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Despite advances in chemotherapy, radiotherapy and targeted drug develop-

ment, cancer remains a disease of high morbidity and mortality. The treatment

of human cancer patients with chemotherapy has become commonplace and

accepted over the past 100 years. In recent years, and with a similar incidence

of cancer to people, the use of cancer chemotherapy drugs in veterinary

patients such as the dog has also become accepted clinical practice. The poor

predictability of tumour responses to cancer chemotherapy drugs in rodent

models means that the standard drug development pathway is costly, both

in terms of money and time, leading to many drugs failing in Phase I and II

clinical trials. This has led to the suggestion that naturally occurring cancers

in pet dogs may offer an alternative model system to inform rational drug

development in human oncology. In this review, we will explore the species

variation in tumour responses to conventional chemotherapy and highlight

our understanding of the differences in pharmacodynamics, pharmacokinetics

and pharmacogenomics between humans and dogs. Finally, we explore the

potential hurdles that need to be overcome to gain the greatest value from

comparative oncology studies.
1. Introduction
The German chemist, Paul Ehrlich, who devised the term ‘chemotherapy’, was

also one of the first people to document the utility of animal models in screen-

ing chemicals for their potential anti-cancer activity. Chemotherapy is now

widely known as the use of chemicals to treat disease and it has been widely

employed to treat cancer since the beginning of the twentieth century. Despite

pessimism about the utility of chemotherapy to cure cancer, the success of com-

bination chemotherapy in curing paediatric acute leukaemia and diffuse large

B-cell lymphoma in the 1960s spurred the formation of medical oncology as a

specialty. Since the 1970s, extensive development of anti-cancer drug screening

programmes occurred with animal models supporting early assessment of

therapeutic and toxicity potential. These animal models are often the final

investigation in the development of drug candidates for human clinical trials

following promising in vitro activity.

Animal models are diverse and often distinguished on the basis of the

origin of the tumour—namely, spontaneous or inducible tumour development

versus tumours that are transplanted. While human tumour xenografts have

been the most extensively used model to predict anti-tumour efficacy, several

studies have indicated variable correlation between xenograft models and clini-

cal activity [1–10]. Mouse models tend to suffer from a number of limitations

that impact their predictive behaviour for human tumour types; while not an

exhaustive list, some primary reasons for failure of xenograft models include

biological differences between species (for example, telomerase is active in

almost all murine cells contrary to in human cells), altered downstream signal-

ling in the mouse compared with known human cancer signalling pathways

such as Ras, altered metabolism of and sensitivity to DNA-damaging agents,

variations in immune competency and altered tumour microenvironment

[1,11–14]. The progression of mouse models from syngeneic to sophisticated

genetically engineered mouse (GEM) models and recently to non-germline

GEM models has vastly improved current understanding of cancer biology
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Figure 1. A unique collaboration between human oncology drug development and trials in veterinary oncology patients has the potential to increase the speed with
which new human drugs reach the clinic. (Online version in colour.)
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but has modestly improved throughput, expense and the

practicality of preclinical drug testing [1,13–15]. This latter

aspect is predominantly due to the complexity of cancer,

as it is difficult to design an animal model that preserves

the same genotypic and phenotypic characteristics of the

tumours from which they were derived [12,16,17].

Preclinical studies of the anti-tumour activity of novel or

modified existing chemotherapy agents requires the use of a

model system capable of answering specific questions regarding

the drug’s efficacy. A failure to consider an appropriate animal

model may contribute to the failure of a compound to achieve

approval for use or hinder further investigation of new drugs.

The integration of comparative oncology approaches using

pet dogs with spontaneously occurring tumours as models in

drug development pathways has garnered much attention

in recent years due to numerous clinical and molecular simi-

larities between common canine and human cancers [18–21]

(figure 1). Whilst implementing a combined use model,

wherein information from mouse and large animal models

both provide input into rational development of chemotherapy

drugs, it is important to address interspecies similarities

and differences in drug metabolism, physiology, absorption

and distribution. Given that in some clinical scenarios, even

human beings are not predictive models of cancer in distinct

human groups, consideration must also be given to emerging

inter- and intra-species pharmacogenetic differences in order

to maximize the human predictive potential of data obtained

from various screening systems [11,22].

