

Introduction
Magnetic resonance imaging (MRI) is a highly flexible functional imaging (FI) technique
enabling evaluation of multiple aspects of tumour biology in a single examination without
radiation exposure [1,2], in contrast to modalities such as positron emission tomography
(PET) or contrast-enhanced computer tomography (CT) [1,3]. Dynamic contrast-enhanced
(DCE)-MRI provides information on tumour microcirculation, vascularity, blood volume and
vessel permeability [4]; diffusion-weighted imaging (DWI) measures differences in tissue
microstructure related to tumour cellularity, tissue disorganization, and increased extracellu-
lar space tortuosity [5]; intrinsic susceptibility imaging (IS) provides information relating to
the oxygenation of tissues [6]. Assessment of changes in FI parameters during treatment
could lead to a better understanding of the mechanism of treatment resistance or sensitivity
[3]. A combination of FI parameters, each contributing complementary information, is likely
to offer increased specificity for differentiation of cancerous tissue [7].

There is a pressing need to reliably describe functional or biological heterogeneity within
a tumour. This is particularly relevant in squamous cell carcinoma of the head and neck
(SCCHN), a disease which has a worldwide incidence of approximately 500,000 cases per
annum [8]. One of the main challenges in advancing the management of SCCHN is the inabil-
ity to predict treatment outcome due to tumour heterogeneity [2]. Multi-parametric FI may
identify potentially treatment resistant or sensitive tumour sub-volumes [3,9] and thereby
influence treatment selection such as radiation dose boosts, use of hypoxic cell radiosensitisers
[10,11], treatment de-escalation to reduce normal tissue toxicity [12,13], or a change of treat-
ment modality.

When multi-parametric imaging is available, unsupervised clustering techniques can seg-
ment different tissue types using a combination of FI parameters [14]. These methodologies
are frequently employed to extract anatomical features within the image or to separate the
tumour from the surrounding tissue, and their reliability is often assessed against visual inspec-
tion. The possibility of applying similar clustering techniques to characterize functional hetero-
geneity within the tumour volume alone remains underexplored. In this situation, prior
knowledge of the data or anatomical references are limited or absent, and therefore testing the
partitioning for robustness and consistency is advisable prior to attempting an interpretation
of the results. Specifically, the number of clusters, a parameter which is normally pre-set arbi-
trarily, requires optimization in order for the structures revealed in the data to be meaningful
[15].

In this paper we present a methodology, based on cluster analysis, to partition multi-
parametric FI data into groups (or clusters) of similar functional characteristics, combining
information from both DCE and DWI parameters, with the aim of describing functional het-
erogeneity within tumour volumes. This approach employs cluster validation techniques and
principal component analysis to both understand the structure of the data and to assess the
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consistency of the partitioning. This workflow was applied to a cohort of SCCHN patients
receiving induction chemotherapy (IC) and undergoing MRI as part of a previously reported
feasibility study [3]. The relationship between partitioned data and response to treatment was
investigated in order to identify those parameters more likely to characterize treatment-resis-
tant disease.

Materials and Methods

Clinical Examinations
As part of a prospective pilot study, described by Powell et al in [3], 9 SCCHN patients received
two cycles of IC (cisplatin (75 mg/m2) day 1 and 5-FU (1000 mg/m2) days 1–4) followed by
radical chemoradiotherapy (cisplatin (100 mg/m2) days 1 and 29); macroscopic and micro-
scopic disease received 65 and 54 Gray (Gy) in 30 fractions, respectively, using intensity modu-
lated radiotherapy (IMRT) with a simultaneous integrated boost technique). All patients
underwent MRI at the following time-points: baseline, following IC, after 40 Gy of IMRT, three
and six months post-treatment. This study has been approved by the UK National Research
Ethics Service (EC 08/H0801/132), and written informed consent has been obtained from all
the participants. This cohort included 6 stage IVA, 1 stage IVB and 3 stage III patients, with
primary sites located as follows: 5 in the palatine tonsil, 2 in the pyriform fossa, 1 in the naso-
pharynx, and 1 in the oropharynx [3].

