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Periodic visual stimulation and analysis of the resulting
steady-state visual evoked potentials were first
introduced over 80 years ago as a means to study visual
sensation and perception. From the first single-channel
recording of responses to modulated light to the present
use of sophisticated digital displays composed of
complex visual stimuli and high-density recording arrays,
steady-state methods have been applied in a broad
range of scientific and applied settings. The purpose of
this article is to describe the fundamental stimulation
paradigms for steady-state visual evoked potentials and
to illustrate these principles through research findings
across a range of applications in vision science.

Introduction

Evoked potentials, consisting of stereotypic changes
of electrical activity evoked by sensory stimuli and
measured at the scalp, were first recorded in the middle
of the last century (Adrian, 1944; Adrian & Matthews,
1934b; Dawson, 1954; Walter, Dovey, & Shipton,
1946). Since then, they have become an important tool
for understanding the relationships between physical
stimuli, brain activity, and human cognition (Handy,

2005; Luck & Kappenman, 2012; Regan, 1989). The
goal of this article is to describe, at both the conceptual
and technical levels, the core principles underlying a
particular type of visual evoked potential—the steady-
state visual evoked potential (SSVEP)—and its appli-
cation to human sensory and cognitive processing.

Evoked potentials can be generated not only as a
result of physical stimulation by a sensory stimulus
(exogenously generated evoked potentials) but also by
internal cognitive or motor processes (endogenously
generated evoked potentials). These two types of
responses comprise event-related potentials (ERPs),
which are ‘‘the general class of potentials that display
stable time relationships to a definable reference event’’
(Vaughan, 1969, p. 46). In their most common form,
ERPs are recorded in response to an isolated, discrete
stimulus event. In order to achieve this isolation,
stimuli in an ERP experiment are typically separated
from each other by a long and/or variable interstimulus
interval, allowing for the estimation of a stimulus-
independent baseline reference. In contrast to these
transient ERPs, exogenous ERPs can also be generated
in response to a train of stimuli presented at a fixed
rate. Because the responses to such periodic stimuli can
be very stable in amplitude and phase over time, those
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responses have been referred to as the steady-state
visually evoked potential (Regan, 1966).

Steady-state evoked potentials in response to visual
stimuli were first reported by Adrian and Matthews
(1934a) in a remarkable article that also demonstrated
suppression of the alpha rhythm by attention. As was
typical of the time, some details are left to the
imagination, but the following quote from the article
leaves little doubt: ‘‘At a signal the eyes are opened and
the shutter lifted to turn on the flickering light. The
result is a series of potential waves having the same
frequency as that of the flicker’’ (p. 378). Interest
crescendoed in the 1960s among researchers who
studied the processing of luminance information
(Kamp, Sem Jacobsen, Storm Van Leeuwen, & van der
Tweel, 1960; Regan, 1964, 1966; Spekreijse, 1967; van
der Tweel & Lunel, 1965; van der Tweel & Spekreijse,
1969). The signal processing methods used at the time
were rudimentary (Regan, 1989) and have been steadily
improved over time (Nelson, Seiple, Kupersmith, &
Carr, 1984; Norcia, Clarke, & Tyler, 1985; Tang &
Norcia, 1995; Tyler, Apkarian, Levi, & Nakayama,
1979). More importantly for the purpose of this article,
the technique has been extended to stimuli of increasing
complexity, from luminance flicker to pictures of faces,
and therefore this method has become more broadly
applicable in visual science research.

In this article, we describe the key features of the
SSVEP and its generalization from single stimuli to
multiple simultaneous stimuli. In the process, we cover
many different applications of the SSVEP for under-
standing visual perception and attention. At each stage,
we point to prominent results that have been obtained
with the method. We end with a discussion of work that
has used the method in conjunction with computational
modeling to understand nonlinear processing in the
visual cortex.

Responses to single periodic visual
inputs

When a single stimulus attribute is modulated
periodically as a function of time, the evoked response
generated by that stimulus has a periodic time course.
While SSVEPs can be recorded at a wide range of
frequencies, in most studies the stimulus frequency (i.e.,
presentation rate) tends to be above 8–10 Hz. At these
high frequencies, the interval between stimuli is
substantially shorter than the duration of the response
that follows an individual stimulus presented in
isolation, so that responses to individual stimuli
overlap. If the rate is above 10 Hz, the SSVEP is nearly
sinusoidal (i.e., an externally driven oscillation), and
some researchers consider this to be the prototypical

case of an SSVEP response. Below this stimulation
rate, responses to individual stimuli overlap but some
features of the responses to each event remain
preserved, such as responses at frequencies that are
multiples of the stimulus frequency (Heinrich, 2010).
Here we consider that what is critical for the definition
of a response as an SSVEP is not the temporal
frequency of the stimulus but rather the fact that the
stimulus and the response are each periodic. SSVEPs
have been recorded at very low frequencies (Eizenman
et al., 1999; Norcia, Candy, Pettet, Vildavski, & Tyler,
2002); we will review several examples in what follows.

Because the SSVEP response is periodic, it is
confined to a specific set of frequencies, and it is thus
natural to analyze it in the frequency domain instead of
the time domain. The stimulus frequency determines
the response frequency content: The response spectrum
has narrowband peaks at frequencies that are directly
related to the stimulus frequency. To distinguish
stimulus frequencies from response frequencies, we will
use the following notation: A capital letter F will be
used to refer to a stimulus frequency, and a lowercase
italic letter f will be used to refer to a response
frequency. This distinction in notation will become
important when we discuss stimuli that contain more
than one frequency (e.g., F1 and F2) and responses
occurring at multiple harmonics of a given stimulus
frequency (e.g., 1f, 2f, and 3f).

The relationship between periodic signals in the
frequency domain and their corresponding representa-
tion in the time domain is shown in Figure 1, with the
first column showing the signal waveform in the time
domain and the second column showing the spectrum,
which is the corresponding representation of the signal
in the frequency domain. The example in Figure 1a
consists of the simplest case—a periodic signal con-
sisting of a single sine wave. The sine wave shown has a
frequency F of 2 Hz. In the time domain, there are two
peaks and troughs over a period of 1 s. In the frequency
domain (Figure 1b), the response consists of a single
line (i.e., spectral component) at 2 Hz (1f).

An important concept in spectrum analysis is the
notion of spectral resolution. Spectral resolution is the
fineness of the bins on the frequency axis of the
spectrum. The frequency resolution is inversely pro-
portional to the duration of the electroencephalograph
(EEG) segment that is transformed to the frequency
domain. For example, the frequency domain represen-
tation of a 20-s duration periodic response has a
frequency resolution of 1/20 s, i.e., 0.05 Hz, and this
resolution is independent of the periodic stimulation
frequency (see Bach & Meigen, 1999, for details on
SSVEP spectral analysis techniques). The spectrum
analysis requires that at least one full period of the
response of interest be present. Spectrum resolution is
important in determining the signal-to-noise ratio
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(SNR) of the measurement and in being able to
separately analyze responses that have multiple fre-
quency components in them (see Multiple periodic
visual inputs).

In addition to response amplitude, SSVEPs have a
second parameter: response phase. The phase value is
related to processing delays in the visual system and is a
composite of temporal integration times in the retina
and cortex and temporal propagation delays between
retina and cortex and between areas in cortex. Phase is
a circular variable running over 3608 or 2p radians. The
response amplitude and phase can be represented as a
vector in a polar coordinate system (see Figure 1c and
f). The length of the vector codes the response
amplitude, and the polar angle codes the response
phase. In Figure 1, the origin for the phase parameter is
at 3 o’clock, where the phase is 0. The waveform in

Figure 1a has a phase of 0, consistent with it being a
cosine wave with its peak at time 0. The next row
(Figure 1d through f) shows another simulated
response with the same amplitude but a different
temporal delay. Here the delay corresponds to one
quarter of a cycle (compare Figure 1a and c). The
amplitude and frequency of the response are the same
and thus the amplitude spectrum is identical (Figure 1b
and e). In the vector representation, the phase has now
shifted by 908 (Figure 1f), which directly corresponds to
one quarter of the period of the sine wave in the time-
domain plot. The relationship between phase and
temporal delay is discussed in detail in Appendix 1.

SSVEP responses can contain activity not only at the
stimulus frequency F but also at its harmonics. This
occurs because either because the stimulus contains
multiple temporal frequencies (as when a square-wave

Figure 1. Conceptual illustration of steady-state responses in time and frequency domains. (a) Simulated purely sinusoidal response

from a linear system in the time domain. (b) The corresponding response spectrum for the single-sine-wave response in (a). (c) Vector

representation of amplitude and phase of the signal in (a). (d) Single sinusoidal response with a quarter-cycle delay relative to the

response in (a). (e) The corresponding amplitude spectrum is the same as in (b) because the signal amplitude in (d) is the same as in

(a). (f) The vector plot shows a response with the same amplitude as in (a), but with a phase shift of 908. (g) Simulated

multicomponent response of a nonlinear system in the time domain. (h) The more highly structured nonlinear response in the

frequency domain contains multiple harmonics (1f, 2f, 3f). (i) Time-domain SSVEP with a stimulus frequency of 7.2 Hz. (j) The SSVEP

response spectrum contains multiple harmonics (1f, 2f, 3f).
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temporal modulation profile is used) or the system is
nonlinear, or both. A harmonically related response
component is one that occurs at an exact integer
multiple of the stimulus frequency—2f, 3f, and so on—
where the use of a lowercase f indicates that what is
being referred to is a response frequency rather than a
stimulus frequency F.

The case of multiple response frequencies is illus-
trated with synthetic data in Figure 1g, where we again
show a periodic signal that repeats exactly two times
per second, as did the sine-wave signal in Figure 1a.
This signal, however, contains additional frequency
components that are readily apparent in the spectrum
shown in Figure 1h. Here we see additional response
components at 2 (2f) and 3 times (3f) the input
frequency F. These higher harmonic components
distort the shape of the time-domain waveform away
from that of a single sine-wave profile.

If the visual stimulus is a perfect sine wave, it does
not contain higher harmonics; if the visual response is
linear, the response to this stimulus will be confined to
the frequency bin corresponding to the stimulus
frequency. Only the amplitude and/or phase of the
response varies if the system is linear. In contrast, if the
system is nonlinear, this will manifest in the presence of
higher harmonic responses (for more details on
nonlinearity in the SSVEP, see Multi-input interactions
as an objective measurement of system nonlinearities
and neural convergence). The nonlinear nature of the
visual response is illustrated in Figure 1i, which shows
data from an actual SSVEP recording where the
stimulus comprised a sinusoidal modulation of contrast
at a frequency F of 7.2 Hz. Here again, the time
waveform is periodic but not sinusoidal, and the
response spectrum thus contains narrow lines at exact
integer multiples of the input frequency (Figure 1j). The
presence of frequencies in the response (the output)
that were not present in the stimulus (the input)
indicates that the response of the visual system is due to
the activity of nonlinear neural mechanisms.

In a real SSVEP recording, the signal of interest is
inevitably contaminated by measurement noise. This
measurement noise consists predominantly of additive
EEG noise (Victor & Mast, 1991). The experimental
noise is present over all frequencies in the spectrum
(white bars in Figure 1j), with more noise in low
frequencies and in specific broadband frequency ranges
such as the alpha band (8–12 Hz; see, e.g., Klimesch,
2012). By contrast, the SSVEP signal that one seeks to
isolate experimentally is confined to a set of narrow
frequency bins that are directly related to the stimulus
frequency. If the frequency resolution of the analysis is
high, it has been shown that the SSVEP itself is very
narrowband (Regan & Regan, 1989). This means that
the SNR of the SSVEP can thus be very high, because
only a small fraction of the noise—the noise that is

present in the same bins as the response—is relevant
(Regan, 1989). Appendix 2 provides technical details on
statistical analysis procedures appropriate for deter-
mining when an SSVEP is present and distinguishable
from the background noise. The appendices also
discuss procedures for calculating error statistics on the
SSVEP parameters.

One of the key questions in SSVEP recording is the
choice of the stimulus frequency. In a seminal study,
Regan (1966) reported a maximal response at about 10
Hz for luminance flicker. Subsequent studies have
reported a similar (Fawcett, Barnes, Hillebrand, &
Singh, 2004; Regan, 1989; Srinivasan, Bibi, & Nunez,
2006) or slightly higher (Hermann, 2001) frequency
range. Typically, studies such as these have used low-
level visual stimuli and recordings from medial occipital
sites. However, the stimulation frequency that gives rise
to the largest SSVEP response may depend on the kind
of stimulus used and the recording site (Srinivasan et
al., 2006). Under the hypothesis that the stimulation
rate generating the largest SSVEP is inversely related to
the time needed to fully process the stimulus, lower
stimulation rates may be necessary to record SSVEPs
generated by higher level visual processes, for instance
the discrimination of complex stimuli such as faces (i.e.,
about 6 Hz; Alonso-Prieto, Belle, Liu-Shuang, Norcia,
& Rossion, 2013). Relatively low frequencies can also
be advantageous because, as we will see later, the phase
of the response becomes interpretable (Appelbaum &
Norcia, 2009; Cottereau, McKee, Ales, & Norcia,
2011).

In common practice, stimulus frequencies tend to be
in the range of 3–20 Hz, but this is not a requirement
for recording an SSVEP: Several studies have recorded
extremely narrowband SSVEPs at very low frequencies
(Alonso-Prieto et al., 2013; Norcia et al., 2002; see also
Regan & Regan, 1988), while SSVEP components at
fundamental frequencies up to 100 Hz have been
reported (Herrmann, 2001). As noted already—and
this is an important point—what is critical for the
definition of a response as an SSVEP is not the
temporal frequency of the stimulus but rather the fact
that the stimulus and the response are each periodic.

The sweep VEP

One of the leading applications of the SSVEP has
been the sweep VEP. In this paradigm, the SSVEP is
measured in response to a stimulus that is parametri-
cally varied (swept) over a range of values, rather than
being presented at a fixed, unchanging value (Regan,
1973). The sweep VEP was first used for objective
refraction: SSVEP amplitude was measured as the
power of a lens was continuously varied (Regan, 1973).
The best correcting lens power was taken as the one
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that led to the largest SSVEP. The sweep VEP has since
been mainly used to measure spatial acuity (Nelson,
Kupersmith, Seiple, Weiss, & Carr, 1984; Norcia &
Tyler, 1985; Regan, 1977; Tyler et al., 1979) and
contrast sensitivity (Allen, Norcia, & Tyler, 1986;
Nelson, Kupersmith, et al., 1984; Norcia, Tyler, &
Hamer, 1990; Regan, 1975). Spatial acuity is measured
by sweeping the spatial frequency (e.g., pattern size) of
a high-contrast pattern over a wide range. Similarly,
contrast sensitivity can be measured by varying the
contrast of a fixed-spatial-frequency pattern over a
wide range of contrast values.