Tumour responsiveness to various chemotherapy drugs is

dependent on a multitude of factors that go far beyond simple

dosage and frequency of chemotherapy administration. Respon-

siveness is also dependent on tumour histology, growth rate,

tumour heterogeneity and mechanisms of drug resistance.

Tumour sensitivity is therefore a dynamic and complicated

issue, particularly when acquired resistance is taken into account.

Additional factors such as immunologic responses to tumour

antigens, serum protein content and natural barriers (e.g. the

blood-brain barrier) also play integral roles in chemotherapy

distribution to tumour and normal tissues. This article is not

intended to provide an overview of all mechanisms of tumour
response, but rather aims to summarize some of the challen-

ges and opportunities that present when considering animal

models in predicting tumour response to chemotherapy. A gen-

eral overview of chemotherapy indications and evidence for

clinical use are presented using comparative human and canine

histologies; the question as to whether or not there are significant

differences in tumour response between species is also posed.

Subsequently, species differences in pharmacokinetic, pharma-

codynamics, pharmacogenomics and immunologic factors are

also discussed. This article focuses on increasing interest in the

dog as a model for comparative oncology approaches but also

references common laboratory species that continue to serve as

the mainstay for chemotherapy research. The purpose of the

review is to stimulate discussion on the underlying question as

to whether an appreciation of interspecies differences can alert

researchers and clinicians to deviations in tumour response to

chemotherapy between species.
2. What is the rationale for chemotherapy?
The overall objective of chemotherapy is to reduce the

population of tumour cells to zero in order to effect a cure.

Following studies of murine leukaemia, the fractional cell

kill hypothesis was generally accepted as a method by which

to approximate tumour response; specifically, the hypothesis

stated that a given drug concentration applied for a defined

time period will kill a constant fraction of the cell population,

regardless of the initial, absolute number of tumour cells [23].

This provided the rationale for many chemotherapy protocols,

particularly leukaemia and lymphoma protocols, as the out-

come of chemotherapy is dependent on the drug dosage and

the number and frequency of drug administrations. Indeed,

both human and canine non-Hodgkin’s lymphoma (NHL)

are treated primarily with multidrug chemotherapy with

remission rates approaching 90% in both species [24,25].

When applied to solid tumours, multiple confounding

factors wreak havoc with the fractional cell kill hypothesis,

such as decelerating growth with a small fraction of cycling

cells, intrinsic resistance (as postulated with tumour stem
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cells), impaired tumour vascularity and variations within the

tumour heterogeneity and the tumour microenvironment.

Selection pressure following chemotherapy treatment provides

an entirely unique tumour population to work with, also

invalidating the fractional cell kill model [26–28]. While

acknowledging that chemotherapy alone rarely induces a dur-

able response for solid tumours, adjuvant systemic treatment

has made an impact on several solid tumour histologies in

humans [29,30]. Post-operative adjuvant therapy, when indi-

cated, generally significantly reduces the risk of recurrence

compared with surgery alone although the degree of benefit

varies from conservative to remarkable. The benefit of adju-

vant chemotherapy has been recognized in many tumour

histologies in veterinary patients as well, even though the

principles of chemotherapy are altered with one of the pri-

mary goals centring on the maintenance of good-to-excellent

quality-of-life measures [31–34].
370:20140233
3. Comparative aspects of chemotherapy
indications for selected tumours

(a) Non-Hodgkin’s lymphoma
The principles of treatment for NHL in humans are complex

and must take into account patient factors, subtype of lym-

phoma, stage and biologic behaviour of the disease [35].

However, multidrug chemotherapy protocols, and often

CHOP-based (Cyclophosphamide, Hydroxydaunorubicin,

Oncovin, Prednisone) protocols, form the mainstay of treat-

ment for high-grade, multifocal follicular lymphoma and

diffuse large B-cell lymphoma in humans, the two most com-

mon lymphomas to affect adults in the United States [35].