MRI was performed at 1.5T (Philips Intera, Philips Medical Systems, Best, Netherlands),
with patients immobilized in a 5-point thermoplastic mask and lying on a flat rigid bed. Two
flexible surface coils were centred over the tumour [16] and the following functional imaging
sequences were acquired: DCE, following gadolinium injection (0.2 mg/kg, Dotarem1, Guer-
bet, France), with a transaxial 3D T1-weighted spoiled gradient-echo pulse sequence (TE = 1
ms, TR = 4 ms, FOV = 256x256 mm2, 2x2x5 mm3 voxel, 50 mm coverage in the superior/
inferior direction, 1.5 s temporal resolution, with a parallel imaging factor of 1.7 in the ante-
rior/posterior direction); DWI (multi-slice EPI, b = 0, 100, 500, 1000 s/mm2, TE = 91 ms,
TR = 2000 ms, FOV = 256x256 mm2, 2x2x5 mm3 voxel, 20 slices, with SPAIR fat suppression).
The DCE protocol acquired proton density-weighted images (FA = 4°), later used for signal
conversion to contrast agent concentration, followed by 100 dynamic acquisitions (FA = 20°).
DCE and DWI image volumes were aligned and had the same voxel size.

Data Analysis
For each slice, regions of interest (ROI) were delineated on DCE data by a radiation oncologist
together with an expert radiologist around all primary tumours (PT) and target lymph nodes
(LN), employing the software package MRIW (Institute of Cancer Research, London, UK),
which allows analysis of DCE-MRI data sets using standard pharmacokinetic models [17]. The
outline of PTs and LNs was defined as the visible enhancing area immediately following carotid
enhancement [18]. Once the onset of enhancement was identified for each voxel, the initial
area under the gadolinium curve (IAUGC60—integration over 60 s from the onset) was com-
puted inside the defined ROIs. Spatial registration of DWI and DCE images was performed
using a rigid body mutual information algorithm [19] implemented in IDL (version 8.2, Exelis
Visual Information Solutions, Boulder, Colorado, USA). After applying the resulting integer
voxel shift to DWI data, apparent diffusion coefficient (ADC) maps were produced employing
a mono-exponential model to fit all 4 b values, and the ROIs delineated on DCE data were
transferred to the computed maps. For DWI data, an independent set of manually delineated
ROIs was also produced, encompassing the area of impeded diffusion on the b = 1000 images.
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Cluster Analysis
Clustering algorithm. Cluster analysis was performed using in-house software coded in

IDL. The K-means algorithm was employed to partition the ROIs into sub-regions of similar
characteristics, defined in the two-dimensional feature space formed by the two parameters
ADC and IAUGC60. The robust implementation of the K-means algorithm included in the
software package CCHIPS [20] was incorporated into the code, as it provides reproducible
results and is independent of starting conditions. The algorithm standardizes the data, account-
ing for the different scales of the parameters. Following cluster analysis, each voxel was
assigned a colour, with different colours representing membership of a different cluster.

In order to obtain a generic classification of the data, applicable to the whole cohort, the
clustering algorithm was applied to the cumulative distribution of voxels containing data from
all the patients and including both baseline and post-IC data. The slice with the largest cross-
section (referred to as “central ROI”) was selected for each lesion. The cumulative distribution
containing pre and post-treatment central ROIs from both PTs and LNs was partitioned into k
clusters (k = 2, 3 or 4).

After classification, the number of voxels assigned to different clusters within each lesion
pre and post-treatment was counted. For each cluster, paired groups of voxel counts were com-
pared using the Wilcoxon signed-ranks test; a two-tailed p-value< 0.05 was chosen to indicate
a significant difference in the number of voxels between pre and post-treatment data.