Measurement of contrast response and spatial
frequency tuning functions is illustrated in Figure 2. On
the left is a contrast response function (solid red curve)
that was measured by increasing the contrast of a
binary noise pattern between 0.8% and 26% contrast
while the pattern was exchanged with a blank field at F
¼ 5.1 Hz. The sweeps each lasted 10 s, and the data are
from the average of 10 of these 10-s trials. The response
at 5.1 Hz increases systematically as contrast increases.
As Campbell and colleagues (Campbell & Kulikowski,
1972; Campbell & Maffei, 1970) first noted, the SSVEP
is a linear function of log stimulus contrast for a
substantial range of suprathreshold contrasts, starting
near psychophysical threshold. This behavior can be
seen in the data of Figure 2a. Given this, a sensory
threshold can be estimated from a linear extrapolation
of the contrast response function to zero amplitude.
The assumption here is that the evoked response will
continue to decrease in the same fashion until it
disappears entirely. The point at which this occurs is

obscured by the background EEG. By regressing
through the ambient noise level, one can estimate this
point as a constant criterion (zero response). If one has
access to several well-measured points on the response
function, this estimation technique shows little bias
(Norcia, Tyler, Hamer, & Wesemann, 1989).

The right panel of Figure 2 shows a spatial frequency
tuning function measured over 2 to 30 c/8. Here the
steps are linear, based on the fact that contrast
sensitivity falls off linearly when plotted as log
sensitivity versus linear spatial frequency (Tyler et al.,
1979). Again, a threshold, which in this case reflects the
participant’s grating acuity, can be estimated by
extrapolating the response function to zero amplitude.
Sweep VEPs have proven to be useful for measuring
acuity and contrast thresholds in a wide range of
research and clinical contexts (Almoqbel, Leat, &
Irving, 2008).

Stimulus symmetry leads to symmetrical SSVEP
responses

In two of the actual SSVEP recordings discussed
already (Figures 1i and 2a), the stimulus modulated in a
pattern onset/offset mode, in which a spatially struc-
tured field (a random checkerboard) was alternated
with a spatially uniform field (a gray field of the same
mean luminance). It is intuitively simple that the visual
system should have a large response after the transition
from the uniform field to the patterned field but a

Figure 2. Contrast and spatial-frequency responses measured with the swept-parameter technique. (a) VEP amplitude and phase as a

function of log contrast measured as the average of ten 10-s sweeps. (b) VEP amplitude and phase as a function of linear spatial

frequency measured as the average of ten 10-s sweeps. See text for details.
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small(er) one at its offset. This is illustrated schemat-
ically in Figure 3a. The pattern of large/small responses
repeats at the stimulus repetition rate (indicated by the
brackets), and therefore a response is present at the
fundamental frequency (f ¼ 1/T) and possibly higher
harmonics (2f, 3f, etc.; see Figure 3e). The direct
connection between stimulus frequency and response
frequency, plus a simple asymmetry consideration
(onset is not equivalent to offset), can be generalized to
any periodic stimulus containing the onset and offset of
patterns going from simple ones such as checkerboards
(Spekreijse, van der Tweel, & Zuidema, 1973) to more
complex ones such as faces (Ales, Farzin, Rossion, &
Norcia, 2012; Rossion & Boremanse, 2011).

Another common presentation mode for SSVEPs is
pattern reversal (see Figure 3b). In this presentation
mode, a pattern (e.g., a checkerboard or grating)
alternates between states in which the luminance of
bright elements shifts to an equivalent dark value and
vice versa. In this way the mean luminance of the
pattern is constant and only the contrast of the pattern
changes at the stimulation rate. Pattern reversal thus
has translational symmetry—one spatial phase of the
pattern reversal is simply a (spatial) translation of the
other. Pattern reversal stimulation is often referred to
as counterphase modulation to reflect this property.

The two spatial alternations comprising the pattern
reversal stimulus evoke equivalent neural population
responses, i.e., there are just as many of the same kinds
of neurons that respond to one phase of the stimulus as
the other. Because the two phases of the stimulus
activate the same number and type of neurons, the
response to each reversal is the same, and this leads to
an EEG spectrum that contains only even harmonics
(2f, 4f, 6f, etc.; Cobb, Morton, & Ettlinger, 1967;
Millodot & Riggs, 1970). Pattern reversal stimuli are
sometimes referred to by the number of reversals per
second they contain (e.g., eight reversals/s for 4-Hz
stimulation). There are two pattern reversals per cycle
of the stimulus, and the response is largest at the
pattern reversal frequency when high reversal rates (;6
Hz and above) are used. For consistency, it is useful to
refer to the frequency of a pattern reversal stimulus as
the frequency at which the stimulus returns to its
original state (e.g., 1 Hz in the example of Figure 3b)
and refer to the response harmonics (e.g., 2f¼ 2 Hz) as
being multiples of this rate rather than the pattern
alternation rate (see spectrum in Figure 3f).

The concept of translational symmetry in the
stimulus leading to translational symmetry in the
response can be generalized to more complex patterns,
as will be described later in Generalizations of the

Figure 3. (a) Schematic illustration of the pattern onset/offset stimulation mode. Here a patterned field is alternated with a uniform

field of the same mean luminance. (b) Schematic illustration of the pattern-reversal stimulation mode. Here the same pattern is

presented in both phases, but with a 1808 shift of spatial phase that causes bright bars to be exchanged for dark ones and vice versa.

(c) Schematic illustration of one cycle of the response to pattern onset/offset consisting of a large response at pattern onset and a

smaller response at offset. (d) Schematic illustration of one cycle of the response to pattern reversal. Here the response to each

reversal event in the display is accompanied by an equal response. Note that the period of the response is now one half of the full

stimulus cycle in (b). (e) The response spectrum of the pattern onset/offset response contains both odd (1f, 3f, etc.) and even (2f, 4f,

etc.) harmonics of the stimulus frequency. (f) The response spectrum of the pattern-reversal response contains only even harmonics

(2f, 4f, etc.) of the stimulus frequency.

Journal of Vision (2015) 15(6):4, 1–46 Norcia et al. 6



pattern onset–offset VEP. The conceptual relationship
between symmetry/asymmetry in stimuli and responses
and odd and even harmonics exists due to symmetry
properties of the Fourier transform—asymmetry is
encoded in the odd harmonics and symmetry in the
even harmonics.

Breaking symmetry by adaptation: Uncovering
tuned populations

The normal relationship between symmetric stimuli
and symmetric population responses can be perturbed
experimentally; this is useful for uncovering informa-
tion about the tuning of the neurons in the underlying
population. A concrete example comes from studies of
the motion-processing system. At early stages of the
visual pathway, starting especially in V1, single cells
become selective for direction of motion (Hubel &
Wiesel, 1965, 1968), and each direction of motion is
represented by roughly equivalent numbers of direc-
tion-tuned cells. Thus when a stimulus changes
direction, the population response after each direction
change is approximately the same. This is illustrated
schematically in Figure 4. Figure 4a depicts a stimulus
that moves leftward for 167 ms followed by rightward
motion for 167 ms (for a total stimulus-defined
repetition period of 333 ms, or F¼ 3 Hz). This stimulus
evokes identical responses for the leftward and the
rightward motion (Figure 4b, first row). Because of
these identical responses, the repetition rate of the
measured response is not 3 but 6 Hz, or a 167-ms
period (Figure 4c). This frequency doubling is gener-
ated because even though independent sets of neurons

tuned for each direction motion are present in the
cortex, their summed population response measured at
the scalp is not different for left and right directions of
motion. Information about the underlying neural
tuning (i.e., that there are separate populations of
neurons for leftward and rightward motion) has thus
been lost.

It is possible to uncover the presence of underlying
tuned populations by using selective adaptation (Ales &
Norcia, 2009; Hoffmann, Unsold, & Bach, 2001; Tyler
& Kaitz, 1977). In the unadapted state, as just noted,
both populations respond equally well to each direction
and the summed population response at the scalp
results in a frequency doubling of the response.
However, prolonged exposure to one direction of
motion reduces the responsiveness of direction-selective
cells tuned to the exposed direction of motion (Priebe,
Lampl, & Ferster, 2010), a process known as direction-
specific adaptation.

After adaptation to a leftward motion, the responses
of individually tuned neurons to leftward motion from
the population are reduced, resulting in an imbalance in
the overall response to the periodic stimulus. In Figure
4b, the unadapted response has six equal responses to
three cycles of the input, an even multiple of the input
frequency. In contrast, when a population is adapted,
the response for the adapted direction is reduced
(Figure 4b). This imbalanced response creates re-
sponses at odd multiples of the input frequency (Figure
4c).

The production of odd harmonics after adaptation,
while consistent with direction-specific adaptation, does
not directly show a difference in response for different
directions of adaptation, as the odd harmonic ampli-

Figure 4. (a) Schematic illustration of a stimulus that changes direction at 3 Hz. (b) Schematic illustration of hypothetical neural

responses tuned to rightward motion (red) and leftward motion (blue). Shown before and after adaptation to different directions of

motion. (c) Response spectrum generated from the neural responses in (b). (d) Phase of the 1f1 component after adaptation to

different directions of motion.
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tude, which is a scalar quantity, cannot specify a
direction. It is possible to use the other parameter of
the SSVEP—its phase—to definitively identify direc-
tion-specific adaptation (Ales & Norcia, 2009). The
imbalanced adapted response has a different temporal
sequence, either strong/weak or weak/strong, depend-
ing on which of the adapting stimuli was presented
(leftward vs. rightward in this example). The different
temporal ordering results in a 1808 phase difference in
the odd harmonic components (e.g., a shift by one half
of the period of the response; Figure 4d). The presence
of odd harmonics that are 1808 phase-shifted after
adapting to two selected adapters is thus a strong
diagnostic criterion—at the population level—of di-
rection-selective cells. Adaptation can thus be used to
reveal an underlying tuning property that is not
apparent in the SSVEP recorded under unadapted
conditions.

Generalizations of the pattern onset–offset VEP

If we adopt a more general definition of pattern, it is
possible to extend the concepts of pattern reversal and
pattern onset–offset VEPs to more complex stimuli.
The first recorded pattern onset–offset VEPs modulat-
ed stimulus contrast: Pattern onset consisted of the
replacement of a blank field with a high-contrast
patterned field of the same mean luminance. Because
the mean luminance was constant over time, the evoked
response could be attributed specifically to mechanisms
sensitive to spatial contrast (Spekreijse et al., 1973).
The logic here is general and very useful in terms of
controlling what aspect of visual processing is being
measured by the SSVEP. The argument goes as follows:
There is some lower level stimulus attribute—in this
case luminance—that the experimenter wishes to
control for in order to isolate responses to a higher level
attribute, e.g., spatial contrast. In the original studies,
because the blank field had the same mean luminance
as the patterned field, any evoked response had to be
the result of pattern- or contrast-specific mechanisms
rather than luminance processes. This simple notion
can be generalized to more complex stimuli by ensuring
that the on and off phases of the stimulus are
equivalent on some set of low-level features that the
experimenter wishes to control for, but differ on some
higher level ‘‘pattern’’ that does not need to be
controlled for.

An early example of a higher level pattern onset–
offset response is the so-called texture-segmentation
VEP (Bach & Meigen, 1992; Lamme, Van Dijk, &
Spekreijse, 1992). In a texture-segmentation VEP, a
figure or pattern is created by texture rather than
luminance discontinuities; this has been useful for
studying image segmentation properties underlying

object perception. A review of the older literature is
available (Bach & Meigen, 1998).

A variant of the texture-segmentation paradigm is
shown in Figure 5. Here pattern onset consisted of the
appearance of a texture-defined disk region from an
otherwise uniform texture field (Appelbaum, Ales, &
Norcia, 2012). The off state consisted of a 138 field
covered with static, one-dimensional contrast noise.
The on state was created by rotating the texture by 1808
at 1 Hz within a central 38 disk. This modulation
caused the central disk to either mismatch with the
background, creating a perceptually segmented state
(Figure 5a, top left panel), or match exactly, blending
into a perceptually uniform one-dimensional texture
(Figure 5a, top right panel).

The responses to the segmented/uniform test condi-
tion are show in the frequency domain in Figure 5b and
in the time domain in Figure 5c. The frequency
spectrum for the uniform-segmented display consists of
a series of narrow spikes at 1-Hz intervals, i.e., at 1f, 2f,
3f, 4f, etc. The gray bands indicate the responses at
even harmonics of the 1-Hz stimulus frequency. The
corresponding time-domain waveform shows a larger
response at pattern onset (which occurred at 500 ms in
the plot) than at pattern offset (at 0 ms). This
asymmetry in the response (onset bigger than offset)
manifests in the spectrum as the presence of odd
harmonics.

To show that image segmentation rather than some
other low-level cue is driving the odd harmonic
responses, a control condition in which the local texture
changes within the disk were the same was used.
Critically, these image transients were not associated
with changes in the segmentation state of the display.
To produce equivalent local feature changes without a
change in global organization, the texture inside the
disk region was cut from a different random texture
sample, and the disk region thus never matched the
background after rotation by 1808. By comparing the
responses in the top and bottom panels of Figure 5b,
we can see that the even harmonic components are very
similar in the two conditions, but that the uniform-
segmented response contains multiple odd harmonic
components that are absent from the segmented-
segmented response. The odd harmonics are thus
specific to the global segmentation state of the display.
The even harmonics comprise responses due to local
contrast changes within the central disk region, and
these are equivalent in the two stimuli. The time-
domain waveforms reflect these properties: The re-
sponse to the segmented-segmented display consists of
two nearly identical transient responses, consistent with
the fact that the two image states are perceptually
identical in this condition as well as being physically
identical within the disk region. The figure- segmenta-
tion-specific activity can be measured directly from the
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odd harmonics of the test condition. In this example,
the figure-segmentation related activity can be isolated
from a single stimulus condition—the Test condition—
rather than through a more time-consuming and error-
prone process of subtracting test and control condi-
tions.