While the inclusion of rituximab (R) to chemotherapy

combinations has improved response rates and outcome,

response rates to R-CHOP are approximately 85–90%

and 70–80%, respectively, with median progression-free sur-

vival of approximately 5–6 years and 3–4 years, respectively

[35–38]. While histological classification is not routinely

sought following diagnosis of canine NHL, the majority are

diffuse large-cell lymphoma and are subsequently treated

with CHOP-based chemotherapy [24,39–41]. Remission

rates vary depending on several factors but average

80–95% with CHOP-based therapy, historically providing

median survival times of approximately 11–12 months

with 25% of dogs alive at 2 years [24]. As many pet owners

choose to proceed with rescue chemotherapy following first

relapse, median survival times for dogs tend to be greater

than 1 year [42].

(b) Sarcomas
Sarcomas are biologically complex mesenchymal tumours

requiring multi-disciplinary management due to the vari-

ation in location and behaviour. In osteosarcoma (OSA) of

the extremity, the most common primary malignant bone

cancer in people primarily affecting young children or adoles-

cents, treatment prior to 1970 centred on amputation, with

most patients experiencing a 5-year survival rate of only

20–30% due to distant metastatic disease [25,43,44]. While

surgical and radiation therapy approaches have been consist-

ently instrumental in controlling localized disease, the

therapeutic benefit of chemotherapy at delaying or reducing

metastasis was first observed over 40 years ago [30,45].
Subsequent randomized controlled clinical trials provided

the evidence needed to justify incorporating chemotherapy

into standard therapeutic protocols [25,44,46,47]. Since the

addition of cisplatin-based adjuvant therapy in the 1980s,

adjuvant or neoadjuvant chemotherapy protocols have pro-

vided 5-year survival rates of 60–70% [25,46,47]. While the

survival benefit of chemotherapy has been well established

in human OSA, the use of adjuvant chemotherapy for soft

tissue sarcomas (STS), a vastly heterogeneous group of

tumours, has taken a more circuitous path. Several factors

are predictive of outcome in human STS, including tissue

of origin, histological grade, tumour size, anatomic site,

degree of invasion or depth into underlying tissues and

patient performance score [29,48–51]. While surgery with

or without radiation therapy is the mainstay of treatment

for loco-regional control of STS, many patients—approxi-

mately 50% of patients with high-grade STS—will develop

and succumb to recurrent and/or metastatic disease. Despite

the recognition of many prognostic factors predictive of dis-

ease recrudescence, adjuvant chemotherapy has failed to

unequivocally provide clinical benefit in patients with high-

risk disease. The standard first-line treatment tends to be

single agent doxorubicin, although some literature suggests

there is added overall clinical benefit in some patients to

the addition of ifosfamide despite the associated increase in

toxicity [52,53]. In a landmark meta-analysis of individual

patient data, data analysis from 1568 patients from 14 clinical

studies with a median follow-up of 9.4 years demonstra-

ted evidence that adjuvant chemotherapy significantly

improved local and distant recurrence-free intervals; how-

ever, there was no significant benefit in overall survival

[54]. Subsequent meta-analyses confirmed the suggestion

that doxorubicin-based chemotherapy improved recurrence-

free survival at 10 years with a non-significant trend towards

improved survival [52,55]. However, most current guide-

lines suggest that patient selection is paramount in order to

justify the chemotherapy-associated toxicities associated

with treatment [29,52,53].

Veterinary studies, despite being less numerous and

under-powered in comparison to human studies, have predo-

minantly paralleled the findings in support of adjuvant

therapy for sarcomas. Because of salient clinical and molecu-

lar similarities between OSA in humans and dogs, canine

appendicular OSA has been considered a valid model for

human OSA [18,56–59]. Similar to humans, amputation

alone yields a poor prognosis with most dogs euthanized

within four to five months due to metastatic disease [60–62].