In Appendix 1 pre and post-treatment voxels counts are reported in detail for the PT central
ROIs, in the simplest case of k = 2, with the purpose of demonstrating how the proposed
method analyses longitudinal data. Additionally, the PTs were re-analysed comparing the use
of the central ROIs only versus the use of the entire PT volumes, in order to determine if the
slice with largest tumour cross-section represents the tissue type content of the whole lesion.

Principal component analysis. In order to assess the relative contribution of each of the
two parameters (IAUGC60 and ADC) to the partitioning, principal component analysis (PCA)
[21] was performed on the cumulative distribution of voxels containing the central ROIs of
both PTs and LNs.

Cluster validation. A fundamental problem in cluster analysis is the determination of the
optimal number of clusters, i.e. the value of k which best describes the data [22]. The “jump
method” [15] was employed to determine the value of k which maximizes efficiency while min-
imizing error by information theory standards. This method makes use of a measure of data
dispersion within the cluster indicated as transformed distortion and defined as:

dk ¼
1

p
� min
c1...ck

MAHALðX; cxÞ�
p
2 ð1Þ

Where k = number of clusters
p = number of dimensions of the feature space
X = p-dimensional data
c1. . .ck = cluster centres, being cx the one closest to X
MAHAL =Mahalanobis distance
This method was applied to the partitioned data and produced a distortion value for each k.

The validation curve plots the difference between consecutive distortion values as a function of
k, and was generated for the set of data containing the central ROIs of both PTs and LNs. The
value of k associated with the largest “jump” in the validation curve represents the optimal
number of clusters [15].
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Results
Fourteen separate lesions, 5 PTs and 9 LNs, were considered in the analysis of 9 patients.
Although 25 lesions were depicted in this cohort, complete functional datasets were available
only in 14 lesions, due to differences in superior/inferior coverage between the DCE and DWI
sequences. A total of 2179 voxels from the central ROIs (1435 pre-treatment and 744 post-IC)
were included in this analysis. After IMRT and at three months post-treatment the total num-
ber of voxels was 423 and 220, respectively. At three months post-treatment, a clinical assess-
ment stratified patients into responders and non-responders. At six months post-treatment
there was no residual disease in either group, as either the lesions completely responded to
treatment (in 7 patients), or were resected with modified radical neck dissection (in 2 patients)
[3].

The ROIs contouring the area of enhancement on DCE data were employed in the analysis.
For large PTs (an example in Fig 1) this area is larger than the core of restricted diffusion con-
toured on DWI data (a total of 970 and 703 voxels for all central ROIs at baseline, for DCE and
DWI respectively), while for the LNs, which are generally encapsulated structures, there is min-
imal difference in size between DCE and DWI ROIs (a total of 475 and 490 voxels for all central
ROIs at baseline, for DCE and DWI respectively).

The mutual information algorithm detected an in-plane shift in the phase-encoding direc-
tion of the DWI EPI images, due to offsets of the resonance frequency set by the scanner [7].
This occurred in 54% of the cases and was corrected by applying the computed integer voxel
shift to the DWI images. Distortion in the MR images for this imaging protocol was previously
assessed [16] and was minimal, leading to a reliable pairing between DCE and DWI voxels.

Cluster Analysis
Principal component analysis. PCA analysis found that the two orthogonal components

present in the data (Fig 2) are almost parallel to the original parameter axes (IAUGC60 and
ADC), thus indicating that the two selected parameters are largely independent. The length of
the two vectors in Fig 2 is proportional to the weight of each component. If it is assumed that
the first component is almost coincident with ADC and the second with IAUGC60, it can be
observed that their contribution is similar, with the first component accounting for 59.9% of
the difference in the data.

Cluster validation. Validation curves for 2� k� 10 are presented in Fig 3, showing dis-
tortion as a function of the number of clusters (grey line). A sharp rise in distortion at k = 4 is
associated with a sudden increase in performance of the clustering algorithm [15]. The valida-
tion curve (black line) offers an alternative visualization by plotting the difference between con-
secutive distortion values, and exhibits a “jump” at k = 4, which represents the optimal number
of clusters.