Other examples of generalized pattern onset–offset
responses come from the onset of twofold symmetry in
random-dot patterns (Norcia et al., 2002), the onset of
orientation structure in Glass patterns (Pei, Pettet,
Vildavski, & Norcia, 2005), the onset of collinearity in
arrays of Gabor patches (Norcia, Pei, et al., 2005;
Norcia, Sampath, Hou, & Pettet, 2005), the onset of
objects defined by binocular disparity (Cottereau et al.,
2011; Cottereau, McKee, Ales, & Norcia, 2012;
Cottereau, McKee, & Norcia, 2012), and the onset of
phase correlations across orientation and scale in face
or object images (Ales et al., 2012; Farzin, Hou, &
Norcia, 2012). In each of these cases, it is possible to
design a set of images in which the spatial structure of
the local contrast elements is randomized (the off state
of the pattern). These off images can be exchanged with
a set of on images that have a comparable set of local
elements but in which a higher level of structure has

been imposed on the local elements. Through careful
matching of the local contrast changes between on and
off phases, responses to this level of structure are
rendered symmetric for the two transitions, and thus
these responses are projected onto the even harmonics
of the stimulus frequency. By design, the higher order
structure differs across stimulus phases, producing a
difference between the two transitions (off to on and on
to off), yielding odd harmonic responses.

SSVEP responses reflecting higher level visual
processes

Historically, the primary applications of SSVEPs
have been in studies of lower level visual processes, as
just described, and attention (see Multiple temporal
inputs for the study of visual attention). Some
researchers have concluded that because an SSVEP
response is often maximal over medial occipital
electrode sites (typically Oz), it originates mainly from
the primary visual cortex (Müller et al., 1997; Di Russo
et al., 2007) and that ‘‘the’’ SSVEP is primarily a tool
for studying sensory processes and low-level vision

Figure 5. SSVEPs to higher level stimuli contain both figure-segmentation-related (odd harmonic) and nonfigure-related (even

harmonic) responses. (a) Test condition: A spatially segmented display created by texture discontinuity cues was alternated with a

spatially uniform field at 1 Hz. Control condition: The same local stimulus change, a 1808 rotation of the texture within the disk

region, does not change the segmentation state because the texture inside the disk never matches that of the background. (b) Top

panel: The response spectrum from the test condition contains both odd and even harmonics. Bottom panel: The response spectrum

from the control condition contains only even harmonics. (c) Top panel: The cycle average time course for the test condition shows

larger responses to onset of the segmented image (at 500 ms) than to offset (0 ms). Bottom panel: Control-condition responses are

equivalent after image transient at 500 and 0 ms.
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(Regan, 1989). However, SSVEPs vary according to
frequency and the type of stimuli presented (Alonso-
Prieto et al., 2013), and as we discuss later, the SSVEP
approach can be used to study higher level visual
processes (i.e., object, face, or visual-scene perception).
We will distinguish two approaches in which the
SSVEP has been used to study higher level processes,
one indirect and the other direct. An indirect approach
is one in which the influence of a higher level process is
revealed through its modulatory effect on an SSVEP
generated by a low-level process, and measured over
low-level visual areas. Direct approaches frequency-tag
the high-level process itself.

Indirect approaches

Silberstein et al. (1990) have developed an indirect
SSVEP approach to study high-level (visual) processes
such as vigilance. This approach consists of the
superimposition of a rapid (13-Hz) sinusoidal contrast
modulation (45%) on a static visual stimulus that
engages the participant in a cognitive task. Using this
approach, a frontal SSVEP amplitude increase associ-
ated with the hold period of a working-memory task
has been identified (Ellis, Silberstein, & Nathan, 2006;
Perlstein et al., 2003; Silberstein, Nunez, Pipingas,
Harris, & Danieli, 2001). Similarly, Peterson et al.
(2014) have recently used the SSVEP approach to tag
individual stimulus elements as they are encoded into
working memory. By demonstrating that SSVEP
amplitudes are larger for remembered items, relative to
those that were forgotten, this finding illustrates how
neural resources allocated during memory encoding
directly contribute to working-memory capacity limits.

In another study, a 13-Hz flicker was superimposed
on static, dynamic, and scrambled images of faces, and
the SSVEP response was shown to be different across
these three conditions (Mayes, Pipingas, Silberstein, &
Johnston, 2009). This approach is indirect because the
visual stimulus of interest is always present and
unmodulated, but the stimulus modulation that actu-
ally generates the SSVEP is of a low-level feature (45%
contrast modulation). The measured alterations of this
low-level response are presumably due to diversion of
attention towards the high-level feature (Hindi Attar,
Andersen, & Muller, 2010). In another indirect
approach, complex visual stimuli have been presented
at periodic rates of 10 Hz or more (Gruss, Wieser,
Schweinberger, & Keil, 2012; Kaspar, Hassler, Mar-
tens, Trujillo-Barreto, & Gruber, 2010; Keil et al., 2003;
McTeague, Shumen, Wieser, Lang, & Keil, 2011;
Moratti, Keil, & Stolarova, 2004). In these studies, the
exact same image—namely a visual scene, an isolated
object, or a face—appears and disappears at a fixed rate
in a given trial of a few seconds. The SSVEP response
obtained is compared across different kinds of stimuli

flickering at the same rate in other trials (for instance,
by comparing the SSVEP obtained to affective and
nonaffective pictures). In this approach, the visual
stimulus appears and disappears at a periodic rate from
a background that is not equalized for low-level
features (e.g., contrast). Thus the SSVEP response
contains a mixture of low-level (e.g., populations of
neurons responding to the change of contrast) and
high-level (e.g., populations of shape-related neurons)
visual responses. Moreover, in these studies the SSVEP
is typically observed and recorded on medial occipital
sites (around electrode Oz), suggesting that it essen-
tially reflects low-level visual processes. The modulation
of the periodic responses at Oz, by affective content for
instance, may be secondary to sustained/unmodulated
feedback from higher level areas that code the high-
level content rather than being a direct time-locking to
the high-level stimulus information.

Direct approaches

We consider an approach to higher level processing
to be direct when the paradigm triggers the higher level
process at the tagging frequency and when this higher
level activity can be isolated from low-level visual
processes either in the design or in the analysis. For
instance, the sweep VEP described earlier has been
extended to higher level vision by generalizing the
pattern onset/offset VEP (Ales et al., 2012). In that
study, a face-containing image was alternated at 3 Hz
with an image whose phase spectrum had been
randomized (Figure 6a). This process leaves the power
spectrum the same between the two images, and thus
mechanisms such as local filters that only measure
power spectral content cannot distinguish the two
stimulus states. Figure 6b shows a portion of the
amplitude spectrum of the response to the alternation
between intact and scrambled face images. The left
panel shows the spectrum at Oz. Here the response is
dominated by the second harmonic at 6 Hz. By
contrast, the response over the right occipitotemporal
cortex is dominated by the first harmonic (3 Hz). This is
consistent with the face-selective responses observed
over the right occipitotemporal cortex in standard ERP
studies of the N170 component (Rossion & Jacques,
2011; for reviews, see Bentin, Allison, Puce, Perez, &
McCarthy, 1996).

The visibility of the face images was then varied by
progressive undoing of the phase scrambling over a
series of 20 equally spaced steps during a 20-s sweep
sequence. At the beginning of the sequence, a
scrambled image alternated with another scrambled
image at 3 Hz, leading to a symmetrical response at 6
Hz only (second harmonic) on medial occipital sites.
After a certain level of descrambling, the face is
perceived and the spatial asymmetry of the stimulus
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alternation leads to a robust 3-Hz (first harmonic)
response, which can be taken as an objective signature
of face detection (see Figure 6c). The first harmonic (3
Hz) emerged abruptly between 30% and 35% phase
coherence of the face and was most prominent on right
occipitotemporal sites. Thresholds for face detection
were estimated reliably in single participants from 15
trials, or on each of the 15 individual face trials. The
SSVEP-derived thresholds correlated with (i.e., pre-
dicted) the concurrently measured perceptual face-
detection thresholds. This first application of the sweep
VEP approach to high-level vision provides a sensitive
and objective method that could be used to measure
and compare visual perception thresholds for various

object shapes and levels of categorization in different
human populations, including infants and individuals
with developmental delay.

Another example of temporally modulating high-
order image structure comes from a study of visual
processing of 3-D pictorial cues that arise from
shading relationships in images (Hou, Pettet, Vildav-
ski, & Norcia, 2006). The researchers developed a
stimulus paradigm in which the spatial relationships
between shading information could be made to be
consistent with either a 3-D interpretation in which
the perceived structure varied in apparent depth
across the image in one state or a flat plane in another.
This stimulus thus comprised a generalized onset/

Figure 6. Face-detection sweep VEP (adapted from Ales et al., 2012). (a) Six images are presented per second, with every other image

being (partially) intact and the others scrambled. Over a 20-s trial, a new level of phase randomization is presented over a series of 20

equal steps of phase coherence. The power spectrum is constant during the stimulation. Populations of neurons coding for faces

independent of low-level information should respond exactly 3 times/s, the rate at which partially intact faces are presented. (b)

Grand-averaged (N¼10) EEG spectrum elicited by the stimulation depicted in (a). This stimulation leads to a response dominated by 6

Hz (2f) at medial occipital sites (left panel). A 3-Hz (1f) response dominates the recording over right occipitotemporal sites, reflecting

face perception (right panel). (c) SSVEP voltage versus stimulus coherence (0% to 100%) at 3 Hz (filled squares). The 3-Hz signal is

compared to the activity in the neighboring frequency bins of the spectrum (e.g., 2.5 and 3.5 Hz), which serve as a noise baseline

during the stimulus sequence that evolves from a fully phase-scrambled face to a clearly visible face stimulus. Face detection emerges

in the EEG at about 35% of phase coherence, before the behavioral report of face detection (arrow). The topographical map is

extracted at the level of the blue dotted line (about 35% of phase coherence), indicating the emergence of face detection over right

occipitotemporal electrode sites.
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offset stimulus in which the on state had a different
perceived depth structure than the off state: The on
state appeared 3-D and the off state appeared flat.
This perceptual interpretation of the stimulus is
illustrated in the top panels of Figure 7. Critically for
the study, after viewing the display for a long period
of time, a second percept became apparent—one in
which the two states of the display had equivalent
depth interpretations. Instead of the appearance of the
display alternating between flat and undulating in
depth, the display appeared to consist of a symmetric
left/right movement of a flat pattern seen through a set
of cutout apertures (illustrated schematically in the
bottom panels of Figure 7).

In order to characterize the properties of the
SSVEP corresponding to the two perceptual inter-
pretations, the observers were given a button to
indicate which state was dominant. These perceptual
labels were then use to form separate data sets that
were spectrum analyzed. Due to the asymmetric
perceptual interpretation, alternations between the on
and off stimulus states at F ¼ 1 Hz led to the
generation of strong odd harmonic responses (i.e., 1f
[1 Hz] and 3f [3 Hz]). When the display was perceived
as a flat plane moving left and right, the relative

amplitude of the odd and even harmonics shifted
towards being more dominated by the even harmon-
ics. The conclusion from this experiment is that the
SSVEP reads out a perceptually relevant population
response, including whether states of the stimulus
generate responses in the same or different popula-
tions. It should also be noted here that the SSVEP to
this higher level stimulus was recorded at a very low
stimulus frequency (1 Hz).

Higher level processes can also be investigated by
periodic onset and offset of the visual stimulus against
its background, by changing the higher level content
of the stimulus at every cycle. Rossion and Boremanse
(2011) presented different face pictures to human
observers for about 1 min at a fixed rate of 3.5 Hz
(Figure 8a). High-SNR EEG responses were confined
to 3.5 Hz and its harmonics (Figure 8b). Although this
response contains a mixture of low- and high-level
visual processes, contrasting it to the response
obtained when the exact same face picture was
repeated at the same rate allowed the isolation of the
higher level process of interest—individual face
discrimination. A large repetition suppression effect—
i.e., reduction of the SSVEP when the exact same face
is repeated—is illustrated in Figure 8b. The differen-
tial SSVEP response was obtained despite significant
changes of stimulus size at every stimulation cycle and
was maximal over the right occipitotemporal cortex
rather than medial occipital sites (i.e., Oz). In a
subsequent study, this differential SSVEP was reduced
when the face stimuli were presented upside down or
contrast reversed (Rossion, Prieto, Boremanse, Kuef-
ner, & Van Belle, 2012), two manipulations known to
reduce the efficiency of individual face discrimination
(e.g., Freire, Lee, & Symons, 2000; Russell, Sinha,
Biederman, & Nederhouser, 2006). The advantage of
the SSVEP approach in this paradigm is that it
provides a robust implicit measure of individual face
discrimination in a few minutes (Rossion, 2014).
Interestingly, in order to provide this high-level visual
discrimination measure, not only must the high- level
content of the stimulus change at every cycle, but the
response has to be measured over high-level visual
areas. The frequency also matters: The SSVEP
response decreases significantly over the occipitotem-
poral cortex at rates above 8 Hz, and the differential
response cannot be obtained at such high frequencies
(Alonso-Prieto et al., 2013).

This section has introduced several general princi-
ples that underlie the SSVEP paradigm. The first
general principle is that a temporally periodic
stimulus leads to a narrowband response in the
frequency domain. The second is that because the
visual system is nonlinear, responses will often be
present at multiple harmonics of the stimulus
frequency. The third is that considerations of sym-

Figure 7. Bistable display creating two different depth

interpretations of the same image. The top image depicts the

perceptual state during which the observer perceives a change

in depth structure. In this state, the display alternates between

a surface that appears to be undulating in depth and another

surface that is flat. In the second perceptual state (bottom

panel), the display is organized into two layers—an aperture

through which a grating is seen moving left and right in a fixed

depth plane located behind the aperture.
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metry in stimuli reflect themselves in the particular set
of harmonic responses that are observed in the
recorded spectrum. Asymmetric stimuli are expected
to generate responses with strong odd harmonic
components, while symmetric stimuli, in most cases,
will lead to responses that are dominated by even
harmonics. These symmetry relationships are reflected
in pattern onset/offset stimuli, which are asymmetric,
and pattern reversal stimuli, which are symmetric. As
a rule, asymmetric stimuli lead to asymmetric
responses and symmetric stimuli lead to symmetric
responses, with corresponding reflections in the
relative strength of odd and even harmonics in the
response spectrum. These normal relationships can be
perturbed by adaptation and perceptual interpreta-
tion in ways that usefully relate to the underlying
encoding mechanisms. Finally, the notion of pattern
onset and offset can be generalized to higher order
stimuli.