The addition of adjuvant chemotherapy to amputation or

limb-sparing surgery has demonstrated clear benefit in the

disease-free survival and overall survival, similar to human

OSA [60–65]. Various protocols have been assessed with

platinum agents or doxorubicin forming the basis for most

protocols; to date, there has been no clear benefit with the

use of combination chemotherapy but rather single agent car-

boplatin or doxorubicin are most often used due to ease of

administration, acceptable toxicity profile and comparable

outcomes [60–66]. Unfortunately, while there is clear short-

term benefit to adjuvant chemotherapy, long-term survival

for canine OSA remains poor with 1-year survival estimated

at approximately 35–45% [66]. Paralleling the case in human

OSA, few improvements in outcome have been made in the

last 20 years with local control with peri-operative che-

motherapy remaining the standard approach for optimal
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outcome. While there has been a clear benefit to the use of

chemotherapy in canine OSA, the utility of chemotherapy fol-

lowing local control for canine high-grade STS is unclear.

Similar to human studies, there is no evidence to support a sig-

nificant role for chemotherapy in the management of low-risk

disease and surgery with or without radiation therapy is con-

sidered the standard-of-care. Doxorubicin alone and

doxorubicin-based protocols have shown the most promise

with advanced measurable STS and therefore are most often

elected for dogs at risk for metastasis [67,68]. However, in a

report of 39 dogs with high-grade STS, there was no improve-

ment in either disease-free interval or overall survival in dogs

treated with surgery and doxorubicin compared with surgery

alone [69]. This report was small and included uncommon

(visceral) STS in the analysis thus results may have represented

type II error; nonetheless, use of chemotherapy for high-grade

STS remains controversial.
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4. Is there a variation in response to
chemotherapy in dogs versus humans?

Given the similar trends in response and indications for che-

motherapy in some veterinary patients, as illustrated above,

some (often pet owners) query the seeming lack of equivalent

response to chemotherapy in their pet dogs. For example,

why do dogs with lymphoma benefit from 11 to 12 months

of survival with chemotherapy, whereas humans often

achieve 3–4 years? The domestic dog is an interesting

study of age-specific mortality evolution, possibly associated

with selection for body size. Body size in dogs varies by

almost two orders of magnitude and a longevity factor of

two; this implies that, on average, small breed dogs die

at approximately 10–15 years, while large breed dogs die at

approximately 5–8 years [70,71]. While paradoxical to the

common notion that there is a positive relationship between

lifespan and body size, as is obvious when considering survi-

val of a rat (5 years) compared with a whale (often more than

100 years), there is an inverse relationship in occasional

species such as humans and dogs [72–74]. The commonly

touted ‘7-year rule’ that defines 1 ‘human year’ as equivalent

to 7 ‘dog years’ is mythical, with research suggesting that

dogs indeed age faster than humans and that after 2 years

of age for a dog (equivalent to approx. 24 human years),

each year of a dog’s life is equivalent to approximately 4–5

human years [75]. Extrapolating from this, comparable remis-

sion durations could be deemed reasonable with a 10–11

month remission on CHOP comparable with approximately

4 years of remission in a human. Using similar extrapolation,

a dog with OSA may only achieve one-quarter of the remis-

sion duration of a paediatric human patient with OSA,

suggesting either differences in tumour response, drug sensi-

tivity or biologic behaviour as most dogs die of metastatic

disease rather than co-morbid factors associated with age. It

must be acknowledged, however, that given the vast vari-

ation in breed size, it would seem impossible to develop a

single factor to account for translating ‘dog years’ to

‘human years’ [71]. Given that lifespan in dogs is inversely

related to body size, breed and intra-breed variability needs

to be worked into an appropriate model. The biologic basis

for the inverse relationship between size and lifespan is not

understood although some investigators have suggested

that the insulin-like growth factor 1 (IGF-1) signalling cascade
plays a role, as smaller dogs have lower levels of IGF-1 com-

pared with large breed dogs [76–78]. While small breed dogs

with OSA are postulated to have a better prognosis than large

breed dogs treated with local control and chemotherapy, this

potential difference could be explained by the size-to-lifespan

relationship. A recent report evaluating 26 small breed dogs

with appendicular OSA treated with surgery and chemother-

apy indicated the median survival time was 415 days, longer

than reports including dogs of all sizes (predominantly large

breed dogs) [60–66,79]. However, recognizing that small

breed dogs take a longer time to ‘age’, 415 days in a

small breed dog may be comparable to 330 days in a large

breed dog [70,76]. The more accepted hypothesis, however, is

that there is a relative difference in dosing of chemotherapy

in small breed dogs, with large breed dogs receiving a lower

dosing than small breed dogs. Alternatively, the biologic be-

haviour of OSA in small breed dogs is truly altered in

comparison to large breed dogs, as suggested by lower mitotic

indices and grade [79].