Clustering algorithm. Considering the combination of PTs and LNs, Table 1 details the
values of the cluster centres and the number of voxels in each cluster when k = 2, 3 or 4. The
reported p-values indicate in which cluster the difference in the number of voxels pre and post-
treatment reached significance; these clusters are characterized by high IAUGC60 values.
Table 1 shows that with every choice of k it was possible to obtain these regions when partition-
ing the data, but with increasing k the algorithm was able to better separate clusters with a sig-
nificant percentage reduction in voxel number following IC (83% and 81% with k = 4,
p< 0.02) from clusters with a non-significant reduction (23% and 9% with k = 4, p> 0.75).

Referring to the data analysed with k = 4, Fig 4 provides an example of the obtained colour
maps, contrasting two LNs found to have different clinical outcomes assessed during long-
term follow-up. The LN in Fig 4b, containing predominantly voxels belonging to Clusters 1
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and 2 at baseline, responded to treatment, while the LN in Fig 4c, containing predominantly
voxels belonging to Clusters 3 and 4, did not respond.

Discussion
The proposed method robustly partitioned cumulative distributions of pre and post-treatment
functional MRI data from SCCHN lesions into sub-sets of similar functional characteristics.
In the cohort of patients analysed, this resulted in a description of functional heterogeneity.

The partitioning was based on two functional parameters derived from different MRI
modalities: IAUGC60 and ADC. Wang et al considered two parameters derived from pharma-
cokinetic analysis of DCE data [9], but did not investigate a correlation between them. In our
work PCA demonstrates that in this dataset IAUGC60 and ADC are independent parameters
and have similar weight (Fig 2), thus providing distinct and complementary functional

Fig 1. Slice with the largest tumour cross-section of a representative primary tumour. (a)ROI (red)
contoured on the most enhanced frame of the DCE series, (b)ROI (blue) contoured on b = 1000 image of the
DWI series, (c) IAUG60 map, (d) ADCmap, with the two ROIs overlapped, and (e) cluster analysis map pre
and post-induction chemotherapy (IC), in the simplest case of k = 2. The red ROI also encompasses the
region where cluster analysis was performed; the blue ROIs represent the area of restricted diffusion
independently contoured on DWI data, almost coincident with Cluster 1, which is characterized by both low
ADC and high IAUGC60 values.

doi:10.1371/journal.pone.0138545.g001
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information. While the choice of IAUGC60 limits the specificity of the physiological informa-
tion, it was preferred to more specific kinetic parameters like Ktrans and ve, since it retains a
relationship with these parameters but is unaffected by the accuracy of either the chosen con-
trast-agent uptake model or the arterial input function [4].

Our analysis was performed on data from both PTs and LNs. Limiting the analysis to the
central ROIs reduces the unbalanced contribution of large lesions to the classification and mini-
mizes inclusion of the voxels located at the lesion edges, where partial volume effects could be
significant. However, one should verify that the slice with the largest tumour cross-section is
representative of the tissue type content of the lesion (Appendix 1).

The evolution of the resulting sub-regions with IC treatment was assessed relative to the
number of clusters (k = 2, 3 or 4); for all k, a statistically significant reduction in the number
of voxels was found in post-IC data for clusters with high IAUGC60. This suggests that an
enhanced delivery of IC in highly perfused areas might be the main determinant of response. A
higher k allowed for a more complete description of heterogeneity, with optimal separation
between clusters where the reduction in the voxel count post-IC is minimal and those where it
is maximal.