Multiple periodic visual inputs

In the previous section we described studies that
have used EEG to track the neural responses to a single
periodic visual input. In this section, we will describe
one of the most important virtues of the SSVEP
approach: its ability to measure responses from
different visual processes simultaneously through the
use of multiple stimulation frequencies. The funda-
mental insight here is that because the stimulus input
frequencies strictly determine the response frequencies,
it is possible to recover responses to several simulta-
neously presented stimuli via spectrum analysis if each
one has a distinct frequency. This method was
introduced by Regan (Regan & Cartwright, 1970;
Regan & Heron, 1969) in the context of visual field
mapping (i.e., perimetry) and was dubbed frequency
tagging by Tononi, Srinivasan, Russell, and Edelman
(1998). By careful choice of stimulation frequencies,

Figure 8. (a) Sinusoidal contrast modulation (0%–100%) of different face identities at a periodic rate of 3.5 Hz (Rossion & Boremanse,

2011). A new face appears every stimulus cycle. (b) EEG power spectrum and topographical maps of the difference between different-

faces and same-face conditions, as obtained following a single trial of 70 s of stimulation at 3.5 Hz (grand-averaged data over 12

participants; Rossion & Boremanse, 2011). Stimulation with mixed-identity faces leads to a larger response than does repetitive

stimulation with the same identity.
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this form of multi-input stimulation allows an exper-
imenter to assign tags to different stimuli and recover
the respective responses in the frequency bins that
correspond to each of the stimulation frequencies.
Conceptually, this allows for the extraction of evoked
responses from populations of cells that are selective to
each of the unique input frequencies, even if they are
spatially overlapping or embedded within the same
stimulus element.

This section will cover applications of multiple-input
frequency tagging in studies using multiple frequency
inputs embedded in the same time sequence, multiple
stimuli presented simultaneously, or stimuli comprising
more than one ‘‘part,’’ as well as important applications
of the tagging approach to the study of attention.
Multi-input interactions as an objective measurement
of system nonlinearities and neural convergence will
cover a second and very fundamental advantage of the
multi-input approach: the ability to model the dynamic
properties of the nonlinear processes through mea-
surement of the nonlinear interactions between multi-
ple input frequencies.

Multiple temporal inputs: Embedded frequency
paradigms

Local/global processing in hierarchical stimuli

Many visual stimuli contain structure at multiple
levels of complexity, and visual analysis of these
patterns may reflect this feature hierarchy. A powerful
way of separating responses driven by global structure
from those driven by local structure is to dissociate the
rates at which global and local structures are updated
in the stimulus. The first example of this approach was
the VEP generated by dynamic random-dot corrello-
grams and stereograms (Julesz & Kropfl, 1982; Julesz,
Kropfl, & Petrig, 1980). In these studies, the researchers
wished to separate evoked responses to a higher level
feature (binocular correlation or binocular disparity)
from those to a lower level one (monocular image cues).
To accomplish this goal, a binocularly matched set of
dots was presented to each eye on a given display
frame. Several frames later, a new set of matching dots
was presented that portrayed the same global image.
After several more updates of the monocular images,
the global structure was changed (e.g., from uncorre-
lated to correlated or from crossed to uncrossed
disparity). Purely monocular responses were generated
at the rapid rate of monocular image updating. Because
the successive monocular updates were temporally
uncorrelated within an eye, there was no information
coding the binocular state of the image at this
frequency. By contrast, a purely binocular response was
recorded at the frequency at which the binocular
(global) status of the image was changed.

Subsequent researchers used this two-frequency
tagging of local and global structure to measure
orientation and direction selectivity in infants (Brad-
dick, Atkinson, & Wattam-Bell, 1986; Wattam-Bell,
1991). For instance, Braddick et al. (1986) isolated an
orientation-specific response by using two embedded
frequency rates of stimulus change in a sequence. The
phase of a grating changed at a fast rate of 25 Hz,
generating a 25-Hz SSVEP (in adults subjects who
participated in that experiment), and the orientation of
the grating changed every three stimuli, i.e., at a rate of
8.3 Hz. While the orientation response was present in
adults and in infants a few weeks old, it was absent in
newborns, showing that orientation-specific cortical
activity is not present at birth but develops early in
infancy (see Braddick, Birtles, Wattam-Bell, & Atkin-
son, 2005, for more recent work on motion- and
orientation-specific cortical responses in infancy).

An advantage of this approach is that the processes
of interest, e.g., contrast change and orientation
selectivity, can be assessed simultaneously by referring
to the distinct frequency rates associated with their
different update rates (i.e., tags). By measuring these
processes simultaneously, it is possible to both shorten
the overall duration of the experiment and, impor-
tantly, avoid complications that arise from attentional
fluctuations or other types of state changes that arise
when comparing responses from separate processes
measured at different times (i.e., subtraction).

More recently, similar embedded-frequency designs
have been used to study coherent-motion responses
(Aspell, Tanskanen, & Hurlbert, 2005; Handel, Lut-
zenberger, Thier, & Haarmeier, 2007; Hou, Pettet, &
Norcia, 2008; Lam et al., 2000; Nakamura et al., 2003;
Niedeggen & Wist, 1999; Wattam-Bell et al., 2010),
responses to global orientation structure in dynamic
Glass and line patterns (Palomares, Ales, Wade,
Cottereau, & Norcia, 2012; Wattam-Bell et al., 2010),
texture segmentation (Ales, Appelbaum, Cottereau, &
Norcia, 2013), and binocular disparity processing
(Cottereau, Ales, & Norcia, 2014b; Cottereau et al.,
2011; Cottereau, McKee, Ales, et al., 2012; Cottereau,
McKee, & Norcia, 2012).

Figure 9 illustrates the embedded-frequency para-
digm with a coherent-motion- processing example. In
displays of this type, many small dots are presented on
a given stimulus frame. The trajectory of the dots is
subject to a rule that is applied to all dots. Because the
rule is applied to all of the dots, the motion is coherent
across the display. In this example, the coherently
moving dots were constrained to move in trajectories
along concentric arcs around fixation (see Figure 9a for
a schematic illustration). In the first 500 ms of the 1-Hz
display cycle, the dots all moved either clockwise or
counterclockwise (e.g., CW, CCW, CW, CCW, . . .),
jumping 17 arcmin in the prescribed direction every 33
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ms (30 Hz). In the second 500 ms of the display cycle,
the position of each dot was shifted by 17 arcmin in a
random direction. Coherent motion thus appeared and
disappeared at 1 Hz; this is the first frequency in the
display (F1). Because the display also contained local
contrast and motion transients at 30 Hz, there is a
second frequency (F2) in the display. The spectrum of
the response (Figure 9b) contains several narrowband
peaks that are harmonics of the 1-Hz global motion-
update rate. The first harmonic of the global update
frequency is labeled 1f1 and is by far the largest evoked
response component in the data. A higher harmonic
response associated with the global update frequency
F1 occurs at 3f1. The blue curve shows data for a
control condition in which the dots were moving
randomly in both halves of the 1-s stimulus cycle.
Because of this, no coherent motion was seen, but
locally random motion was visible. In this case, there
are no peaks at the harmonics of F1, but there is a spike
in the spectrum at the dot-update frequency (1f2, or 30
Hz).

Figure 9c shows time-domain reconstructions of
the coherent-motion response. The red time course
was created by inverse-Fourier transforming the
response components between 1 and 15 Hz of data
from the coherent-motion onset-offset VEP (red-
shaded region of Figure 9b) and setting all other
response frequencies to zero. The time course of the

response resembles a 1-Hz sine wave, consistent with
the dominance of the 1f1 component in the spectrum.
The black curve was reconstructed from frequencies
around the local motion-update rate of the stimulus
(gray-shaded region of Figure 9b). A rapidly oscil-
lating response (30 Hz) can be seen that is maximal
during the period of coherent motion (the first 500 ms
of the display).

In studies of this type, the frequencies of the local
and global update rates can differ by a factor of 10 or
more. Because of this wide separation between stimu-
lation frequencies, and because of the relative slug-
gishness of global evoked responses, both the odd and
even harmonics of the global update response rate are
interpretable as being due to the modulation of global
structure. The responses to the local structure are
generated at a much higher frequency and do not
overlap with the global responses that are generated at
low frequencies. There is thus a clear separation of
brain responses to these attributes of the stimulus.

In paradigms of this type, the frequency tags are
associated with stimulus attributes that exist at
conceptually different hierarchical levels (e.g., high-
frequency tags are associated with local attributes and
low-frequency tags with global attributes). The level of
analysis done by the brain on the stimulus is thus
tagged by frequency, and one can then ask how
different brain regions process the different stimulus

Figure 9. Hierarchical SSVEPs to a coherent-motion stimulus. (a) Schematic illustration of the coherent-motion onset/offset VEP

stimulus in the coherent-motion phase. The position of a large number of bright dots is shifted, either in a consistent fashion for each

dot (coherent global motion) or in a random fashion (incoherent local motion), at a rapid rate (F2¼30 Hz). The display also alternates

between coherent and incoherent states, but at a much lower frequency (F1 ¼ 1 Hz). (b) In the frequency domain, a response is

visible at the rapid 30-Hz update rate of the individual dots (f2) and at 1 Hz and its harmonics (1f1, 2f1, 3f1, . . .), which is the rate at

which the global motion structure changes. Responses are also visible at 1f1 6 1f2 (see Multi-input interactions as an objective

measurement of system nonlinearities and neural convergence). (c) The cycle average of the coherent-motion onset/offset response

in the time domain shows a mixture of long- and short-period fluctuations. The red curve is synthesized from the signals at nf1, where

n ranges up to 15; see red shading in (b). The black curve is synthesized from responses over a band of frequencies centered on 1f2, as

indicated by the gray shading in (b). Figure derived from Hou et al. (2008).
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attributes (for an example of this approach, see
Palomares et al., 2012).

Temporally embedded frequency rates and periodic
oddball paradigms

Embedding an infrequent stimulus of one type at
random within a stream of frequent stimuli of another
type has been used extensively to study feature
discrimination in the auditory and visual domains
(Naatanen, 1990; Pazo-Alvarez, Cadaveira, & Ame-
nedo, 2003), as well as target selection (P3) mecha-
nisms (the P3 response; Sutton, Braren, Zubin, &
John, 1965). In the mismatch negativity (MMN)
paradigm, averaged responses to the frequent and
infrequent stimuli are subtracted from one another,
and the difference potential is used to indicate that the
two stimulus classes represented by the frequent and
infrequent stimuli have been discriminated. A similar
set of questions can be addressed with the SSVEP by
embedding the rare oddball stimulus in a rapid
periodic train of standards, with the oddball frequency
being a submultiple of the faster rate of the standard
(Heinrich, Mell, & Bach, 2009). This approach has
been used to study face individuation—the ability to
discriminate one individual from another. Liu-Shuang,
Norcia, and Rossion (2014) presented their partici-
pants with 60-s sequences containing a base face (A)
presented at a 5.8-Hz frequency rate. Different oddball
faces (B, C, D, . . .) were introduced at fixed intervals
(every fifth stimuli¼ 5.88 Hz/5¼ 1.18 Hz:
AAAABAAAACAAAAD. . .; see Figure10a). Signifi-
cant responses were found in the EEG spectrum at 1.18
Hz and harmonics (e.g., 2f1/5¼2.35 Hz) over the right
occipitotemporal cortex (Figure 10b). This high-level
discrimination response was present in all participants
after a few minutes of recording, for both color and
grayscale faces, providing a robust neural measure of
face discrimination in individual brains. Face inver-
sion or contrast reversal did not affect the basic 5.88-
Hz periodic response over medial occipital channels.
However, these manipulations substantially reduced
the 1.18-Hz oddball discrimination response over the
right occipitotemporal region, indicating that this
response reflects high-level processes that are partly
face specific. The oddball response obtained with fast
periodic visual stimulation has several advantages over
a traditional visual MMN paradigm with faces (e.g.,
Kimura, Kondo, Ohira, & Schroger, 2012): (a) It is
identified objectively at the frequency of the oddball
and its harmonics, (b) the response can be measured in
only a few minutes thanks to the high SNR of the
approach, and (c) there is no need for a subtraction
between two conditions (targets and standards) to
isolate the discrimination response. This approach has
been most recently extended to the categorization of

natural face images (Rossion et al., 2015) and word/
nonword discrimination (Lochy, Van Belle, & Ros-
sion, 2014). It should prove useful in future studies
that seek to identify visual discrimination responses in
patient populations and infants.

Multiple temporal inputs and the tagging of
spatial locations and perceptual organizations

Vision is inherently a spatial sense, and therefore
many of the questions at the core of visual neuroscience
address the representation and manipulation of visual
space in the nervous system. The multi-input SSVEP
approach is particularly well suited for addressing these
questions and was, in fact, first applied to questions of
spatial-location processing (Regan & Cartwright, 1970;
Regan & Heron, 1969). The fundamental insight here is
that because the stimulus input frequencies strictly
determine the response frequencies, it is possible to
recover responses to several simultaneously presented
stimuli via spectrum analysis if each one has a distinct
frequency. In the following section we will discuss
research that has used the multi-input approach to
study neural mechanisms that underlie spatial vision,
scene perception, and perceptual organization.

