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Testicular histological alterations following Sertoli cell cytoskeleton disruption are numerous. The Sertoli cell
cytoskeleton is comprised of intermediate filaments, microtubules, microfilaments and their direct interacting proteins
and performs essential functions including structural support of the seminiferous epithelium, apicobasal movement of
elongate spermatids, and release of elongate spermatids from the seminiferous epithelium during spermiation. This
review summarizes the histological changes occurring after disruption of the Sertoli cell cytoskeleton, including the
signature lesion of seminiferous epithelium sloughing. By presenting examples of histological changes after exposure
to toxins or toxicants directly affecting the Sertoli cell cytoskeleton or genetic manipulations of this cytoskeleton, the
toxicologist observing similar histological changes associated with exposure to novel compounds can use this
information to generate hypotheses about a potential mode of action.

Goal and Scope of the Review

The Sertoli cell controls many aspects of spermatogenesis, and
disruption of Sertoli cell function is often invoked to explain the
mode of action of agents that alter sperm production. When con-
fronted with a histopathological change in the testis, the researcher
is faced with the daunting task of identifying a plausible mode of
action for this effect. One potential target is the Sertoli cell cyto-
skeleton. To aid the researcher in determining whether or not the
Sertoli cell cytoskeleton is a plausible target, the goals of this
review are twofold: to describe testicular histopathological altera-
tions that may occur after perturbation of the Sertoli cell cytoskel-
eton and to provide potential mechanisms linking Sertoli cell
cytoskeletal alterations to the histopathological outcome.

The scope of this review is limited to describing histopatho-
logical effects known, or likely, to be mediated via alterations to
the Sertoli cell cytoskeleton. At the molecular level, this review
will be limited to effects associated with perturbations to cyto-
skeletal filaments or proteins directly affecting cytoskeletal func-
tion. It will rely heavily on histopathological information derived
from toxins or toxicants known to directly target cytoskeletal pro-
teins. As in other cells, the Sertoli cell cytoskeleton is linked phys-
ically and functionally to numerous biological processes. For the
Sertoli cell, one of these processes is adhesion to adjacent cells.
Histopathology associated with disruption of Sertoli cell adhe-
sion junctions is a topic for a companion review [see Cheng, this
issue] and will not be described here. Non-Sertoli testicular cells
use their cytoskeleton for important functions including move-
ment of sperm from the seminiferous tubule to the epididymis,
spermatid shape changes during spermiogenesis, and intercellular

bridge connectivity between syncitial germ cells. However, histo-
pathological changes associated with cytoskeletal perturbations
within non-Sertoli testicular cells will not be described.

The Signature Histological Lesion: Seminiferous
Epithelium Sloughing

A basic function of the cytoskeleton in most cells is structural
support, and this is especially true for the Sertoli cell because of
its highly asymmetric shape.1,2 Many of the histological changes
described in this review are not unique to agents acting via a cyto-
skeleton disruption mode of action. However, a histological
observation of seminiferous epithelium sloughing into the semi-
niferous tubule lumen (Fig. 1) is a significant clue that the agent
may be targeting the Sertoli cell cytoskeleton. Such an observa-
tion is a hallmark of testicular toxicants such as colchicine, vin-
blastine, and carbendazim that depolymerize Sertoli cell
microtubules.3-5 Cellular sloughing may involve a portion of the
seminiferous epithelium or encompass the circumference of the
seminiferous epithelium. Additional information about this
lesion is presented below.

Sertoli Cell Cytoskeleton Structure and Function

The cytoskeleton performs crucial roles in signal transduction
processes, positioning and intracellular transport of organelles
and macromolecular complexes, cell shape determination, and
structurally linking cells through intercellular junctions into a
cohesive tissue.6,7 These processes are performed by the
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filamentous cytoskeletal backbone and the plethora of associated
proteins that interact with this backbone. In eukaryotic cells, 3
main types of filaments exist: intermediate filaments, actin-based
microfilaments, and tubulin-based microtubules. These filaments
are dynamic structures constantly being remodelled in response
to different cellular processes. The assembly and disassembly of
the cytoskeleton filaments are controlled by protein complexes
that spatially and temporally determine cytoskeletal organization.
By interacting with numerous associated proteins, cytoskeletal fil-
aments serve as scaffolds for intercellular adhesion junctions, the
movement of intracellular organelles, and changes in cell shape.
If one envisions the cell as a factory building, the cytoskeleton
serves as the structural posts and beams determining the overall
shape of the building and the location of rooms within the build-
ing, the assembly line moving goods from one location to the
other, and the foundation physically linking the factory to its
environment. Unlike a factory, however, a cell can remodel its
cytoskeleton in response to internal and external cues, and this
capability is required for dynamic processes like spermatogenesis.