Unsupervised clustering may be employed when, as in this case, there is no prior knowl-
edge of the data. Nevertheless, determining the optimal number of clusters is essential to
achieve meaningful results: a lower value could fail to differentiate some of the main structures
in the data, while a higher value would simply increase the complexity of the partitioning
without necessarily providing additional information. The cluster validation method that we
adopted is non-parametric, makes limited assumptions, and has been proven effective in a
wide range of problems for identifying underlying structures [15]. Table 1 shows that the

Fig 2. Principal component analysis. Principal component analysis in the bi-dimensional space formed by
the two parameters IAUGC60 and ADC. The two vectors represent the two orthogonal components. The
length of the two vectors is proportional to the weight of each component. IAUGC60 is expressed in units of
mmol�s, ADC in units of ×10−3 mm2/s.

doi:10.1371/journal.pone.0138545.g002
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separation between reducing and non-reducing clusters improves as k rises towards the opti-
mal number of clusters (k = 4) mathematically derived with the jump method. This would
appear to link mathematical computation with real functional differences, and informs the
use of cluster validation to increase the reliability of unsupervised partitioning.

PCA and cluster validation can be employed as validation tools to investigate the composi-
tion of the data. In this case, both PCA (Fig 2) and the partitioning with the optimal number of
clusters (Fig 4a) suggest that a binary classification of both parameters best separates the data,
demonstrating consistency of results. Users should attempt to reproduce this consistency when
applying this workflow to other datasets with different or higher number of clusters, higher
data dimensions and possible internal correlations.

The analysed distribution of voxels included different tissue types before and after IC treat-
ment. The adopted method performs an unsupervised partitioning of functional parameters in
cumulative and longitudinal data, with the purpose of describing functional heterogeneity.
Each pair of functional parameters describes tissue behaviour within a voxel, and as such, each
voxel, rather than each lesion, contributes information to the global classification. However,
the algorithm does not distinguish between pre and post-treatment data; it is therefore a
remarkable result that this method independently separated voxels more likely to be affected
by treatment.

This analysis was confined to baseline and post-IC data, because only small volumes of
residual disease were present at subsequent time-points. Following IMRT treatment, response
was dominated by volume reduction rather than by changes in functional parameters. In this
situation, description of functional heterogeneity across a volume of few voxels is of limited
value. Furthermore, in very small lesions both the weight and the reliability of the information

Fig 3. Cluster validation. Cluster validation curves for the range 2� k� 10. The distortion curve (grey line)
has a sharp rise in correspondence of the optimal number of clusters k = 4. The validation curve (black line) is
produced by taking the difference between consecutive values of the distortion curve, and exhibits a “jump” in
correspondence of k = 4.

doi:10.1371/journal.pone.0138545.g003
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extracted from the voxels are sensibly reduced. This type of analysis could have a potentially
greater value at early stages of treatment response, where it could identify the sub-volumes
whose functional parameter are more likely to be associated with treatment-resistant disease.

Each cluster represents a tissue class with a separate functional behaviour defined by the
MRI parameters. Consideration of the cluster centre values, which summarize the functional
parameters of each cluster, for the optimal k = 4 (Table 1) suggests the presence of regions of
high vascular activity and regions that are more likely to be necrotic. Cluster 1 has increased
perfusion (higher IAUGC60) and increased cellularity (lower ADC) and may represent a phe-
notype with rapid growth [23]. Alternatively, as a low ADC and high Ktrans [24] at baseline pre-
dict treatment response [25], this phenotype may select tumours which are likely to respond to
treatment, as our analysis seems to suggest. Cluster 2 separates areas with high perfusion and
high ADC, suggesting the presence of oedema. The low perfusion associated with Clusters 3
and 4 could indicate necrotic tissue, whilst those voxels exhibiting a higher ADC in Cluster 4
might indicate the presence of liquid necrosis. However, histological validation is required in
order to assign biological meaning to the clusters.

Functional heterogeneity within each lesion can be described by the presence of different
clusters in each ROI. As an example, Fig 4 displays the cluster composition at baseline in two
representative LNs: the non-responding LN is predominantly described by clusters with low
IAUGC60 (Cluster 1 and 2), unlike the responding LN. The presence at baseline of those clus-
ters which demonstrate low vascularity (low IAUGC60) would appear to be linked to treatment
resistance. This suggests that the proposed analysis, limited to the initial response to IC, could
have the potential to predict favourable and unfavourable prognostic groups.