With respect to comparative aspects of STS, there is the sug-

gestion of a small yet consistent improved recurrence-free

interval in humans with the use of adjuvant doxorubicin-

based chemotherapy following local control; this has not

been realized in dogs, although only one small study has

addressed the issue. The disease-free survival for human STS

increased from 45 to 55% at 10 years with the use of adjuvant

chemotherapy but there was an insignificant improvement in

overall survival; the study was not powered to detect a small

change (less than 4-year improvement) in survival [54].

Given the relationship of dog aging to human aging and

presuming equivalent STS response to doxorubicin, it is pos-

sible that doxorubicin only induced an undetectable short

(months) improvement in disease-free interval [69].
5. What impact do dose and dose intensity have
on tumour response in dogs versus humans?

Chemotherapy drugs are considered some of the most danger-

ous within the medical arsenal due to their narrow therapeutic

index and the desire to use them near their maximally toler-

ated dose. Most chemotherapy drugs are currently dosed in

both companion animals and humans on the basis of the

patient’s body surface area (BSA), which tends to correlate

poorly with drug pharmacokinetics [80,81]. BSA is pro-

portional to both blood volume and glomerular filtration rate

(GFR), despite neither contributing to chemotherapy efficacy

or toxicity as much as liver function or other metabolic vari-

ations [82–85]. Interestingly, BSA was initially derived as a

mathematical approach to estimating tolerable starting doses

in humans for phase I trials based on preclinical data in ani-

mals; BSA dosing essentially normalizes the maximum

tolerated dose of many chemotherapy drugs in humans,

dogs, rats and mice [83–86]. There has been no clear relation-

ship between pharmacokinetic parameters and BSA for

common chemotherapy drugs, and in people, up to 20-fold

variation in pharmacokinetics is routinely observed in patients

receiving BSA-calculated doses [82]. In dogs, there has been

empirical evidence that smaller dogs experience increased

toxicity compared with larger dogs when administered

chemotherapy dosed based on BSA [87–90]. For

non-metabolized drugs, the use of BSA may be effective, but

when tumour effects and side effects are based on complex
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systems such as metabolism and genetics, there are too many

size-independent factors that can affect a generalized BSA

approach to dosing [83,91]. It is important to perform studies

that relate drug exposure to tumour response in species com-

monly used in drug development, whether looking at

animal models as predictive of efficacy or toxicity. Generally

speaking, these data are lacking in companion animals for

many drugs despite the recognition that there are many limit-

ations to BSA dosing of chemotherapy in dogs [92,93]. One

pivotal study in cats demonstrated a clear relationship between

drug exposure and neutrophil nadir, clearance and GFR, per-

mitting calculation of individual animal dosing [94,95]. A

recent study in dogs attempted to develop a simple strategy

for measuring doxorubicin exposure in dogs in order to

improve the study of the correlation between pharmacoki-

netics and both toxicity and tumour response [96]. It is not

yet clear if pharmacokinetic-based dosing improves outcome

in companion animals, but several studies in humans have

demonstrated beneficial effects both in terms of reducing tox-

icity and improving disease-free intervals for various

chemotherapy drugs and protocols [97–102]. In a phase II

study of metastatic colorectal cancer, both efficacy and toler-

ability of pharmacokinetic-adjusted fluorouracil as part of a

multidrug protocol were higher than BSA dosing [103]. An

earlier phase III study comparing pharmacokinetically

adjusted fluorouracil to conventional dosing in metastatic col-

orectal cancer patients demonstrated that personalized dosing

improved the response rate, decreased severe toxicity and led

to a trend in improved survival [102]. Importantly, the mean

fluorouracil dose was higher in the phase III trial with

personalized dosing, which was also the group with decreased

occurrence of severe toxicity [102]. As quality-of-life measures

are important when considering any chemotherapy regimen,

efforts to improve outcome while decreasing toxicity are

paramount to advancing cancer care.