Within the Sertoli cell, microfilaments, intermediate filaments,
and microtubules are located at spatially distinct subcellular sites
and thus perform unique functions (Fig. 2). As in other cells, the
Sertoli cell cytoskeleton functions in intercellular adhesion, intracel-
lular movement, and structural support.8 Because of the unique
interaction between the Sertoli cell and surrounding germ cells,
these basic cytoskeletal processes are somewhat distinct in Sertoli
cells. In most epithelia, tight junctions delineating apical and basal
membranes are positioned near the apical pole, but Sertoli cell
tight junctions are positioned near the basal cellular aspect, creating
an elaborate apical cytoplasm. This apical cytoplasm takes on an
appearance similar to a tree, having a relatively thick stalk with
numerous long and tenuous processes extending from the stalk

and enveloping differentiating germ
cells.1,2 For structural support, the Sertoli
cell cytoplasmic stalk and apical exten-
sions contain numerous microtubules
oriented parallel to the Sertoli cell long
axis.9,10 This pattern also allows the
Sertoli cell microtubules to function as a
platform upon which microtubule
motors attach to specialized Sertoli-sper-
matid adhesion junctions (ectoplasmic
specializations) and move elongating
spermatids within the seminiferous epi-
thelium along the Sertoli cell apicobasal
axis.11,12 Other functions ascribed to Ser-
toli cell microtubules include secretion of
seminiferous tubule fluid,13 intracellular
movement of germ cell residual bodies
from the apical to basal Sertoli cell sub-
cellular compartments,14,15 and release of
mature spermatids from the seminiferous
epithelium (spermiation).14,15

Sertoli cell actin-based microfila-
ments are abundant at 2 specialized tes-
tis-specific intercellular junctions. One

of these junctions is the ectoplasmic specialization,12,16 and the
other is the tubulobulbar complex17,18(also see Cheng, this issue).
Ectoplasmic specialization junctions occur at 2 locations: a basal
location associated with tight junctions between adjacent Sertoli
cells (blood-testis barrier) and an apical location between step 8
and more mature spermatids and Sertoli cells. At the basal junc-
tion, a belt of hexagonally arranged actin filaments encircles the
Sertoli cell periphery, while morphologically similar actin bun-
dles appear to surround the elongating spermatid head at the api-
cal junction. The primary function of ectoplasmic specializations
is adhesion, but apical ectoplasmic specializations also perform
the secondary role of elongate spermatid movement along micro-
tubule tracks as previously mentioned. The adhesive function of
both basal and apical ectoplasmic specializations must be modi-
fied to allow transit of spermatocytes (basal junction) or sperma-
tid release (apical junction). The second Sertoli cell actin-based
intercellular junction, the tubulobular complex, appears to be
involved in turnover of both apical and basal ectoplasmic special-
izations. A hallmark of the tubulobulbar complex is a tube-like
cytoplasmic process that extends into the Sertoli cell cytoplasm,
and actin surrounds this process like a cuff. Given these consider-
ations, Sertoli cell actin-based microfilaments appear crucial for
blood-testis barrier function, positioning of germ cells within the
seminiferous epithelium, and spermiation.

Intermediate filaments are the final Sertoli cell cytoskeletal com-
ponent. While intermediate filaments of most epithelial cells are
composed of cytokeratin, Sertoli cell intermediate filaments are
polymers of vimentin.19 Intermediate filaments surround the Ser-
toli cell nucleus and extend from this location to adhesion junc-
tions termed desmosome junctions (Fig. 2).20,21 Testicular
desmosome junctions are found between adjacent Sertoli cells as
well as between Sertoli cells and germ cells. Thus, Sertoli cell

