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Separating from the pack: Molecular mechanisms
of Drosophila spermatid individualization
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Successful completion of gametogenesis is critical for perpetu-
ation of the species. In addition to the inherent interest, studies
of gamete development, in particular spermatogenesis, have
yielded insight into diverse biological processes, including actin
and microtubule organization, mitochondrial dynamics, plasma
membrane remodeling, lipid signaling, apoptosis, and many
others.

Mammalian sperm are formed from germline stem cells that
reside near the basal surface of the seminiferous tubules." Sper-
matogonia produced from these stem cells undergo amplifying
mitotic divisions with incomplete cytokinesis to eventually pro-
duce interconnected chains of spermatocytes that synchronously
transition into meiosis.>”’ Cytokinesis of the meiotic divisions
also is incomplete, such that cytoplasmic channels remain
between sister spermatids after each division.>* This allows for
the sharing of cytoplasm between sister spematids, which syn-
chronizes their development and protects them from the genetic
effects of haploidy.>>® Following meiosis, the haploid sperma-
tids undergo spermiogenesis, the terminal differentiation process
wherein acrosomes are formed from Golgi, chromatin compacts,
the nuclei are reshaped, and the flagella elongate.”® After termi-
nal differentiation, the cytoplasmic contents are removed and the
cytoplasmic bridges connecting sister spermatozoa are dissolved.”
'% This last process is dependent on the actin cytoskeleton and is
essential for proper sperm function."'™* The spermatozoa are
released from the testis into the epididymis, where their plasma
membranes undergo molecular changes.'>'® Epididymal activa-
tion is required for motility and fertilization.'”

Spermatogenesis is strikingly similar in the fruit fly, and
many molecular players are conserved between mammals and
Drosophila."®' A single Drosophila gonialblast, formed by
division of a germline stem cell, undergoes four mitotic divi-
sions and two meiotic divisions to produce 64 interconnected
sister spermatids in a germline cyst.”>®” As in mammals,
incomplete cytokinesis leads to cytoplasmic sharing between
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sister spermatids, via intercellular bridges called ring canals.’
Following nuclear compaction and formation of the flagella,
the interspermatid bridges are dissolved concurrently with
cytoplasm removal in an actin-dependent process called sper-
matid individualization.”"** Much has been discovered about
this process in the 21°° century.

Individualization is carried out by the individualization com-
plex (IC), which first forms at the rostral end of the cyst, around
the spermatid nuclei (Figure 1). The IC is composed of 64 actin
cones, one for each germ nucleus of the cyst.*"** Actin filaments
form a meshwork at the leading edge of the cones and are orga-
nized into parallel bundles at the rear of the cones.””> The mesh-
work is formed by the Arp2/3 actin nucleating complex.”**> The
actin motor Myosin VI works with unknown binding partners to
localize Arp2/3 and to stabilize the meshwork at the front of the
cones.”>**%¢ Other factors at the cone fronts include Actin Cap-
ping Protein and Cortactin, and the membrane binding protein
Amphiphysin.** At the rear of the cones, the actin bundling pro-
teins Quail/Villin, Chickadee/Profilin, and Singed/Fascin local-
ize.”> As individualization proceeds, the actin cones of the IC
move synchronously away from the nuclei toward the caudal end
of the cyst, traversing the spermatid flagella at an average speed of
3 wm/minute and finishing the 1.8 mm journey in 10 hours.””
As it travels, the IC removes the cyst cytoplasmic contents and
individualizes each spermatozoon in its own plasma membrane
(Figure 1).! The cones accumulate actin during this process,
especially at their front edges, and proper accumulation of actin
filaments in the leading edge meshwork is required for cytoplasmic
extrusion.”?> Extruded cytoplasmic contents are collected in a
cystic bulge that forms around the IC.>' When the IC and cystic
bulge reach the end of the flagella, the actin cones and cytoplasmic
contents find themselves in a waste bag, the contents of which are
degraded.”! Tt is not yet known what generates the force for IC
movement. Although Myosins V and VI are important for this
process, motor activity does not seem to power migration of the
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Figure 1. Spermatid individualization in Drosophila. The actin cones of
the individualization complex (IC, red) form around the spermatid nuclei,
which are located rostrally in the germline cyst. As the IC moves caudally
down the spermatid flagella, it removes the cytoplasmic contents and
invests each sperm in its own plasma membrane.