Locations/perimetry

Visual function can vary over the spatial extent of
the visual field as a result of normal aging or various
medical conditions, such as glaucoma, stroke, or
brain tumors. Visual field testing is therefore widely
used by clinicians and researchers to diagnose and
study the spatial characteristics of human vision. The
multi-input SSVEP approach has long served as an
important tool in this pursuit. The first use of
multiple frequency-tagged inputs was to record
responses generated by the left and right visual
hemifields simultaneously, rather than sequentially as
in traditional clinical perimetry (Regan & Cartwright,
1970; Regan & Heron, 1969). Modern versions have
included up to 17 regions (Abdullah et al., 2012). The
approach has been successful in dramatically reduc-
ing the time needed for visual field assessment. The
primary limitation of this approach is that as the
number of tagged locations goes up, either the range
of temporal frequencies in the display must increase
or the bandwidth of the recording must decrease. The
disadvantage of increasing the range of frequencies is
that sensitivity of the different parts of the visual field
may itself depend on temporal frequency, and thus
temporal-frequency differences are confounded with
spatial position. The disadvantage of decreasing the
frequency bandwidth to accommodate more stimuli
in a given range of temporal frequency is that the
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recording time must be increased commensurately.
This approach, in addition to being useful for
perimetry, has been a major focus of brain–computer
interface research (Vialatte, Maurice, Dauwels, &
Cichocki, 2010; Zhu, Bieger, Garcia Molina, & Aarts,
2010). Tagging of locations for studying spatial
attention will be described in detail in Multiple
temporal inputs for the study of visual attention.

Figure–ground segregation networks

Visual-scene perception relies on the segregation of
objects from their supporting backgrounds—so-called

figure–ground segmentation. The multi-input SSVEP
approach lends itself favorably to the study of scene
segmentation because different regions of the scene can
be tagged with different temporal frequencies. In such
designs, the response spectrum can be evaluated at
harmonics of the various region frequency tags to isolate
the cortical activity that is specific to figure versus
background processing. Researchers have used this
approach to achieve a very precise experimental control
of visual space and test the spatial dependency of cortical
networks underlying figure–ground segmentation.

Using this two-input approach, Appelbaum and
colleagues carried out a series of studies identifying and

Figure 10. The periodic oddball paradigm (Heinrich et al., 2009) extended to face stimuli by Liu-Shuang et al. (2014). (a) Faces are

presented by sinusoidal contrast modulation at a rate of 5.88 Hz. At fixed intervals of every fifth base face of a single individual (5.88/

5 Hz¼ 1.18 Hz), a set of different-identity oddball faces are presented. (b) SNR spectrum of the right occipitotemporal ROI for faces

(grand average, four sequences of 60 s for each of 12 participants). The channels composing this ROI are indicated with black dots on

the 3-D head in the upper right. On the SNR spectrum, only significant oddball responses are labeled. Note that while the 1.18-Hz

response appears small, it has an SNR of 1.49, corresponding to a 49% response increase. Below the spectrum, 3-D topographies of

each harmonic response are displayed. The largest oddball response is observed over the occipitotemporal regions, with a clear right

hemisphere lateralization.
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investigating distinct cortical networks responsible for
the processing of both figure and background regions.
In the first of these studies (Appelbaum, Wade,
Vildavski, Pettet, & Norcia, 2006) texture cues were
modulated such that a central circular region alternated
at 3.0 Hz while the surrounding texture alternated at
3.6 Hz (Figure 11a). Using different orientation, phase,
and temporally defined white-noise texture cues, the
researchers found that the evoked responses (Figure
11b) attributed to the background produced a single
medial occipital response, but the figure regions
consistently produced bilateral occipital responses
(Figure 11c).

To define which cortical areas were involved in these
two networks, a source-imaging approach based on
functional MRI (fMRI) was used to show that activity
related to the figure region, but not the background
region, was preferentially routed between first-tier
visual areas (V1–V3) and the lateral occipital cortex
(LOC), a visual brain area known from fMRI studies to
demonstrate strong object selectivity (Malach et al.,
1995). Here, separate fMRI mapping sessions were
used to define the visual areas and a minimum-norm,
distributed-source model was used to estimate each
participant’s SSVEP in these regions of interest (ROIs;
for a summary of the technique, see Cottereau, Ales, &
Norcia, 2014a). A separate network, extending from
the first tier through more dorsal areas, responded
preferentially to the background region (Figure 11d).

In a subsequent study, Appelbaum, Ales, Cottereau,
and Norcia (2010) extended the analysis of the stimulus
preferences of the LOC by including several ambiguous
figure–ground arrangements in order to determine
whether the Gestalt property of surroundedness (i.e., a
smaller figure on a larger background) was necessary to
selectively activate the LOC. For this purpose they
compared the magnitude of frequency-tagged activity
in the object-selective LOC across several different
spatial arrangements that portrayed surrounded figure–
ground arrangements (S) or contained two spatially
symmetric, temporally modulating regions that were
ambiguous (A) in their figure–ground arrangement.
Using this approach, they found that replacing the
classic surrounded figure–ground organization with a
symmetric one greatly reduced the specificity of the
LOC response to the different image regions (i.e.,
produced a Tier1/LOC ratio near 1; Figure 11e). They
concluded that the surrounded Gestalt organization
therefore exerts a powerful controlling effect on the
routing of information about image regions through
first-tier areas and object-selective cortex. Collectively,
these studies illustrate how the multi-input SSVEP can
be used to investigate the mechanisms supporting the
early stages of visual-scene processing. As discussed in
subsequent sections, these multi-input, figure–ground
designs can also be used to study spatial interactions
(Appelbaum et al., 2008) and spatial attention (Ap-
pelbaum & Norcia, 2009).

Perceptual bistability and perceptual organization

A particularly powerful means of studying the
relationship between perception and neural activity
involves the use of a physical stimulus that has more
than one perceptual interpretation. A hallmark feature
of such stimuli is perceptual bistability: The perceptual
interpretations alternate stochastically over time. Bin-
ocular rivalry, the fluctuation in perception that occurs
when different images are presented to the two eyes, is

Figure 11. Figure–ground segmentation studies of Appelbaum

and colleagues (Appelbaum et al., 2010; Appelbaum et al.,

2006, 2008). (a) Stimuli in these studies were comprised of two-

frequency textures in which a central circular figure alternated

at 3.0 Hz (f1) and the surround alternated at 3.6 Hz (f2). These

stimuli were composed of three different texture cues:

orientation modulation of one-dimensional textures, phase

modulation of one-dimensional textures, and white noise. (b)

Example EEG response spectra, with significant responses

colored (blue are harmonics of the figure and background, red

are IM terms). (c) Topographic response distributions of second

harmonics show distinct patterns. (d) Source-localized ROI

profiles show a double dissociation, wherein the figure

response (summed over harmonics) is large in the LOC and the

background response is larger in first-tier retinotopic areas V1–

V3. This pattern is present for all three cues, figure sizes of 28

and 58, and figures presented at different retinal eccentricities.

(e) Figure selectivity, as a ratio of retinotopic to LOC response, is

only present for the surrounded stimulus (S), which shows a

figure surrounded by a background, not for ambiguous (A)

stimuli that do not have this Gestalt arrangement.
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probably the best-studied bistable percept (for a review,
see Blake & Logothetis, 2002). SSVEPs provide a very
powerful way to determine in real time the alternations
in perceptual dominance across the eyes. As early as
1964, Lansing reported an intermittent suppression of
the SSVEP under conditions promoting rivalry. That
work established that the amplitude at the flicker
frequency of a monocular grating was sometimes
suppressed during the presentation of a constant
grating in the other eye. This intermittent suppression
coincided well with the subject’s perceived suppression
of the flickering grating by the constant pattern.
Building on this approach, Brown and Norcia (1997)
developed a gold-standard technique to detect percep-
tual fluctuations in binocular rivalry. In that study,
observers viewed dichoptically two differently oriented
gratings that oscillated in counterphase at distinct
frequencies (F1¼ 5.5 Hz for the grating viewed by the
left eye and F2¼ 6.6 Hz for the grating viewed by the
right eye; see Figure 12).

This stimulus produced strong SSVEPs over occip-
ital electrodes at frequencies that were twice the two
input frequencies (2f1 and 2f2). Fourier analysis
revealed that the amplitudes at these frequencies were
negatively correlated between the two eyes (i.e., when
the amplitude at the frequency associated with one
grating was large, the response associated with the
other grating was invariably small). Moreover, these
modulations were tightly phase-locked to the observers’
perceptual reports of dominance and suppression (i.e.,
the grating associated with the frequency of the highest
amplitude was the one that was perceived). This
approach therefore permits a determination of which
image a subject perceives without a behavioral report
and can thus be used to measure rivalry in various
populations such as infants and animal subjects. The
Brown and Norcia (1997) study had several follow-ups
that aimed at investigating the neural correlates of
perceptual dominance (Cosmelli et al., 2004; Sriniva-

san, Russell, Edelman, & Tononi, 1999; Sutoyo &
Srinivasan, 2009; Tononi et al., 1998), the influence of
emotional stimuli on rivalry (Alpers, Ruhleder, Walz,
Muhlberger, & Pauli, 2005), and the relationship
between attention and binocular rivalry (Zhang,
Jamison, Engel, He, & He, 2011).

Beyond binocular rivalry, other types of multistable
stimuli have been used in SSVEP designs in order to
relate neural activity to perception. Most notably,
Parkkonen, Andersson, Hamalainen, and Hari (2008)
used a modified Rubin face–vase illusion in which the
face and vase regions were tagged with dynamic white
noise at two different frequencies. Using this design and
magnetoencephalographic (MEG) recording, they
demonstrated that activity in the early visual cortex
covaried with the perceptual states reported by the
observers, indicating cortical loci which the visual
system uses to achieve object-level representations.

Multiple temporal inputs for the study of visual
attention

Attention is an essential neurobiological function
that allows an organism to select the most important
stimuli in the environment for enhanced neural
processing. Because at any moment there is more
information in the environment than can be processed,
efficient attentional control is regarded as a critical
cognitive faculty by which to filter out irrelevant
distractions and focus on the stimuli that are most
likely to lead to successful behaviors. Attention is not,
however, a unitary construct or mechanism, but rather
a set of interrelated processing schemas that are applied
to many perceptual and cognitive operations (Chun,
Golomb, & Turk-Browne, 2011). A major goal of
vision science has been to identify the core behavioral
processes and neural mechanisms that constitute the
diverse taxonomy of internal (endogenous) and exter-

Figure 12. Frequency tagging used to measure rivalry in real time. The participant viewed a vertical grating oscillating at 5 Hz in one

eye and a horizontal grating oscillating at 6 Hz in the other eye. Because the two stimuli were not binocularly fusable, they alternated

in perceptual dominance. The curves on the right plot the time course of the evoked responses at the separate eye-tagging

frequencies. The two time courses alternate in counterphase in sync with the perceptual alterations. From Blake and Logothetis

(2002).
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nal (exogenous) attention. Over the last two decades,
the use of SSVEP designs has provided substantial
insight.

The SSVEP is particularly well suited to attention-
research questions, as it provides a high-SNR measure
of neural activity that can be unambiguously associated
with specific external stimuli, even when multiple
stimuli are present at the same time. Importantly, it
allows monitoring of responses made to stimuli that are
outside of the focus of attention, something that is
difficult to do with behavioral methods. Moreover, the
SSVEP can be flexibly deployed over a number of
configurations, including the tagging of both spatially
distinct and spatially overlapping stimuli. In light of
these attributes, the SSVEP approach has gained
possibly its greatest utility in studies that have
addressed the cognitive and neural mechanisms un-
derlying volitional attention in human beings.

In the following section we review some of the major
contributions that SSVEP studies have made to the
understanding the cognitive and neural mechanisms of
selective attention. Additional descriptions of several of
these studies can also be found elsewhere (Andersen,
Muller, & Hillyard, 2012).

Frequency tagging as a means to study processes inside
and outside of the focus of spatial attention

Frequency tagging makes it possible to monitor the
response to multiple stimuli that are simultaneously
visible. This feature of the SSVEP makes it possible to
measure the effects of allocating attention to spatial
location even for stimuli that are outside of the focus of
conscious attention. In the first application of the
SSVEP to spatial attention (Morgan, Hansen, &
Hillyard, 1996), two strings of alphanumeric characters
were presented in the left and right visual hemifields
(Figure 13). The participants’ task was to fixate a
central marker and to report the presence of a single
digit among a series of letters in one or the other string
as indicated by a spatial cue. The character strings were
displayed on top of a small flickering rectangle
presented at 8.6 Hz in one hemifield and 12 Hz in the
other. The flickering rectangles were irrelevant to the
task but were used to generate SSVEPs that reported
the effect of spatial attention to the cued and uncued
streams. The SSVEP was larger to the attended
location than to the simultaneously recorded unat-
tended location. A follow-up study linked this SSVEP
effect to blood-oxygen-level dependent activations in
fusiform and lateral occipital/temporal areas (Hillyard
et al., 1997).

Following this early work, Muller, Picton, et al.
(1998) showed selective amplitude enhancements for
task-relevant, frequency-tagged features (color chang-
es) at spatially cued locations. Since these initial

reports, there have been many applications of and
variations on this basic design. While an enhancement
of SSVEP amplitude with spatial attention is the most
common result, there have been exceptions (Ding,
Sperling, & Srinivasan, 2006; see discussions in
Andersen, Muller, & Hillyard, 2012; Toffanin, de Jong,
Johnson, & Martens, 2009).

The spatial distribution of attention

Frequency tagging also provides a useful means to
study the spatial distribution of attention. One of the
first questions addressed in SSVEP spatial-attention
studies was whether the focus of attention comprised a
unitary spotlight. The first test of this idea used a
concentric organization of tags, with one tag being
centrally fixated and the other tag extending concen-
trically around it (Muller & Hubner, 2002). A series of
small capital letters was presented over the central tag
(frequency F1 ¼ 7 or 11.67 Hz), and a series of large
capital letters was present for the surrounding tag
(frequency F2¼11.67 or 7 Hz). Participants were asked
to detect targets within one or the other stream. The
response to the central tag was not enhanced by
attention to the concentric surround, suggesting that
the focus of attention could be shaped like a doughnut.
This work was extended and confirmed (Muller,
Malinowski, Gruber, & Hillyard, 2003) using a display
with four independently tagged locations arranged on a
line. The participants were cued to attend to the end
locations. The SSVEP recorded at the intervening
locations was no larger than that recorded for
unattended locations in the opposite hemifield, indi-
cating that the focus of attention can be split to at least
two locations.