Figure 1. Seminiferous epithelium sloughing histopathology. (A) In this example, seminiferous
epithelium sloughing is evident by detachment and separation of germ cell cohorts from the underly-
ing epithelium (asterisk). Several seminiferous tubules in this image are in the process of sloughing or
have sloughed material from other seminiferous tubule areas within the lumen. Other seminiferous
tubules show no evidence of sloughing (hashtag). (B) This image is a higher magnification view of the
seminiferous tubule in panel A with an asterisk. In this rat stage XI-XII seminiferous tubule, the entire
elongate spermatid cohort has detached from the seminiferous epithelium. Some pachytene sperma-
tocytes have also detached with the sloughed material. To capture these images, an adult Fisher 344
rat was exposed to 1% 2,5-hexanedione for 17 d followed by an additional exposure to 200 mg/kg
carbendazim for 24 hours.44 The testis was immersion fixed in 10% neutral buffered formalin, embed-
ded in glycol methacrylate, and 3 mm sections stained with periodic acid-Schiff’s reagent and hema-
toxylin. Scale bar in panel A D 150 mm; scale bar in panel B D 50 mm.
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intermediate filaments seem poised for a role in intercellular adhe-
sion in the seminiferous epithelium. However, little is known
experimentally about Sertoli cell intermediate filament function.
The lack of a specific small molecule inhibitor of intermediate fila-
ment function partially explains this information gap compared to
Sertoli cell microfilaments and microtubules. In addition, mice
lacking vimentin show no apparent testicular phenotype.22,23

Because of this information (or lack of understanding), any
role of intermediate filaments in mediating histopathological
changes in the testis after toxicant exposure remains speculative.
An altered Sertoli cell intermediate filament distribution patt-
ern has been observed after exposure to various testicular toxi-
cants.24-26 However, it remains to be determined if this effect is
likely to be a key event in the toxicant mode of action. Therefore,
this review will focus on histopathology associated with Sertoli
cell microfilament and microtubule disruption rather than Sertoli
cell intermediate filament disruption.

Testicular Histopathology Associated with Sertoli
cell Microtubule Disruption

Seminiferous epithelium sloughing
Substances that depolymerize Sertoli cell microtubules

induce detachment and sloughing of the seminiferous epithe-
lium into the seminiferous tubule lumen. The 2 most studied
agents producing this effect are the plant-derived toxin colchi-
cine and carbendazim, the toxic metabolite of the benzimid-
azole fungicide benomyl. Both carbendazim and colchicine
bind to the b-tubulin building block subunit of microtubules
and inhibit polymerization of tubulin subunits into microtu-
bules.27 Seminiferous epithelium sloughing occurs within
hours of high dose level colchicine or carbendazim administra-
tion4,5,28-30 (Table 1).

Typically, sloughing begins with detachment of apical elon-
gate spermatid cohorts and may involve a portion of, or the entire
circumference of, the seminiferous epithelium.31 Morphologi-
cally, sloughing has been defined as a separation of at least one
germ cell layer from the seminiferous epithelium30,32 or the pres-
ence of detached cellular material in the tubule lumen with a
diameter of at least 24 mm.33 Sensitivity to sloughing is stage
dependent, with stages III-V (when elongate spermatids are bur-
ied deep within Sertoli cell crypts) being the least sensitive
stages.4,30,31 With time or higher dose levels of microtubule
depolymerising agents, more basal seminiferous epithelium layers
may become involved, including the entire apical Sertoli cell
cytoplasmic stalk with attached germ cells to the level of the
blood-testis barrier.5,28

Extensive seminiferous epithelium sloughing produces the sec-
ondary effect of testicular atrophy. The lumen of all seminiferous
tubules is connected to the epididymis by a collecting duct sys-
tem comprised of the rete testis and efferent ducts. Given suffi-
cient seminiferous epithelium sloughing, this cellular material is
carried by seminiferous tubule fluid into the rete testis and effer-
ent duct where it becomes entrapped and occludes the rete testis
and efferent duct.28,34 The initial result of this occlusion is an

increase in testis weight because of continued seminiferous tubule
fluid secretion;32,34 however, the ultimate effects of occlusion are
inhibition of seminiferous tubule fluid secretion, reduced testis
weight, and atrophy of the seminiferous epithelium.5,28,32,34

As mentioned previously, a mechanism of seminiferous epi-
thelium sloughing is the depolymerisation of Sertoli cell micro-
tubules. At both the electron and light microscopy levels,
sloughing is associated with reduced microtubule content within
the Sertoli cell cytoplasmic stalk.5,30,31 Sloughed cellular mate-
rial contains fragments of Sertoli cell cytoplasm along with germ