IC.***7? The observation that actin polymerization is essential
for IC progression suggests that the IC moves by incorporating

: 21,27
new actin filaments at the cones,

and experimental evidence
indicates that the rear bundles specifically are involved.>®

Classical genetic studies have identified at least 70 genes that
mutate to give individualization phenotypes (Table 1). Grouping
these factors according to function underlines several molecular
pathways that contribute to the process. As expected, a number
of actin binding proteins and regulators are required for individu-
alization, many of which localize to the IC. Myosin V and the
focal adhesion protein Lasp localize to the actin cones during
their formation and are required for assembly of the cones
around the nuclei.””*® Chickadee/Profilin is required for IC
movement and localizes to the rear of the cones. In its absence,
the cones are short, lack rear bundles, and do not progress away
from the nuclei.”® In contrast, ICs lacking leading edge proteins,
such as Myosin VI or Arp3, have thin actin cones that are able to
progress caudally, but these cones accumulate less actin, particu-
larly in the front meshwork, do not remain in sync, and fail to
successfully individualize the spermatids.”*** Intriguingly, the
actin regulator Rotund, a GTPase activating protein (GAP) for
the signaling protein Rac, also plays a role in this process, sug-
gesting that a signal cascade initiates IC formation or move-
ment.”’ The identity of such signal has yet to be discovered.
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Casein kinase might also be involved in transduction of the

The microtubule cytoskeleton, as well as the actin cytoskele-
ton, seems to be important for individualization. Loss of the
microtubule binding protein Abnormal Spindle (Asp) results in
many spermatogenesis defects, including failed individualiza-
tion.”> Mutations in components of the Dynein-Dynactin com-
plex, including Cytoplasmic Dynein Intermediate Chain
(CDIC) and two Drosophila Dynein Light Chains, DDLCI and
DLCI0F, perturb synchronous movement of the actin cones,
but they also perturb nuclear shaping and positioning.®*>°
Mutations in two other genes implicated in cytoskeletal dynam-
ics, yuri gagarin and merlin, disrupt both nuclei and ICs as
well.’”*® Cytoplasmic microtubules adjacent to the nuclei are
important for nuclear shaping,®” which in turn may be required
for the IC to assemble properly. Alternatively, microtubules in
the vicinity of the nuclei might play independent roles in nuclear
shaping and in aligning the actin cones during their formation.
Recently, the individualization mutant mulet was mapped to a
tubulin-specific chaperone E-like protein (TBCEL), again point-
ing to a role for microtubules.*”*! Unlike the Dynein-Dynactin
complex mutations, the muler mutation disrupts IC translocation
without affecting the nuclei.***° The TBCEL protein can block
microtubule assembly by disrupting tubulin heterodimers, and in
the muler mutant, cytoplasmic microtubules persist aberrantly in
individualizing cysts, suggesting that these microtubules interfere
with IC progression.40 Altogether, these observations indicate
that cytoplasmic microtubules are important for assembly of
the IC around the nuclei but must be cleared in order for the IC
to translocate. Experiments with microtubule depolymerizing or
stabilizing drugs in cultured cysts suggest that cytoplasmic micro-
tubules are not involved in IC movement per se, but it is not clear
whether the progressing IC interacts with axonemal microtu-
bules.”” When axonemal microtubules are not properly post-
affected. %
Furthermore, the putative axonemal Dynein Intermediate Chain
Dic61B is required for individualization. %4 However, other stud-

translationally modified, individualization is

ies suggest that individualization can occur normally in the
absence of certain axonemal components.45 Finally, DDLCI1
plays a role in actin accumulation on the cones, which is indepen-
dent of the Dynein-Dynactin motor and could result from its
association with Myosin V.3%4¢