Subsequently, SSVEPs have been used to study
how attention serves to modulate processing when the
focus of attention is concentrated on items within the
same visual hemifield versus when it is split between
hemifields. First, as shown by Malinowski, Fuchs,
and Muller (2007), SSVEP amplitudes and behavioral
effects are reduced, but still present, when all stimuli
are displayed within the same hemifield. More
recently, Stormer, Alvarez, and Cavanagh (2014)
used a hybrid SSVEP and P3 design to show that
attention primarily serves to modulate early visual
processing when it is divided across hemifields
(yielding virtually no within-hemifield attentional
effect), whereas higher level processes indexed by the
P3 ERP component are not limited by such visual-
hemifield constraints. Together, these studies illus-
trate that the nature of spatial attention is imposed
by competition within and between hemifield cortical
maps that occur at various stages of the visual
processing hierarchy.
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The time course of spatial attention

Due to the high SNR of the SSVEP, it is possible to
measure reliable frequency-tagged responses over short
time windows (e.g., 500–1000 ms). Through sliding
these windows progressively in time over successive
portions of a data record, as in the sweep VEP (see
earlier), it has been possible to study the temporal
evolution of cued spatial attention. Using this ap-
proach, Muller, Teder-Salejarvi, and Hillyard (1998)
linked the time course of spatially cued attention to a
contemporaneous emergence of accurate target dis-
crimination at newly cued locations. Moreover, ob-
servers who could switch attention more quickly had
faster amplitude changes in the SSVEP (Belmonte,
1998), indicating a strong functional link between
behavioral outcomes and neural signals measured by
the SSVEP.

The underlying mechanism by which the SSVEP is
modified by spatial attention has been addressed in
several studies. Di Russo, Spinelli, and Morrone (2001)
reported that spatial attention increased the slope of

the SSVEP contrast response function, an effect known
as response gain. A similar effect was also reported by
Kim, Grabowecky, Paller, Muthu, and Suzuki (2007).
Lauritzen, Ales, and Wade (2010) used fMRI to define
a set of visual-area ROIs and combined this with
cortical source-modeling techniques to show that
spatial attention produced a response gain effect in V1,
human middle temporal (hMT), and intraparietal
sulcus ROIs, but a contrast gain effect (leftward shift of
the contrast response function) in the V4 ROI. In that
study, behavioral sensitivity correlated with activity in
V1, hMT, and intraparietal sulcus ROIs, where
response gain effects were found, but not in the V4
ROI, where the contrast gain effect occurred. Many
SSVEP studies of spatial attention have compared
responses from attended and unattended stimuli.
However, the effect of spatial attention on the SSVEP
is not inherently all-or-nothing—the magnitude of
attentional modulation of the frequency-tagged SSVEP
scales with the amount of attention paid to competing
items (Toffanin et al., 2009).

Figure 13. Figure adapted from the first SSVEP spatial-attention study (Morgan et al., 1996). Two strings of alphanumeric characters

are presented in the left and right visual hemifields. The participants’ task is to fixate a central marker and to report the presence of a

single digit among a series of letters in one or the other string, as indicated by a spatial cue. The character strings are displayed on top

of a small flickering rectangle presented at 8.6 Hz in one hemifield and 12 Hz in the other. The flickering rectangles are irrelevant to

the task but were used to generate SSVEPs that reported the effect of spatial attention to the cued and uncued streams. The SSVEP,

represented here in the time domain and in the frequency domain, was larger to the attended location than to the simultaneously

recorded unattended location. Left bottom spectrum: Paying attention to the right increases the 8.6-Hz response, as compared to the

condition where attention is on the left. Right bottom panel: Paying attention to the left increases the 12-Hz response, as compared

to the condition where attention is on the right. Note that the responses are not presented on a single spectrum, since the analysis is

performed on time windows that are integers of 8.6 Hz (displayed on the left) or 12 Hz (on the right).
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Spatial attention has also been reported to increase
the trial-by-trial synchrony of the SSVEP (Kim et al.,
2007). However, because the increased synchrony in
that study was also accompanied by an increase in
response amplitude, it is not clear whether the increase
in synchrony was due to a genuine increase in
synchronous neuronal firing or was due to the higher
SNR of the evoked response in the attended conditions
(Andersen, Muller, & Hillyard, 2012). Increased SNR
would cause the phase of the evoked response to be
determined more by the evoked response and less by
additive EEG background noise. A more recent study
(Kashiwase, Matsumiya, Kuriki, & Shioiri, 2012)
found that increases in intratrial phase coherence can
occur earlier in time than increases in response
amplitude, which is stronger evidence that spatial
attention can effect response synchronization or
reliability independent of changes in response ampli-
tude. A puzzling aspect of that study, however, is that
the measured effects on response synchrony and
amplitude occurred after a significant fraction of the
behavioral responses were executed, and thus the
functional significance of this effect remains unclear.

Nonspatial attention

The multi-input SSVEP studies already discussed
provide compelling evidence that volitional attention
operates on spatially distinct regions of a scene to
modulate neural processing in an adaptive, goal-
oriented manner. Ample evidence also exists that
attention can operate in a nonspatial manner to
enhance processing of particular visual features such as
color, orientation, or direction of motion. Because the
SSVEP can be obtained from multiple overlapping
stimuli, this method has been particularly useful in
elucidating the neural mechanisms underlying such
feature-based attention.

Pei, Pettet, and Norcia (2002) were the first to
demonstrate nonspatial attentional effects with the
SSVEP. In their study, a series of 16 crosses were
formed out of vertical and horizontal bars (see Figure
14, top). Because the question here was about feature
processing rather than spatial-location processing, it
was important to use temporal frequencies that were
low enough for the features to be seen distinctly and
not blurred. Therefore, the vertical and horizontal bars
were made to oscillate locally at two different, but very
close temporal frequencies (counterbalanced at 2.4 and
3.0 Hz). By using bars of differing luminance that
generated occlusion cues, the researchers were able to
assign different depth orders (in front or behind), such
that attentional selection could be made based on these
depth cues but not on spatial location. Using this
design, they found that attention increased the ampli-
tude of the second harmonic of the response, and that

the amplitude of this harmonic coded the depth order
of the stimuli. The fourth harmonic was indifferent to
the depth-order cue and was not affected by attention
(see Figure 14, bottom panels). These results suggested
that attention operated after depth-order relationships,
such as those used to parse overlapping objects on the
basis of their surface relationships, had been extracted.
The study showed not only that attention can modulate
neural processing in a spatially nonspecific manner but
that this modulation acts after a 3-D interpretation of
the scene has been made.

Following this work, Chen, Seth, Gally, and Edel-
man (2003) recorded steady-state MEG responses to
superimposed counterphase-flickering red and green,
vertical and horizontal gratings. In this design,
participants were asked to maintain sustained attention
to either the vertical or horizontal grating and to detect
a brief, transient change in the width of the central
bars. The authors found that when participants were
instructed to report changes in the width of the central
three bars, the SSVEP at the corresponding stimulus
frequency was enhanced relative to that of the
unattended grating. However, when the participants
were instructed to report changes to just the center bar,
the attended SSVEP was suppressed. This study
provided further evidence for the modulatory role of
nonspatial attention.

Beginning in 2006, Muller, Andersen, and Hillyard
conducted a series of elegant studies aimed at
dissociating the influence of attention to features and
feature conjunctions from the influence of spatial
attention. These studies utilized overlapping fields of
randomly moving red and blue colored (or in some
cases achromatic) dots that were modulated at distinct
frequencies (Figure 15). In the first of these studies
(Muller et al., 2006), participants were cued to attend
one of the colored dot fields to detect the occurrence of
a brief period of coherent motion, while ignoring
similar events in the other, unattended stream. Using
this design revealed a robust enhancement of the
SSVEP amplitude for the attended stream that was
maximal over occipital recording sites, localized to
early visual areas V1–V3, and not attributable to
selection of either the motion transient or the different
flicker frequencies. Following from this initial study,
the researchers next set out to chart the time course of
these feature-based attention effects. Using a similar
design, Andersen and Muller (2010) introduced a brief
cue that oriented the participants to attend either the
red or the blue dot fields and detect a transient motion
change in the newly attended stream. They observed an
initial enhancement of the SSVEP amplitude to the
attended stimulus stream, beginning at about 220 ms
after the attention-directing cue. This modulation was
followed by a subsequent suppression of the SSVEP to
the unattended stimulus, beginning at roughly 360 ms.
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Importantly, these SSVEP effects were strongly corre-
lated with the response times for detecting the
transient-motion target, such that larger enhancement
and suppression effects were associated with shorter
response times.

Subsequent studies from this group of authors have
approached a number of other important aspects of
feature-based attention. For example, by randomizing
the spatial movement of the colored dots, they have
shown that the selection of color is achieved without
mediation of spatial attention (Andersen et al., 2009).
Further, by manipulating the contrast ratio of achro-
matic versions of these random-dot kinematograms
relative to the background, they were able to bring the
bottom-up saliency of these stimuli under experimental
control (Andersen, Muller, & Martinovic, 2012). This
manipulation produced separable effects of gain
enhancement and inhibitory stimulus competition at
different levels of the visual processing hierarchy. In
particular, the researchers observed that attention
resulted in multiplicative enhancement in the SSVEP
amplitude at midline-occipital sites but an additive

influence at parietal sites, thereby indicating different
competitive interactions at different levels of visual
processing.

Having observed distinct influences of nonspatial
attention on single feature attributes, Andersen, Hill-
yard, and Muller (2008) set out to explore how
attention for multiple feature conjunctions was carried
out in the human brain. In that study, frequency-tagged
SSVEPs were recorded from four types of bars that
each flickered at different a frequency. These bars were
either horizontal and blue (10 Hz), vertical and red (12
Hz), horizontal and red (15 Hz), or vertical and blue
(17 Hz). Participants were instructed to attend a
particular combination of these shared visual features
and to detect a brief period of coherent motion in the
attended field. From this task, the authors observed
that the SSVEP amplitudes showed parallel and
additive facilitation. Namely, the attended color and
the attended orientation were both facilitated individ-
ually, while the conjunction of the attended color and
the attended orientation received the sum of each of the
two individual feature enhancements. This important

Figure 14. Frequency tagging used to study feature-based attention. Top panel: schematic illustration of moving-bar stimuli. The

horizontal and vertical bars oscillated at slightly different frequencies. Occlusion cues were used to cause one set of bars to be seen in

front of the other set. Lower panel: The stimulus to which attention was directed resulted in a higher amplitude response at the

second but not the fourth harmonic. Figure composed from Pei et al. (2002).
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finding suggests a specific means by which attention
enables rapid guided visual search, and provides a
broader platform for understanding the mechanisms of
sustained nonspatial attention (Painter, Dux, Travis, &
Mattingley, 2014).

A number of other researchers have applied the
multi-input SSVEP technique to study other important
aspects of nonspatial and object-based attention. For
example, Appelbaum and Norcia (2009) have shown
that directed versus divided attention to an object’s
shape modulates the amplitude and phase of SSVEP
responses over a widely distributed network of brain
areas including occipital visual areas and frontal
control areas. Using the fMRI-defined ROI analyses
described earlier (in Figure–ground segregation net-
works), Palomares et al. (2012) contrasted the influence
of attention to global (0.83 Hz) and local (30 Hz)
features of both coherent-motion and Glass-pattern
stimuli. Attention to global motion, or dynamic global
form in Glass patterns, modulated responses that were
harmonics of the global update rate but not the local
update rate. Attentional modulation was largest in an
hMT ROI for the motion task but in the LOC for the
dynamic-form task. Importantly, the local element
response (1F2; 30 Hz) was not modulated by attention
in the LOC, while the response to the global update
was. This indicates that it is the hierarchical level of the
stimulus that determined the attention effect, not the

location of the responding brain area in the cortical
hierarchy.

Using an adapted multiple-object tracking task,
Stormer, Winther, Li, and Andersen (2013) investigated
the neural mechanisms by which the visual system is
able to simultaneously track multiple moving objects.
In that task, participants were instructed to track five
or seven randomly moving, frequency-modulating
targets among a large number of nontargets modulat-
ing at a distinct frequency. The authors observed that
sustained attention to the tracked objects enhanced the
corresponding target SSVEP amplitude and that the
magnitude of this enhancement predicted faster correct
identification at the end of the trial. The cortical
sources of these effects were located in the early visual
cortex V1–V3 as well as the motion-sensitive area hMT,
indicating that sustained multifocal attention can
operate at early stages of visual processing. Related
work by Verghese, Kim, and Wade (2012) focused on
area V1 to show that the nature of attentional
modulation in this area is dependent on the task being
performed. In that study, contrast and orientation
discrimination tasks produced differing narrow- and
broadband SSVEP tuning functions that each aligned
with psychometric performance. In a similar vein,
Stormer and Alvarez (2014) recently used a color-
feature SSVEP design in which differences in target and
distractor color hue were parameterized in CIELAB
color space to show that attention not only facilitates

Figure 15. The effect of selective attention on the SSVEP (Muller et al., 2006). In this study, participants were cued to attend to one of

the colored dot fields to detect the occurrence of a brief period of coherent motion while ignoring similar events in the other,

unattended stream. There was a robust enhancement of the SSVEP amplitude for the attended stream that was maximal over

occipital recording sites. Compared to the study of Morgan et al. (1996), the study illustrated here shows that attention can

selectively enhance and suppress the representation of visual stimuli that spatially overlap.
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target processing but also actively inhibits processing of
similar color hues across the visual field. These findings
indicate that attention acts to select the most infor-
mative neural population, that these populations
change depending on the nature of the task, and that
these selection mechanisms can operate on features
much as has been shown for location-based attention.
Other SSVEP findings from Wieser and Keil (2011)
have illustrated the temporal dependence of activity in
these attention-selective networks.

Recently, Garcia, Srinivasan, and Serences (2013)
tracked the time course of feature selectivity by
generating orientation-selective response profiles based
on the spatial distribution of the SSVEP response.
Using a linear discriminant classification approach to
dynamically track the temporal evolution of orienta-
tion-selective responses, they found that feature atten-
tion produced a multiplicative modulation of the
SSVEP. Importantly, they showed that behavioral
performance on the orientation discrimination task
could be predicted based on the amplitude of these
temporally precise feature-selective response profiles.

Finally, in an elegant recent study, Baldauf and
Desimone (2014) combined steady-state MEG with
fMRI and diffusion tensor imaging (DTI) to charac-
terize the circuits and timing of object-based attention.
By using stimuli in which the phase coherence of
overlapping face and house images was modulated
periodically, they were able to create stimuli that did
not change in luminance or contrast but could be still
tracked via separate frequency tags. Brain responses to
these stimuli were monitored using MEG as partici-
pants attended to the overlapping streams for cued
targets. By combining the SSVEP with functional ROIs
defined from fMRI, the researchers found that
attention to faces resulted in enhanced sensory
responses in the fusiform face area, whereas attention
to houses increased responses in the parahippocampal
place area.