Despite efforts to investigate drug exposure in companion

animals and the assumptions made to define the relationship

between chemotherapy drug exposure and effect, conflicting

results exist in the veterinary literature. In canine lymphoma,

one study showed that dogs that developed grade III or IV

neutropenia after chemotherapy demonstrated improved sur-

vival, leading to the suggestion that neutropenia was

associated with more optimal drug exposure [104]. A separ-

ate study showed similar results: dogs requiring dose

delays and dosage reductions during chemotherapy for lym-

phoma demonstrated improved outcomes compared with

those without adjustments [105].
6. What role do interspecies differences in
pharmacokinetics, pharmacodynamics and
pharmacogenomics play in tumour response
to chemotherapy?

The pharmacologic treatment of cancer, regardless of human

or pet origin, is a challenging endeavour, as medical oncolo-

gists must choose and use drugs with relatively narrow

efficacy profiles while being aware of serious toxicities and

while monitoring tumour response. Clinical pharmacology

is defined as the study of drugs, and the application of clini-

cal pharmacology attempts to predict and explain variable

drug actions and interactions. Chemosensitivity depends
heavily on factors such as drug uptake into the cell, inter-

action within the cell and the cellular response to damage;

exposure of tumour cells to chemotherapy effects is heavily

dependent on pharmacologic effects. As the quantitative

study of drug absorption, distribution, elimination and

drug interactions, pharmacokinetics is often termed ‘what

the body does to the drug’ and plays an integral role early

in clinical study design [106]. Many methods of scaling

have been developed to predict pharmacokinetic para-

meters from animals to humans, however little research

has addressed scaling within different animal species. In

humans, clearance is considered the most important pharma-

cokinetic parameter as it is directly linked to area under the

curve [107]. Clearance of any drug from the body involves

multiple organ systems and there are several allometric

models that can be used to predict clearance in humans

from animals (and vice versa). There are several excellent

reviews highlighting numerous interspecies differences in

drug pharmacokinetics, with an emphasis on drug develop-

ment and the use of preclinical models [108–110]. Contrary

to pharmacokinetics, pharmacodynamics, as the study of

the drug dose and kinetics in relation to clinical effects, is

often redefined simply as ‘what the drug does to the body’.

Pharmacodynamic differences across species are often

reported as differences in toxicity profiles for a specific

drug in question. Quite prominently lacking in the veterinary

literature is information on pharmacogenomic differences

across species, in spite of the fact that the field of pharmaco-

genomics has erupted as a major area of advancement in

humans. Pharmacogenomics, or the study of the role genetics

plays in drug response, offers a host of additional reasons

for altered responses to drugs such as those used in che-

motherapy and an integrative systems pharmacology

approach including pharmacokinetics, pharmacodynamics

and pharmacogenomics is now proposed as an ideal

method to approach drug regimen design [80,81,111].

6-Mercaptopurine (6-MP) is a core purine antimetabolite

chemotherapy drug in maintenance protocols in childhood

acute lymphoblastic leukaemia. 6-MP is inactive and under-

goes activation to form 6-thioguanine (6-TG), which exerts

cytotoxicity by incorporation into DNA and RNA, which is

linked to cytotoxicity. 6-MP is cleared by either oxidation to

the inactive 6-thiouric acid by xanthine oxidase or by

S-methylation by thiopurine methyltransferase (TPMT) to

yield 6-methyl mercaptopurine [80,112]. Haematopoietic

cells do not have xanthine oxidase activity, thus leaving

TPMT as the primary mechanism of metabolism [80,113]. In

the absence of TPMT, 6-MP is metabolized by haematopoietic

cells to produce high levels of 6-TG, causing profound hae-

matologic toxicity. It is now recognized that there is

significant variability in red blood cell TPMT activity in

humans, with approximately 11% encoding for a nucleotide

polymorphism associated with low TPMT activity [114,115].