The individualization process may require deposition of new
membrane between the spermatids. Other processes that involve
new plasma membrane deposition, such as cytokinesis and sper-
matid elongation, use vesicles to shuttle phospholipids from the
Golgi.47'49 However, visualization of membranes with fluores-
cent dye shows little vesicle trafficking at the cystic bulge during
IC progression.”” Despite this observation, a number of vesicle
trafficking factors are required for individualization, including
Auxilin, Clathrin Heavy Chain, Rabl1, Shibire/Dynamin,
Vps28, and the Vps54-like protein Scattered.?>243450-52 The
cystic bulge contains numerous membraneous structures, and
puncta within the cystic bulge stain positively for the endocytic
adaptor a-adaptin.?**%” Because most of the cytoplasmic con-
tents are removed by the individualization process, perhaps
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vesicle trafficking prior to IC progression segregates cellular com-
ponents destined for degradation from those that will remain in
the mature spermatozoa. Vesicles within the cystic bulge could
provide specific lipids for incorporation into sperm membranes
as well (see below). shibire mutants show additional defects in
actin accumulation on the ICs, suggesting that Shibire/Dynamin
plays a role in IC assembly as well as translocation.**** Dynamin
could anchor the plasma membrane to the IC, possibly in concert
(or in parallel) with Amphiphysin, Cortactin, and Myosin
V124253 Alternatively, Dynamin could play a role in actin
deposition independent of the membrane, perhaps with
DDLCI1.>** Some of the other vesicle trafficking mutants show
nuclear defects, suggesting that they may also be required for IC
assembly.”>*° Thus, it is not clear whether vesicle trafficking
plays a direct role in IC movement.

Several lipid metabolism factors are required for individualiza-
tion. In the absence of the sterol trafficking proteins OSBP, Fan,
and NPCl1, the actin cones do not migrate synchronously.”>>®
Using filipin dye, sterols can be visualized in puncta within the
cystic bulge, suggesting that trafficking of specific lipids occurs
during this process.”® In mammals, the molecular composition
of the sperm plasma membrane changes during maturation, and
proper composition is required for fertlity.">'® Furthermore,
failure to remove the cytoplasm can lead to peroxidation of mem-
brane lipids and infertility.'®'# Perhaps a similar process occurs
during Drosophila individualization, wherein the molecular com-
position of the sperm membranes is determined during migra-
tion of the IC. In this case, membranes and vesicles within the
cystic bulge may act as a depot for the lipids. Specific lipids might
also tether the IC to the membrane. In addition to cholesterol,
phospholipid metabolism pathways contribute to individualiza-
tion. In the absence of the lysophospholipid acyltransferases Oys
and Nes or the cyclooxygenase Pxt, the actin cones do not
migrate properly, suggesting that prostaglandin-like lipids gener-
ated from membrane phospholipids are important for this pro-
cess.”””® When phospholipid levels are genetically manipulated,
no effect is seen, indicating that specific molecules, rather than
bulk phospholipids, are critical.”® Whether these lipids play
structural or signaling roles remains to be determined.

The discarded cytoplasm undergoes an apoptosis-like program
during the process of individualization. Numerous apoptotic
proteins are required for individualization to proceed correctly,
including the apoptosis effectors Tango7, Fadd, and Hid and the
apoptosome component Ark/Apaf-1."%°" These proteins activate
the pathway via initiator caspases Dronc and Dredd and effector
caspases Drice and Dcp-1.°%°7°! The spermatid apoptosis pro-
gram seems to be limited by the inhibitor of apoptosis (IAP)
Bruce, and Bruce in turn is localized by the ubiquitin-proteasome
system.®>** Ubiquitylation of Bruce by the KIhl-10/Cullin-3
ubiquitin ligase complex at the rostral end of the cyst reduces
Bruce levels, either by degradation or redistribution, which per-
mits apoptosis initiation there.*>®* At the caudal end of the cyst,
the ubiquitin ligase inhibitor Scotti protects Bruce by preventing
its ubiquitylation, thereby preventing apoptosis initiation.*?
Thus, by this mechanism, the apoptosis pathway is limited to the
region of the cystic bulge, which begins at the rostral end.
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However, the spermatid nuclei also reside at the rostral end, and
it is not known how they are protected from apoptotic degrada-
tion. Several mutants that disrupt movement of the IC have no
effect on apoptosis initiation, suggesting that activation of this
program is independent of other individualization events.®”
However, mutation of apoptosis components disrupts migration
of the IC, indicating that faulty apoptosis can disturb the entire
process.