Collectively, these studies provide compelling evi-
dence of the power of the multi-input SSVEP method
for tracking and disentangling the mechanisms in-
volved in spatial, nonspatial, and object-based atten-
tion. They indicate that attention controls interactions
between hierarchically arranged brain areas, with
frontal control areas providing top-down biasing
signals and specific sensory and occulomotor regions
being uniquely involved in different aspects of atten-
tional control and depending heavily on the nature of
the task. Given that these important findings have
manifested in a relatively short number of years, it is
encouraging to think about the future of the SSVEP
methodology in research and applied techniques that
can uncover brain adjustments in real time as needed
for dynamic attentional control.

Multi-input interactions as an
objective measurement of system
nonlinearities and neural
convergence

A central goal of the visual system is to combine the
diversity of afferent information coming from the eyes
into a meaningful representation of the world. Much
prior work with animal physiology has shown that the
nature of processing and information convergence in
the visual system is manifestly nonlinear. Most human
neuroimaging approaches rely on subtractions and are
therefore not well suited for studying these nonlinear
processes, because the residual of a subtraction can
represent linear or nonlinear processes or a mixture of
both. The multi-input SSVEP, however, is better suited
to this task, because the specific output frequencies
present in the recording provide direct evidence for
both the presence of nonlinearity in the system and
information about the form of the nonlinearity.

Nonlinear systems produce a more complex output
than linear systems: Their outputs consist of multiple
harmonics for a single input, while linear systems
produce only an output at the stimulus frequency,
possibly scaled in amplitude or shifted in phase. When
more that one temporal input is used, additional
components known as intermodulation (IM) terms are
produced by a nonlinear system. These responses occur
at frequencies that are directly related to the input
frequencies as sums and differences of the different
harmonics of the stimulus frequencies. Each type of
nonlinear process has its own pattern of output
frequencies, and from this pattern one can deduce
much about the type of nonlinearity present in the
system (Regan & Regan, 1989), allowing researchers to
build and test models of neural convergence. An
important converse is that in order to characterize a
nonlinear system, multiple inputs must be used. In the
frequency domain, the number of input frequencies
needed to fully characterize a nonlinear system scales
directly with the nonlinear order, or complexity, of the
system (Chua & Liao, 1991).

The nonlinearity of the system is important because,
unlike in a linear system, the order of operations
matters. In a nonlinear system, the input is qualitatively
transformed after each transit of a nonlinear stage.
Consequently, the order of nonlinear operations leaves
distinct traces that can be used to deduce what the
nonlinear operations were and in what order they
occurred. Formal nonlinear analysis of the SSVEP and
the concept called sequential analysis were first
introduced to the field by Spekreijse and colleagues
(Spekreijse & Oosting, 1970; Spekreijse & Reits, 1982).
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In the following sections we describe two of the most
common areas where nonlinear approaches towards
multi-input SSVEP have yielded particular gains:
binocular summation and spatial interactions.

Binocular summation and normal binocular
vision

The most intuitive example of how the SSVEP can
be used to study neural convergence is the case of
binocular summation. Stimuli presented separately to
each eye make their way via separate pathways from
the retina into cortex, where they are first combined in
binocular cells. Whether and how this combination is
accomplished is of interest both to clinicians who treat
disorders of binocular vision and to computational
neuroscientists who are interested in the nature of the
nonlinear processes underlying different aspects of
binocular vision.

Nonlinear summation is illustrated schematically in
the context of binocular inputs in Figure 16, which is
redrawn from Baitch and Levi (1988). In this study, a
periodic input at F1¼ 18 Hz was delivered to the right
eye and another, nonharmonically related stimulus at
F2 ¼ 20 Hz was delivered to the left eye. These inputs
are illustrated schematically in Figure 16a and b. If
binocular summation is linear, the SSVEP response will
be the simple sum of the two stimulus frequencies (see
Figure 16c). If summation is nonlinear, the response

waveform differs substantially from linear summation.
Baitch and Levi modeled the binocular combination
process as summation followed by rectification; the
resulting theoretical response is shown in Figure 16d. In
comparing Figure 16c and d, it is clear that linear and
nonlinear models predict very different responses.

To manipulate the status of binocular convergence
mechanisms experimentally, Baitch and Levi presented
their stimuli to observers with normal binocular vision
and to observers with stereo-blindness. The time-
domain responses of the observers with normal vision
resembled the nonlinear summation model (compare
Figure 16e to d), but those of the observers with stereo-
blindness resembled the linear model (compare Figure
16f to c). In the binocular model, the inputs of the two
eyes are summed before convergence and the model is
thus inherently a binocular model. In the linear model,
the two eye responses are generated independently and
do not depend on one another. The linear model is
inherently monocular. Consistent with the manipula-
tion, participants with normal binocular vision have
responses that resemble those of the binocular model,
while participants with stereo-blindness have responses
that resemble the monocular model.

Figure 16g shows the response spectra for an
observer with normal vision, while Figure 16h shows
the response from an observer with stereo-blindness. As
mentioned already, nonlinear processing mechanisms
generate responses at frequencies that are low-order
sums and differences of the input frequencies. If the

Figure 16. Objective detection of binocular convergence through measurement of intermodulation responses. (a–b) Hypothetical

frequency tagged inputs presented to each eye. (c) Hypothetical response waveform for linear (nonbinocular) summation. (d)

Hypothetical response waveform for nonlinear (binocular) summation. (e, g) Measured responses from an observer with normal

binocular vision. (f, h) Measured responses from an observer with stereo-blindness. See text for details. Redrawn from Baitch and Levi

(1988).
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first input is labeled F1 and a second input is labeled
F2, a nonlinear process will generate outputs at
harmonics of the two input frequencies (1f1, 2f1, 3f1,
1f2, 2f2, 3f2, etc.) and at frequencies equal to 1f1þ 1f2
(the sum frequency), 1f1� 1f2 (the difference frequen-
cy), and possibly others (e.g., 2f1þ 2f2). Responses at
these combination frequencies, the IM responses, were
first measured in the visual domain in the context of
lateral spatial interactions (Ratliff & Zemon, 1982).
The frequencies at which these responses occur are
specific to the underlying nonlinearity (Regan & Regan,
1988). The spectrum recorded from an observer with
normal binocular vision has robust responses at 1f1 (20
Hz) and 1f2 (18 Hz), and there are also responses at 2
Hz (the difference frequency, 1f1� 1f2) and other
nonlinear combination frequencies (Figure 16g). Ob-
servers who do not have normal binocular vision show
strong reductions of the IM (inherently binocular)
responses (Figure 16h). Nonfusable dichoptic inputs
such as cross-oriented gratings in the two eyes do not
lead to IM responses (Brown, Candy, & Norcia, 1999;
Sutoyo & Srinivasan, 2009). Taken together, these
results demonstrate that IM response components
directly reflect the dynamics of nonlinear summation
and convergence processes.

Nonlinear spatiotemporal interactions

The multi-input nonlinear analysis approach can
also be used to study the properties of receptive fields, a
central construct in visual neuroscience. The basic
elements of receptive fields are the regions of space over
which neurons pool inputs and the pooling operation
that is used to combine over both space and time.
Receptive fields of single neurons are inaccessible at the
scalp, but it is possible to study spatiotemporal pooling
at the population level using multi-input SSVEPs. The
requirements for such measurements are simple: At
least two spatial locations must be driven by distinct
temporal frequencies. The spatiotemporal interaction is
characterized by the set of nonlinear combination
frequencies recorded at the output (Regan & Regan,
1989). Through manipulation of either spatial or
temporal aspects of the input, the spatial and temporal
properties of the population response can thus be
studied at the scalp.

Image-segmentation mechanisms

The analysis of nonlinear spatiotemporal interac-
tions in the SSVEP was pioneered in the late 1970s and
early 1980s by Ratliff’s group (Ratliff & Zemon, 1982;
Zemon & Ratliff, 1982, 1984; Zemon, Victor, & Ratliff,
1986). In these early studies, a windmill-dartboard
configuration was used. The paradigm is illustrated in a

simplified form in Figure 17, with rectilinear gratings
and checkerboards instead of the radial versions used
in the original studies. In this illustration, alternate
abutting sections of the pattern reverse in contrast at
different temporal frequencies, F1 and F2. Figure 17a
indicates the time sequence of the F1 and F2 pattern
reversals, with a low value on the timeline indicating
one spatial phase and a high value indicating the
contrast-reversed phase (i.e., black elements turn to
white and white turn to black). The first input reverses
at 3.0 Hz and the second at 3.6 Hz in this example.
Figure 17b shows the spatial states of the display, of
which there are four distinct types (two aligned and two
misaligned). Regions of the display modulated at F1
are highlighted in yellow, and those driven at F2 are
highlighted in purple. As can be seen in Figure 17a, the
transitions between these states occurs at variable times
and the states are of varying durations. The arrows link
the states coded in the time sequence of Figure 17a to
the corresponding spatial configurations shown in
Figure 17b for the beginning of the sequence. The gray
bands indicating the times the display is in the
segmented state (S) are of varying duration and
spacing. It should be noted that the segmentation state
does not change at a periodic temporal frequency that
could drive a linear SSVEP at that frequency. In the
example, the whole sequence repeats itself every 1.6 s,
but there is no physical event in the display that repeats
at 1.6 s, nor is there periodic change of the segmenta-
tion state. Importantly, Ratliff and colleagues observed
that the SSVEP evoked for these stimuli contained
robust responses not only at frequencies that were
harmonics of the two input frequencies F1 and F2 but
also at IM frequencies equal to the sum and difference
between F1 and F2 (Zemon & Ratliff, 1982, 1984).

The logic of the paradigm in terms of what it reveals
about spatial integration is illustrated in Figure 17c. In
this example, potential receptive fields, or spatial
pooling mechanisms, are illustrated by the colored
disks. The response expected from small receptive fields
that lie only on regions modulated at F1 will be only at
harmonics of F1 (i.e., nf1); similarly, small receptive
fields that only see regions of the pattern flickering at
F2 will only generate responses at mf2 Hz, where n and
m are small integers. By contrast, temporally nonlinear
receptive fields that jointly process both regions and are
sensitive to the spatial configuration (aligned versus
misaligned) will generate responses at frequencies equal
to sums and differences of the harmonics of the two
driving frequencies (nf1 6 mf2).

Zemon and Ratliff (1982, 1984) showed that the
nonlinear mechanism generating the IM response was
extremely selective. The introduction of gaps as small
as 3 arcmin between the regions and slight misalign-
ments of the relative phase of the pattern regions both
strongly reduced the magnitude of the IM response (see
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also Appelbaum et al., 2008; Hou, Good, & Norcia,
2007; Victor & Conte, 2000). The original interpreta-
tion of these results was that extremely small receptive
fields spanning the border of the pattern were
responsible for generating IM responses (e.g., the
nominal receptive field corresponded to the smaller
dark-green region rather that the larger light-green
region). This interpretation is almost certainly an
oversimplification, and more recent studies have shown
that IM responses depend on both spatial separation
and focused attention (Fuchs, Andersen, Gruber, &
Muller, 2008), but the approach has nonetheless been
very useful for describing the mechanisms of fine-
grained processing of spatial position and the mecha-
nisms of image segmentation.

Subsequent to these early studies, offset grating
patterns have been used to convert the original windmill-
dartboard paradigm into a test of vernier acuity—one of
the most precise of all visual acuities (Hou et al., 2007;
Norcia, Wesemann, & Manny, 1999). These studies and
others (Victor & Conte, 2000) characterized both the
spatial and temporal dynamics of a neural mechanism
underlying the detection of subtle image discontinuities
(breaks of collinearity), one of the primary cues for later
stage object-segmentation processes. These studies
showed that the IM response was well correlated with
psychophysical vernier acuity both in central vision and
in the periphery (Norcia et al., 1999), as well as in
patients with amblyopia (Hou et al., 2007), a develop-
mental disorder of spatial vision. The developmental
sequence of this response differs from that for grating

Figure 17. Multi-input SSVEP and neural-convergence receptive fields. (a) Temporal sequence of the multi-input stimulus. When both

sequences have the same value, the pattern is aligned; when they have different values, the uniform field is segmented into different

parts. The shaded regions labeled ‘‘S’’ show when the segmented states happen. (b) The four underlying spatial states of the stimulus

created. (c) Hypothetical receptive fields that overlie different portions of the stimulus. The red receptive fields lie entirely within

regions driven at F1, producing only harmonics of this frequency (nf1). The blue receptive field is entirely within the F2-driven region,

producing only harmonics of F2 (mf2). The green receptive field spans the F1–F2 border. The receptive fields that span the two

frequencies can produce responses exhibiting nonlinear interactions between the two driving frequencies (e.g., nf1 6 mf2 terms).
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acuity, extending into late adolescence (Skoczenski &
Norcia, 2002).

Spatiotemporal grouping

Spatiotemporal interaction within receptive fields
can occur over multiple spatial scales and along many
different stimulus dimensions. The flip side of the
image- segmentation process, just described, are
processes that are involved in the integration or
grouping of features. Previous psychophysical research
has shown that motion signals are grouped over space
in a fashion that is highly specific in terms of the
configurations that do or do not support perceptual
grouping. The phenomenological appearance of the
motion relationships and the apparent direction of
motion are thus subject to a set of rules that may be
driven by prior experience with natural images (Wa-
gemans et al., 2012).

A particularly rich framework for studying motion
grouping is the occluded-diamond paradigm (Loren-
ceau & Shiffrar, 1992). In the simplest version of this
paradigm, four bars are presented, arranged to form
the sides of a diamond. The bars do not extend fully to
form a complete diamond-shaped contour. The bars
that are parallel to each other are set in oscillatory

motion, and in the original demonstration, the
temporal phase of the motion differed by 908. In this
configuration, the bar pairs appear to oscillate
independently (nonrigid motion). The simple intro-
duction of set of visible occluders over the parts of the
image where the bars would join, if they were
continued to form a closed figure, results in a dramatic
change in the appearance of the bar motion. Instead of
moving independently, the bar pairs join together as a
rigidly moving group. By setting the bar pairs in
motion at two different temporal frequencies, Aissani,
Cottereau, Dumas, Paradis, and Lorenceau (2011)
were able to show that the IM components of the
MEG depended on the perceptual grouping. A similar
approach has been taken to study long-range inte-
gration of contour information (Gundlach & Muller,
2013).