Table 1. Cluster analysis as a function of the number of clusters.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total

k = 2 Cluster centres IAUGC60 = 17.8,
ADC = 0.73

IAUGC60 = 8.8,
ADC = 1.21

Baseline Post-IC Baseline Post-IC Baseline Post-IC

Voxel count 828 285 607 459 1435 744

Reduction (%) 66% 24% 48%

p-value 0.0074* 0.2005

k = 3 Cluster centres IAUGC60 = 22.5,
ADC = 0.93

IAUGC60 = 9.6,
ADC = 0.67

IAUGC60 = 9.1,
ADC = 1.4

Baseline Post-IC Baseline Post-IC Baseline Post-IC Baseline Post-IC

Voxel count 574 95 500 374 361 275 1435 744

Reduction (%) 83% 25% 24% 48%

p-value 0.0045* 0.9045 0.8181

k = 4 Cluster centres IAUGC60 = 22.2,
ADC = 0.82

IAUGC60 = 19.7,
ADC = 1.55

IAUGC60 = 9.9,
ADC = 0.63

IAUGC60 = 7.2,
ADC = 1.27

Baseline Post-IC Baseline Post-IC Baseline Post-IC Baseline Post-IC Baseline Post-IC

Voxel count 486 84 199 37 422 324 328 299 1435 744

Reduction (%) 83% 81% 23% 9% 48%

p-value 0.0024* 0.0198* 0.7642 0.8572

Results from cluster analysis (cluster centres and voxel counts) as a function of k (number of clusters), and percentage reduction after induction

chemotherapy (IC) for the combination of primary tumours and lymph nodes. In total, 2179 voxels were considered in the analysis, from which 1435 were

measured at baseline and 744 post-IC, with a global percentage reduction of 48%. Asterisks indicate significant two-tailed p-values (p < 0.05) from the

Wilcoxon signed-ranks test, comparing the number of voxels pre and post-treatment. IAUGC60 (initial area under the gadolinium curve integrated over 60

s) is expressed in units of mmol�s, ADC (apparent diffusion coefficient) in units of ×10−3 mm2/s.

doi:10.1371/journal.pone.0138545.t001
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The multi-parametric approach described in this paper differs from methodologies which
consider single parameters separately and provide a description of their histogram distribution.
In these cases, heterogeneity can be characterized by defining thresholds based on the analysis
of the associated histogram. However, thresholds can not be determined independently and
would necessitate evaluation of treatment response on a large number of cases. Furthermore,
extension of threshold values to other datasets acquired with different MRI scanners and
sequences is not straightforward, as thresholds rely on the numerical value of the parameter.
Conversely, unsupervised cluster analysis, as presented here, produces sub-divisions as a func-
tion of distance in the multi-dimensional feature space without any prior knowledge. This type
of analysis can therefore be transferred to other dataset, as it relies on the relationship between
the parameters rather than their absolute numerical value.

The main aim of this paper is to present an approach to analyse longitudinal DCE and DWI
data with the objective of characterizing tumour heterogeneity and response in SCCHN. The
retrospective analysis performed on this pilot dataset is subject to a number of limitations. The
low incidence of non-responding lesions precluded a statistically significant evaluation of the
predictive value of our analysis. In addition, the absence of histological correlation limits the
biological inferences which can be assigned to the clusters. This approach now warrants evalua-
tion in a larger cohort of patients together with biological validation.