Many other ubiquitin-proteasome pathway components have
been identified that participate in individualization (see Table 1).
Their targets are not currently known. There seems to be
large-scale degradation of cellular components following cyto-
plasm extrusion.”! Therefore, it is not clear if the individualiza-
tion defects observed in these mutants are due to the persistence
of specific targets or to a general failure of protein degradation.

Bruce removal alone may not be sufficient to initiate apopto-
sis. Similarly to mammalian apoptosis pathways, the mitochon-
dria also play a role in apoptosis initiation in spermatids, via
Cytochrome c-d.”®*? Intriguingly, mutations that disrupt the
mitochondria prevent proper individualization, including those
in the genes pinkl, parkin, mitoférrin, mitochondrially-targeted
topoisomerase Illo, and the cardiolipin transacylase gene
tafazzin.*>"* It has yet to be determined if this effect is mediated
by Cytochrome c-d.

Spermiogenesis, in particular spermatid individualization,
appears to be easily disrupted. Mutagenesis screens have
discovered many genes that block spermatogenesis at this late
step.””>?7 This may be because the process is complex, requir-
ing many factors, as detailed above. Another hypothesis, not
mutually exclusive, is that this step represents a checkpoint for
the removal of improperly differentiated spermatids.”® Support
for this idea is found in flies experiencing meiotic drive, e.g. het-
erozygotes for a Segregation Distorter (SD) second chromosome
that prevents formation of viable sperm carrying the other, nor-
mal second chromosome by interfering with proper chromatin
condensation.”””? In heterozygous cysts, in which half of the 64
sister spermatids carry the SD chromosome and half carry the
normal homolog, the spermatids carrying the normal homolog
are blocked at the individualization step, while their sisters are
properly individualized and released from the testis.*"”® Individ-
ualization also is very sensitive to temperature, suggesting that
cellular stress can halt the process.”® Other cell stressors have not
been tested, but Wolbachia infection has been seen to induce
mild individualization defects in some cases.®” Recently, it was
found that genetic perturbation of the RNAi pathway causes
individualization phenotypes.®'®> RNAi pathway mutations also
perturb cytoskeletal reorganization of the oocyte in a checkpoint-
mediated process.** This seems to be a way for the oocyte to
abort development when chromosomal integrity is disturbed by
unregulated transposon activity. Perhaps a similar mechanism
operates in spermatogenesis. Some, but not all, mutants that dis-
rupt individualization show other spermatogenesis phenotypes;
thus their effects on individualization may be indirect.

In conclusion, genetic studies have identified numerous genes
required for individualization of the differentiated spermatozoa,
the final step of spermatogenesis. Many of these genes have been
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characterized molecularly, and they have highlighted important
mechanisms at play during this process, including actin and
microtubule dynamics, plasma membrane reorganization, and
apoptotic elimination of the cytoplasmic contents. Many ques-
tions still persist, including: What are the signals that initiate
individualization? How is the membrane reorganized, structurally
and molecularly? How is membrane reorganization coordinated
with IC movement? What propels IC movement? How are cyto-

plasmic components correctly partitioned into the cystic bulge?
What protects the nucleus from the apoptosis pathway? Do all
mutations that perturb individualization do so directly? How is

gene expression coordinated at this developmental stage? It is
likely that many factors are regulated post-transcriptionally, as
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