This recognition has altered current practice paradigms as

myelosuppression following treatment is directly related to

TPMT phenotype. Greater than 60–65% of human patients

experiencing extreme toxicity have TPMT deficiency, most

of which can be detected by genetic testing for TPMT*2,

TPMT*3A and TPMT*3C alleles [80,116–118]. Clinical guide-

lines incorporating this pharmacogenetic information for

6-MP in leukaemia are now recommended in order to

manage both efficacy and toxicity [116–118]. Although

6-MP is not widely used in veterinary oncology, its prodrug



Table 1. Selected examples of species differences in drug pharmacokinetics, pharmacodynamics and pharmacogenomics that may influence response to cancer
chemotherapy or targeted drug therapy.

parameter species feature/example

serum albumin binding variable canine and human albumin site II binding were

very similar while albumin derived from rabbits,

rats and cows were markedly different [127]

plasma protein binding variable total plasma protein content was highest in the

dog compared with mouse, rat, rabbit, monkey

and human [128]

protein binding affinity: alendronate dog versus rats alendronate demonstrated little binding in the dog

as opposed to high binding in the rat [129]

immune response: macrophages humans versus dogs, rats and mice pulmonary alveolar macrophages in humans have

highest phagocytic ability compared with rat,

mouse or dogs suggesting some targeted drugs

(liposomes) may effect species differences in

response [109,130]

immune response: hypersensitivity and

anaphylactic responses [109]

humans shock organs include lung, larynx and vasculature

dog shock organ is classically considered the liver but

includes all splanchnic circulation

rat shock organs include liver and intestine

mouse shock organs include vasculature and intestine

immune response: opsonization via

complement proteins and

immunoglobulins—Cremophor EL and

polysorbate 80

dog dogs display a much greater hypersensitivity to

both Cremophor EL and polysorbate 80 compared

with other species such as mice and pigs

[131,132]

immune response: opsonization of

liposomes—liposome encapsulated

doxorubicin

rats versus dogs, pigs and humans rats were markedly less sensitive to liposomal

phospholipids compared with dogs, pigs and

humans [131]

drug absorption from interstitial tissue variable macromolecules absorbed via capillaries in rats,

whereas macromolecules often dependent on

lymphatic absorption in dogs, sheep and humans

[108,109,133,134]

drug delivery to tumour: colloidal osmotic

pressure

variable interstitial fluid pressure at the periphery of a

tumour likely differs significantly between dogs,

cats, rats and humans [135 – 137]

drug delivery to tumour: transport across

blood-brain barrier

variable active transporter expression is highly variable

between humans, rodents, cows, pigs and dogs.

Despite P-glycoprotein (ABCB1A) homology across

species, significant differences in substrate

recognition and transport efficiency have been

noted between human and mouse [138 – 141]

breed-related physiologic differences:

Sighthounds

dogs lower volume of distribution of lipophilic

compounds in Sighthounds compared with other

breeds [142]

breed-related physiologic differences: dog

size

dogs gastrointestinal transit, fecal quality, intestinal

permeability and GFR related to body size in

dogs [143,144]

(Continued.)
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Table 1. (Continued.)

parameter species feature/example

breed-related metabolic differences:

CYP2D15 (similar to human CYP2D6)

Beagle dog versus humans polymorphisms in CYP2D15 greatly affected

metabolism of celecoxib across purebred Beagles

[145]

breed-related pharmacogenetic differences dogs—namely herding breeds (Collie,

Australian shepherd, long-haired Whippet,

Shetland Sheepdog, Old English Sheepdog,

White Swiss Shepherd) [146,147]

polymorphisms in ABCB1 altered response

associated with P-glycoprotein substrates

[148 – 150]
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azathioprine is commonly prescribed for various diseases.

Dogs have variable red blood cell TPMT levels and while

some breed tendencies were noted (Labrador Retrievers with

high TPMT activity and Cocker Spaniels with low activity),

there was a considerable range (ninefold) of activity across

dogs [119]. Cats are recognized as being extremely sensitive

to azathioprine and have lower red blood cell TPMT activity

compared with dogs and humans [120,121]. Additional

research in companion animals and other non-human species

will build on preliminary research and explore the functional

and clinical impact of TPMT polymorphisms to help identify

altered drug responses, ultimately improving animal models

in drug development [119,120,122].