Figure 2. The Sertoli cell cytoskeleton. Shown is a schematic diagram
of one Sertoli cell, adjacent germ cells, and the Sertoli cell cytoskeleton.
The Sertoli cell is columnar in form with cytoplasmic processes surround-
ing juxtaposed germ cells. Actin-based microfilaments are associated
with basal ectoplasmic specializations (arrowheads) between adjacent
Sertoli cell. Actin-based microfilaments are also located at apical ecto-
plasmic specializations and tubulobulbar complex junctions between
the Sertoli cell and elongate spermatid nuclei (black arrow). Microtubules
(curved arrow) extend from the Sertoli cell nucleus into apical cyto-
plasmic processes and are also juxtaposed to ectoplasmic specialization
junctions between the Sertoli cell and elongate spermatid. Lastly, inter-
mediate filaments (white arrow) surround the Sertoli cell nucleus and
extend to desmosome junctions between the Sertoli cell and germ cells.
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cells,4,5,31 and germ cells remain attached to Sertoli cells via
adhesion junctions.4,5 Based upon these data and the observa-
tion of sloughing of entire germ cell layers, the following
hypothesis has been developed as the physical mechanism of
sloughing.5,35 Sertoli cell microtubule depolymerisation induces
displacement of the Sertoli cell cytoplasm toward the basal lam-
ina, but the most apical portion of the Sertoli cell cytoplasm
cannot be displaced toward the basal lamina because of the syn-
citial nature of attached germ cell cohorts. The tension thus cre-
ated cleaves the Sertoli cell cytoplasmic stalk above the level of
Sertoli-Sertoli adhesion junctions releasing the apical portion of
the seminiferous epithelium.

Abnormal seminiferous epithelium location of elongating
spermatid nuclei

During 2 phases of spermatogenesis, elongate spermatids appear
to traverse nearly the entire length of the seminiferous epithe-
lium.12,36 In the rat, elongate spermatid nuclei have an apical loca-
tion in stage II-III seminiferous tubules but are located deep
within Sertoli cell cytoplasmic crypts at stage V. Subsequently,
elongate spermatid nuclei move from these crypts to the seminifer-
ous epithelium apical surface during stage VI. As previously men-
tioned, spermatid translocation is hypothesized to involve
movement of Sertoli/elongated spermatid ectoplasmic specializa-
tion junctions (with attached elongate spermatid nuclei) along Ser-
toli cell microtubule tracks12 (also see O’Donnell, this issue).

Agents that depolymerize or stabilize Sertoli cell microtubules
may produce the histopathological observation of abnormal elon-
gate spermatid nuclear position. While abnormal spermatid loca-
tion has often been analyzed qualitatively, Fleming et al.14

quantified this endpoint by dividing the seminiferous epithelium
of selected stages into apical and basal sectors and counting elon-
gate spermatid nuclei within the sectors. Taxol is a plant-derived
toxin that directly binds b-tubulin and stabilizes microtubules
leading to abnormal microtubule dynamics and an excess of
microtubules within cells.37,38 Exposure of the rat testis to taxol
increases the number of microtubules in the Sertoli cell cyto-
plasm.15 Furthermore, step 19 elongate spermatid nuclei in
taxol-exposed rats are positioned deep within Sertoli cell crypts
in stage VII seminiferous tubules, rather than being in their nor-
mal apical position.15 Genetic overexpression of g-tubulin (a
protein that enhances microtubule polymerization) in rat Sertoli
cells produces a histopathological effect on step 19 spermatid
location similar to taxol exposure.14 Like microtubule stabilizing
agents, colchicine is reported to inhibit the apical movement of
elongate spermatids in the ground squirrel39 and to induce a
more apical position of step 17 elongate spermatid nuclei in stage
V rat seminiferous tubules.30 The hypothetical mechanism for
these effects is an inhibition of elongate spermatid movement
along Sertoli cell microtubules.

Residual body retention
During spermiation, excess elongate spermatid cytoplasm,

RNA, and organelles are endocytosed into Sertoli cells as the
residual body.40 Within Sertoli cells, the residual body is trans-
ported to the basal cytoplasm and fuses with lysosomes to

catabolize residual body contents. In histological sections of con-
trol rat stage VIII seminiferous tubules, residual bodies are
observed at the apical seminiferous epithelial surface and move
toward the basal lamina and are degraded by stage X.41

In the rat, residual body retention is a histological observation
of residual bodies within the apical seminiferous epithelium in
stage X-XIV seminiferous tubules.14,15 Retained residual bodies
have been observed after testicular exposure to agents that alter
Sertoli cell microtubule polymerization dynamics, including col-
chicine,39 g-tubulin overexpression,14 and taxol.15 The mecha-
nism for this effect is unclear but is hypothesized to be disruption
of microtubule-based Sertoli cell transport of residual bodies to
the basal Sertoli cell cytoplasm.15