Conclusion
We have presented a robust approach to partition cumulative distributions of functional param-
eters from SCCHN lesions, which employs unsupervised clustering, with no prior knowledge of

Fig 4. Cluster analysis. (a)Cumulative distribution of voxels (primary tumours + lymph nodes), partitioned with k = 4, in the bi-dimensional space formed by
the two parameters IAUGC60 and ADC. IAUGC60 is expressed in units of mmol�s, ADC in units of ×10−3 mm2/s. (b,c)Corresponding cluster analysis maps
of a responding (b) and a non-responding (c) lymph node, at baseline and post-induction chemotherapy (IC). Different colours indicate a difference in
functionality at baseline.

doi:10.1371/journal.pone.0138545.g004
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the data, to separate voxels with distinct functional properties. In a distribution of pre and post-
treatment MRI functional parameters, belonging to both PTs and LNs, the proposed methodol-
ogy was able to separate clusters where the reduction in voxel number post treatment is maximal
from those where it is minimal. Prior assessment of data composition and mathematical optimi-
zation of the number of clusters increased the reliability of the partitioning. This analysis dem-
onstrated that independent functional parameters from different MRI modalities can be
considered jointly to provide a multi-parametric characterization of functional heterogeneity
within tumour volumes. By identifying those functional parameters more likely to characterize
treatment-resistant disease, this method could have the potential to predict treatment outcome,
to identify a biological target volume for treatment escalation or to stratify patients for alterna-
tive treatment modalities.

Appendix 1
This section presents in detail the longitudinal analysis of a subset of the data containing pre
and post-treatment PT central ROIs, partitioned with the minimum number of clusters (k = 2).
Table 2 reports the number of voxels in each sub-region for each of the 5 PTs and in total, sepa-
rating pre and post-treatment data. A global reduction in the number of voxels of 52% was
observed, indicating response to treatment. Cluster 1 (Table 2, Fig 1e) is characterized by voxels
with low ADC and high IAUGC60 values, associated with increased perfusion and cellularity.
Fig 1e also demonstrates that this area is largely coincident with the area of restricted diffusion
independently delineated on DWI data. The number of voxels assigned to this cluster reduced
by 70% post-treatment. Voxels within this cluster were affected by treatment in greater propor-
tion; these areas are both cellular and highly perfused, facilitating exposure of active tumour
cells to induction chemotherapy. In contrast, Cluster 2 is characterized by low IAUGC60 and
higher ADC values, and the voxel count reduced by only 7% post-treatment. While k = 2 might
appear sufficient for partitioning the dataset containing only the PTs, the inclusion of the LNs
required k = 4 to optimally characterize the higher data complexity introduced.

The 5 PT ROIs were also re-analysed comparing the use of the central ROIs only (1439
voxels) versus the use of the entire PT volumes (7067 voxels) for k = 2, 3 and 4, allowing
investigation of the approach of including only the largest cross-section into the cumulative

Table 2. (Appendix 1). Cluster analysis of the primary tumours.

Cluster 1 Cluster 2 Total

Cluster centres IAUGC60 = 17.3,
ADC = 0.75

IAUGC60 = 8.1,
ADC = 1.30

Number of voxels Baseline Post-IC Baseline Post-IC Baseline Post-IC

Patient 1 354 22 103 124 457 146

Patient 2 187 100 23 11 210 111

Patient 3 37 11 14 25 51 36

Patient 4 38 14 5 13 43 27

Patient 5 71 59 138 90 209 149

Total 687 206 283 263 970 469

Reduction (%) 70% 7% 52%

Number of voxels, for each of the 5 primary tumours and in total, belonging to the two clusters determined by cluster analysis with k = 2. Pre and post-

induction chemotherapy data are separated, and the total number of voxels in the ROIs is reported. IAUGC60 is expressed in units of mmol�s, ADC in

units of ×10−3 mm2/s.

doi:10.1371/journal.pone.0138545.t002
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distribution. This is particularly relevant for PTs, which are often larger and asymmetrical
structures. The two approaches provided similar sub-regions with any value of k, and cluster
centre values no more than 9.1% apart (with an average difference of 4.3 ± 2.9% in the cases
examined). This indicates that the analysis can be limited to the central ROI as the slice with
the largest cross-section represents the tissue type content of the whole lesion, independently
of the value of k adopted.
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