While the TPMT story provides the best example of

applied pharmacogenetics in human oncology, much work

needs to be done to identify the impact of other known gen-

etic and metabolic differences across species. It is widely

recognized that cats can respond vastly differently to several

drugs compared with other companion animals although the

underlying reasons are not always clear. Generally speaking,

drugs that are metabolized via conjugation are cleared slowly

in cats compared with dogs and humans due to a lack of

many conjugation enzymes besides TPMT, including UDP-

glucuronosyltransferase (UGT) enzymes and N-acetyltrans-

ferase 2 (NAT2). The human UGT family consists of 19

different isoforms that are primarily expressed in liver,

kidney and intestinal mucosa, which are primary sites of

drug metabolism, thus highlighting a substantial difference

between cats and humans, making drug dosing and response

comparisons inherently difficult [123,124]. N-acetylation of

amines in humans occurs via N-acetyltransferase enzymes

NAT1 and NAT2 activity; dogs and related canids are

deficient in NAT genes, emphasizing another primary differ-

ence in metabolism among companion animal species and

humans [125]. Interestingly, NATs have been widely studied

in humans due to their importance in xenobiotic metabolism

while NAT polymorphism has been linked to population

differences in drug metabolism [126] (figure 1).

There are many other examples of altered parameters

affecting drug absorption and protein binding, drug delivery

to the target tissue and toxicities that are beyond the scope of

this review; table 1 provides additional examples of variables

that may affect response to chemotherapy. Despite the

overwhelming range of potential factors that can influence

drug efficacy and tumour response, it is remarkable that cor-

relations can be made across species in support of the field of

comparative oncology.
7. Concluding remarks
Therapeutic response of a particular cancer to chemotherapy

is very difficult to predict across the species. The use of

rodent models to dissect the biology of cancer has proved

invaluable in supporting the exponential growth of our

understanding of this disease but rodents still prove to be

poor models for predicting therapeutic responses leading to

an incredibly costly linear drug development pathway. Natu-

rally occurring cancer in dogs has been suggested as an

alternative therapeutic model system that could prove to be

more cost effective, with greater predictability and potentially

allowing enormous savings in drug development costs. How-

ever, as we have seen, even with natural models we need to

have a greater understanding of pharmacodynamics, phar-

macokinetics and pharmacogenomics in natural models

such as the dog. Publication of the canine genome and the

development of a toolbox of reagents to study canine

pharmacology and cancer biology will help to underpin pro-

gress in this area. However, to gain the optimal clinical

benefit from comparative studies, we need to:

— obtain a greater understanding of the comparative

biology of cancer between dogs and humans;

— develop a toolbox of reagents that can be used to dissect

the biology of cancer in both species and under-

pinned by genomic, proteomic, metabolomic studies

with appropriate bioinformatics;

— gain wider acceptance among the medical and scientific

community that we must use the best model for a particu-

lar biological question. While rodent models have many

benefits, they are not necessarily the best models for

rational drug development;

— gain wider acceptance from the approvals agencies

(FDA/EMEA) that studies done in species other than

the mouse may offer greater predictability of use of a

drug in people; and

— conduct well-designed, statistically appropriate studies in

veterinary patients.

As a final consideration, it may be important to adopt a

more holistic systems biology approach to cancer chemother-

apy across the species. In this approach, the whole patient

and networks are considered rather than a ‘reductionist’

type study where ‘cause and effect’ are the only parameters.

Reductionism focuses on the disease rather than on the indi-

vidualization of treatment or on a multidimensional use of
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drugs. To this notion of reductionism, the true benefit of che-

motherapy for many human solid tumours has been brought

into question by some researchers who suggest that chemother-

apy neither improves survival nor provides a higher quality of

life [91,151–153]. While chemotherapy for some cancers has

decreased tumour size, tumour response comes at the expense

of an increased risk of chemotherapy-induced neoplasia and an

adversely affected lifestyle. At least for the foreseeable future,

for the veterinary oncologist, and irrespective of apparent

differences in tumour responses across species, the focus for

veterinary patients such as the dog is maintaining or
improving an excellent quality-of-life, as perceived by the

owner and/or attending veterinary clinician.
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