Retained spermatids
During spermiation that occurs at stage VIII of the rat semi-

niferous epithelium cycle, step 19 elongate spermatids are
released from their adhesion to the apical Sertoli cell plasma
membrane into the seminiferous tubule lumen. One of the more
common testis histopathological observations is failure of step 19
spermatid release. Exposure of rodents to several toxicants,
presumably acting via distinct modes of action, can induce sper-
matid retention;42 thus, retained spermatid histopathology is not
unique to a Sertoli cell cytoskeleton disruption mode of action
(also see O’Donnell, this issue).

Retained spermatids are detected by the presence of con-
densed spermatid nuclei in stage IX-XIV seminiferous tubules
(Fig. 3).14,33 Retained spermatid nuclei may appear at any posi-
tion within the seminiferous epithelium and are likely phagocy-
tosed and degraded by the Sertoli cell.43 It should be noted that
the observations of retained spermatids and abnormal positioning
of elongate spermatids within the seminiferous epithelium
are distinguished by the seminiferous epithelial stage and

Figure 3. Retained spermatids histopathology. In this rat stage X sem-
iniferous tubule, step 19 spermatids are present in both the basal aspect
(arrowhead) and apical aspect (arrow) of the seminiferous epithelium. In
addition, this seminiferous tubule has a mottled appearance suggesting
sloughing of the step 10 spermatid cohort may be occurring. Toxicant
exposure in this example was a combination of 2,5-hexanedione and car-
bendazim, as described in the legend to Figure 1. Scale bar D 50 mm.
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spermiogenic step involved. Agents causing retained spermatids
and targeting the Sertoli cell microtubule system include carben-
dazim,33 g-tubulin overexpression,14 taxol,15 and 2,5-hexane-
dione.33 Because spermatid retention requires approximately one
day to develop before it is observed histologically, it is not a sensi-
tive endpoint for toxicant exposures of short duration.42 How-
ever, for toxicant exposures requiring several days or weeks before
testicular histopathology is observed (such as 2,5-hexanedione),
retained spermatid histopathology may be an early and sensitive
marker of testicular injury.42 Like retention of spermatid residual
bodies, the mechanism of spermatid retention after exposure to
microtubule disupting agents is unclear but is speculated to
involve abnormal microtubule-based transport of elongate sper-
matids that leads to an inhibition of spermiation.14 Another
potential mechanism linked to Sertoli cell microtubules may be
alteration of microtubule function at ectoplasmic specialization
junctions between Sertoli cells and elongate spermatids.42

Seminiferous epithelium vacuolization
Like spermatid retention, seminiferous epithelium vacuolization

is a relatively common histopathological observation associated
with Sertoli cell injury that is observed after exposure to testicular
toxicants with various modes of action. In this respect, Sertoli cell
vacuolization is similar to retained spermatids histopathology. Sem-
iniferous epithelium vacuolization is defined by the observation of
large diameter (�16 mm) vacuoles in the basal aspect of the semi-
niferous epithelium (Fig. 4).44 Seminiferous epithelium vacuoles
are distended portions of the Sertoli cell smooth endoplasmic retic-
ulum45 and may represent an early stage of Sertoli cell toxicity.33

Vacuoles may present in a stage-dependent manner, as is the case
after rat exposure to the Sertoli cell microtubule stabilizing toxicant
2,5-hexanedione.45 Carbendazim also induces seminiferous epithe-
lium vacuolization,29,44 as does genetic deletion of the microtubule
associated proteins MAP7 and KATNAL1 in mouse Sertoli

cells.46,47 How alterations to the Sertoli cell microtubule system
cause vacuolization is unknown.

Seminiferous epithelium atrophy
As might be imagined, atrophy of the seminiferous epithelium

is not an outcome limited to agents targeting the Sertoli cell cyto-
skeleton. Nevertheless, atrophy is observed following exposure to
toxicants that both stabilize and depolymerize Sertoli cell micro-
tubules. The typical presentation is a seminiferous tubule of small
diameter having Sertoli cell and the occasional spermatogonial
nuclei adjacent to the basement membrane. Sertoli cell cytoplasm
fills the tubule, and there may be no obvious lumen present.

Atrophic seminiferous tubules typically develop after exposure
to higher toxicant dose levels and/or longer time periods of expo-
sure, and the mode of action for development of atrophic semi-
niferous tubules can vary. The carbendazim mode of action was
described previously and is indirect occurring via occlusion of the
efferent ducts with sloughed seminiferous epithelium. 2,
5-Hexanedione-induced seminiferous tubule atrophy appears to
be caused by a direct affect of the toxicant on the Sertoli cell,
impairing the ability of Sertoli cells to physiologically support
germ cell maturation.48

Testicular Histopathology Associated with Sertoli
cell Microfilament Disruption

Within Sertoli cells, microfilaments are concentrated at inter-
cellular junctions as described previously. Because testicular his-
topathology following disruption of these junctions is addressed
in a companion review [see Cheng, this issue] and few agents
causing testicular injury are known to directly target the microfil-
ament system, this section is limited to describing the testicular
phenotype following exposure to the microfilament depolymeris-
ing mycotoxin cytochalasin D. Unlike other agents reported to
cause testicular effects by a putative microfilament-disrupting
mode of action,49,50 cytochalasin D is known to directly bind to
actin and depolymerize microfilaments.51 Testicular histopathol-
ogy after siRNA-mediated knockdown of Sertoli cell cortactin
expression is also described (Table 2).

Malorientation of round spermatids
Intratesticular injection of cytochalasin D depolymerizes Ser-

toli cell actin microfilaments, resulting in the abolishment of
actin-based basal ectoplasmic specialization adhesion junctions
between Sertoli cells and apical ectoplasmic specialization adhe-
sion junctions between Sertoli cells and spermatids.52,53 In the
rat, apical ectoplasmic specializations first form between Sertoli
cells and step 8 round spermatids. At this spermiogenic step, the
acrosome of round spermatids becomes oriented toward the basal
aspect of the seminiferous tubule; however, cytochalasin D expo-
sure randomizes the orientation of step 8 spermatids within the
seminiferous epithelium.53 Presumably, the Sertoli-spermatid
ectoplasmic specialization positions the spermatid nucleus such
that the acrosome faces the basal lamina, and microfilament
depolymerisation perturbs the ectoplasmic specialization allow-
ing the spermatid nuclear position to become randomized.

Figure 4. Sertoli cell vacuolization histopathology. In these adjacent
rat seminiferous tubules, large vacuoles (arrow) are seen in the basal half
of the seminiferous epithelium. In this example, a young adult rat was
exposed to 1% 2,5-hexanedione in the drinking water for 25 days.56 The
testis was processes as described in the legend to Figure 1. Scale bar D
50 mm.
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Retained spermatids
Just prior to spermiation, actin-based tubulobulbar complexes

form between Sertoli cells and step 19 rat spermatids and are
hypothesized to function in disengagement of adhesive ectoplas-
mic specialization junctions between Sertoli cells and elongate
spermatids.18 There are conflicting data on the effect of agents
targeting the actin cytoskeleton on spermiation. Although rat
cytochalasin D exposure is reported to inhibit tubulobulbar com-
plex formation,15,53 spermiation failure was not reported.15 On
the other hand, depletion of cortactin in mouse Sertoli cells by
siRNA-mediated knockdown results in abnormal tubulobulbar
complex morphology, persistence of apical ectoplasmic special-
izations, and spermiation failure.54 Cortactin is an actin-binding
protein that modulates microfilament nucleation and branching
pattern.55 In cortactin siRNA-exposed Sertoli cells, step 16 sper-
matid nuclei were observed in stage IX seminiferous epithelium,
indicating abnormal spermatid retention.54 Thus, alterations to
the Sertoli cell actin cytoskeleton may affect tubulobulbar com-
plex function leading to an inhibition of spermiation.

Conclusion

The Sertoli cell cytoskeleton performs important roles in
maintaining seminiferous epithelium structural integrity,

movement of elongating spermatids during the seminiferous epi-
thelial cycle, and adhesion and release of elongate spermatids.
Although agents that target the Sertoli cell cytoskeleton can
induce a plethora of histopathological alterations, many of these
alterations are not specific to Sertoli cell cytoskeletal disruption.
Despite this non-specificity, the investigator should consider a
Sertoli cell cytoskeleton mode of action when confronted with
any of the histological changes described in this review. If slough-
ing of the seminiferous epithelium is observed that includes germ
cell cohorts and attached Sertoli cell cytoplasm, the researcher
should consider this finding an excellent clue that the Sertoli cell
cytoskeleton is a likely target.
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