IM responses as indicators of perceptual grouping
can also be used to study very complex forms of spatial
integration, such as those involved in face perception.
In a recent study (Boremanse, Norcia, & Rossion,
2013), the left and right halves of a single face stimulus
were contrast-modulated at different frequency rates
(F1 ¼ 5.88 Hz and F2 ¼ 7.14 Hz; Figure 18a). This
approach was used to identify objectively the neural
representation of each half of a face when these two

Figure 18. Objective evidence of integration between face parts from EEG frequency tagging (Boremanse et al., 2013, 2014). (a) The

two halves of a face stimulus are contrast-modulated at different frequencies (5.88 and 7.14 Hz) for 60 s, and the frequency of

stimulation is counterbalanced across faces halves in different trials. (b) The response to each face half can be identified objectively in

the EEG spectrum and is contralateral to the side of stimulation. (c) IM response components at the exact differences between the

two stimulation frequencies (e.g., f2� f1¼ 1.26 Hz; 2f2� 2f1¼ 2.52 Hz; etc.). These IM responses are localized primarily over the

right occipitotemporal cortex and only arise when a population of neurons in the system processes both frequency inputs. Contrary to

the responses to each of the parts (5.88 and 7.14 Hz), these IM responses are specific to a condition where the two face halves form a

whole integrated face: They disappear when the face halves are separated by a gap or spatially misaligned. Face inversion also

specifically reduces the IM responses (Boremanse et al., 2013, 2014).
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halves are presented simultaneously and to attempt to
identify an objective trace of the integration of these
two halves into a unified representation, or a so-called
holistic representation (Rossion, 2013; Tanaka &
Farah, 1993).

Each input face half produced an SSVEP over
posterior electrode sites exactly at the fundamental
frequencies f1 and f2 (Figure 18b). These responses
constitute unambiguous electrophysiological tags of
each stimulated face part, so the frequency-tagging
approach is able to cope with the challenge of
presenting a whole face and measuring simultaneously
the response to two of its parts. Most interestingly,
specific responses corresponding to exact differences
between the two input frequencies (e.g., 7.14� 5.88¼
1.26 Hz; Figure 18b and 18c) were found. These IM
responses had a bilateral occipitotemporal topogra-
phy, with a right hemispheric predominance, suggest-
ing the presence of high-level integration processes
specifically related to the perception of a face as an
integrated unit (holistic face perception). Importantly,
manipulations breaking the whole face into its
constituent parts, such as spatial separation by a gap,
misalignment, or inversion, reduced or abolished most
of the IM responses, while leaving the responses to the
face parts at the fundamental frequencies unaffected
(Figure 18b). These findings were taken as objective
evidence that an intact upright face is different from
the sum of its parts (Boremanse et al., 2013), an
important issue in face-perception research and high-
level vision in general.

In a follow-up study (Boremanse, Norcia, &
Rossion, 2014), a condition was introduced with face
identity changing at every stimulation cycle. Com-
pared to a contrast modulation of different face
identities, SSVEP responses to each face half, at 5.88
and 7.14 Hz, decreased when the same face was
presented. Contrary to repetition suppression effects
for whole faces, which are usually found over the right
occipitotemporal cortex (Rossion & Boremanse, 2011;
Rossion et al., 2012), these part-based repetition
suppression effects were found on all posterior
electrode sites and were unchanged when the two face
halves were manipulated by separation, lateral mis-
alignment, or inversion. In contrast, IM components
(e.g., 7.14 Hz � 5.88 Hz ¼ 1.26 Hz) were significantly
reduced following these manipulations. Additionally,
the IM components decreased substantially for face
halves belonging to different identities, which form a
less coherent face than when they belong to the same
face identity. These observations provide objective
evidence for dissociation between part-based (funda-
mental frequencies) and integrated (intermodulation)
responses to faces in the human brain, suggesting that
only the integrated responses may reflect high-level,
possibly face-specific, representations.

Testing of nonlinear models

The multi-input approach to the SSVEP provides a
powerful way to test computational models of visual
processing. As discussed before, each type of nonlinear
mechanism has a characteristic signature of nonlinear
response components (Regan & Regan, 1988). One
approach to testing models is to compose a list of
nonlinearities and their corresponding signatures that
can be used for comparison with measured data (Regan
& Regan, 1988). This approach was taken in the earliest
studies of IM responses that were modeled by summa-
tion followed by squaring or rectification (Baitch & Levi,
1988; Zemon & Ratliff, 1984). Some simple non-
linearities can be fully described analytically (Regan &
Regan, 1988; Victor & Conte, 2000). Other studies
(Candy, Skoczenski, & Norcia, 2001; Tsai, Wade, &
Norcia, 2012) have tested predictions of variations of the
contrast normalization model (Geisler & Albrecht, 1992;
Heeger, 1992; Robson, 1988). In the study by Tsai et al.
(2012), model fitting to experimental data was used to
reject two forms of the normalization model in favor of
a third. Here the form of the IM responses was decisive
in discriminating the different models. The fact that only
the full nonlinear analysis could clearly favor one model
over another shows the importance and utility of using
all of the relevant response terms when developing
mechanistic models.

Current status and future directions

Strengths and limitations of SSVEPs

Throughout this article, we have indicated that the
SSVEP approach has the desirable property of objective
definition of response components: The generation of
the response components is constrained at the outset by
the experimenter through the decision of which
frequency or frequencies to use. This decision deter-
mines exactly which frequencies are relevant and which
are irrelevant to the response analysis. Furthermore,
different frequency components have qualitatively
different and objective meaning in the experiment: In
alternating between two stimulus states, odd harmonics
indicate asymmetric processing and IM components
indicate joint, nonlinear processing of inputs. More-
over, the response is implicit: It can be measured in the
absence of an overt behavior and thus is not influenced
by decision-criterion effects lying after sensory or
perceptual encoding stages. Thus, the approach can be
used similarly in typical human adults and in popula-
tions who are unable to provide overt behavioral
responses, such as infants or certain patient popula-
tions.
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One of the hallmark features of the SSVEP is its high
SNR. This derives from the fact that the response itself
is narrowband, while noise sources are broadband. This
feature allows researchers to record subtle differences
between visual stimuli in a relatively short amount of
time and is what enabled the development of the sweep
paradigm. Transient ERPs, by contrast, are influenced
by the full range of frequency content allowed into the
recording by the front-end amplifier filters. Movement
artifacts and low-frequency noise arising from skin
potentials are especially problematic with transient
ERPs (Luck & Kapenmans, 2012), but they are much
less of a problem with high-frequency SSVEPs.

The high SNR of the SSVEP, however, comes with a
cost: The use of a single stimulus frequency (or even
several frequencies) probes the system over only a
limited range of temporal frequencies. Ideally one
would like to know how the system responds to a given
stimulus presented at an arbitrary rate, and whether the
response depends qualitatively on the frequency cho-
sen. To fully characterize the system involves recording
the responses at many different frequencies—a slow
process indeed. An alternative approach is to probe the
system with temporally broadband stimuli (random or
pseudorandom time sequences; Marmarelis, 2004;
Sutter, 2001). The resulting responses are a more
complete description of the system response because
the stimulation process drives the system over its full
temporal operation range. The completeness of de-
scription afforded by these approaches however comes
at a price: Noise-based analysis methods have sub-
stantially lower SNR than SSVEP methods, and long
recording times are often needed to make the desired
measurements. This trade-off between the completeness
of the characterization of the system response and the
time to make the measurements is fundamental and
inescapable. In practical terms, the question devolves
into which temporal frequency is best for empirically
describing the phenomenon one wishes to address. This
frequency will depend on the nature of the task being
investigated. As noted earlier, the relevant range of
responses is not fixed but is related to the complexity of
the stimulus being processed.

Whether a given evoked response component reflects
a specific or a nonspecific process is a function of the
design of the stimulus, the nature of the analysis of the
response, and the use of control stimuli that can
provide an independent test of the specificity of the
paradigm. A very clear example of the effectiveness of
stimulus design is the dynamic random-dot stereogram
and related hierarchical stimuli (see Multiple temporal
inputs: Embedded frequency paradigms). In the dy-
namic random-dot stereogram, by nature of the design
of the stimulus, there are no monocular cues, and thus
any evoked response measured to changes in binocular
correlation or disparity are specifically due to binocular

and not monocular processes. More generally, speci-
ficity in hierarchical stimuli, including the fast-oddball
paradigm, comes from dissociating the rate of local
contrast change from that of the more global property
one wishes to study. The different kinds of responses
can thus be isolated by frequency-specific analysis.

With more traditional contrast-modulated stimuli
that contain only a single frequency, something more
needs to be done to infer sensitivity to a specific
stimulus attribute. Here one generally needs a control
condition, because a harmonically related response
could arise from a number of different processes. We
illustrated this with our example of isolating face-
individuation-related activity through the use of
adaptation (Figure 8).

With proper stimulus design, one can directly
interpret odd harmonics as being specific to the onset of
a global feature (see Figure 5). Here the subtraction
between a test and a control condition is effectively
built into the spectral analysis. Differential activity
specifically appears in the odd harmonics and may or
may not appear in the even harmonics.

A distinctive advantage of the SSVEP approach is
the ability it affords to record from multiple simulta-
neously presented stimuli. With frequency tagging, one
can separate the response to the different stimulus parts
via their specific tagged responses and directly measure
nonlinear interactions between the inputs. This ap-
proach has strong implications for the design of
experiments and makes certain analyses possible that
are otherwise impossible. It also makes a step towards
providing a more complete description of the system
response, particularly when the IM components are
analyzed. It should be noted that it is also possible to
temporally tag stimuli using random or pseudorandom
temporal sequences and thus measure tagged response
waveforms and nonlinear interactions in the time
domain (Sutter, 2001).

Despite a number of advantages stemming from the
narrowband nature of the SSVEP, the corresponding
periodic nature of steady-state stimuli makes it difficult
to study the temporal sequence of activation, particu-
larly when high rates of stimulation are used. This has
been cited as a major limitation of the method (Luck,
2005). At high stimulation rates, there are significant
delays in the visual pathway due to both integrative
activity within the retina and cortex and propagation
delays over fiber pathways between processing stages.
If the delays are greater than the period of the
stimulation, there is an uncertainty about which cycle
of the response corresponds to the absolute latency. It
is nonetheless possible to derive an estimate of
temporal response delay from the SSVEP by measuring
SSVEP phase at multiple stimulation frequencies (Lee,
Birtles, Wattam-Bell, Atkinson, & Braddick, 2012;
Lopes da Silva, van Rotterdam, Storm van Leeuwen, &
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Tielen, 1970; Regan, 1966; Spekreijse, 1978; see
Appendix 2 for details). The method relies on
measuring the SSVEP phase at two or more temporal
frequencies and thus at least doubles the recording
time. Because the visual system is nonlinear, this
approach is essentially an empirical one, as there has
yet to be a theoretical generalization of the approach
that includes all the harmonics of nonlinear SSVEP
responses.

Directly relating parameters of the SSVEP to the
temporal evolution of neural activity underlying
different behavioral responses is also challenging. It is
common in transient-ERP experiments to have par-
ticipants respond behaviorally to discrete stimulus
events and to use the behavioral data to generate a
response-contingent analysis that can then be used to
map out the time course of evoked potentials that are
related to the generation of the response (Hillyard,
Hink, Schwent, & Picton, 1973; Sutton et al., 1965). It
is possible to create a similar SSVEP paradigm by
embedding transient probe tasks in SSVEP paradigms
(Ales, Appelbaum, & Norcia, 2010; Cottereau, Ales, et
al., 2014b). The use of SSVEP to tag the ongoing
stimulus presentation allows for a very clean sub-
traction of the evoked potential created by the
stimulus. While this enables better discounting of the
stimulus-related activity, the remaining response-
related activity is no longer an SSVEP. One can still
access decision-related activity using traditional ERP
techniques (Luck & Kappenman, 2012), but it is no
longer possible to tag this activity in the frequency
domain.

Another common issue with SSVEPs is that because
the stimulus is periodic, predictive or anticipatory
activity can be generated if the participant learns the
repetitive stimulus sequence. This concern led to the
introduction of time-jittered event-related designs for
the study of the earliest phases of attention via evoked
potential methods (Hillyard et al., 1973; Naatanen,
1975). This limitation can be circumvented by steady-
state stimulation with random temporal inputs (Sutter,
2001). Here the temporal order of processing can be
determined in the absence of anticipatory responding,
and responses to multiple inputs can be measured along
with their spatiotemporal interactions. However, as
noted before, these methods entail a significant cost in
SNR.

As with any method that records neural activity at
the scalp, the ability to localize the sources of the
SSVEP to specific cortical areas or cell classes is
limited by the blurring of the field by the head
volume conductor (Dannhauer, Lanfer, Wolters, &
Knosche, 2011; Hamalainen, Ilmoniemi, Knuutila, &
Lounasmaa, 1993), by cancellation of activity from
opposing sources such as those on opposite walls of a
sulcus (Ahlfors et al., 2010), by cancellation due to

opposing directions of current flow within the cortical
laminae (Mitzdorf & Singer, 1979), and finally by the
ill-posed nature of inverse modeling procedures
(Grech et al., 2008). Nonetheless, the validity of
source localization depends on the SNR, and the high
SNR of the SSVEP provides an advantage over
standard ERP approaches. Moreover, significant
progress has been made in providing a useful level of
spatial precision when detailed anatomical data from
MRI are used to build accurate electrical models of
the volume conductor and when sophisticated inverse
methods with realistic constraints are used (Appel-
baum et al., 2006; Bai, Towle, He, & He, 2007;
Cottereau, Ales, & Norcia, 2012; Cottereau, Ales, et
al., 2014a; Sharon, Hamalainen, Tootell, Halgren, &
Belliveau, 2007).

Neural mechanisms and relationship to
transient ERPs

Beyond the questions of source localization and
source visibility, it is not well understood what the
relative contributions are of presynaptic excitatory
and inhibitory potentials versus spiking activity to
surface activity (Buzsaki, Anastassiou, & Koch, 2012).
This is not a problem specific to the SSVEP, but it is
nonetheless a limitation of the EEG method. The
frequency-domain approach can be readily applied in
other recording modalities that have greater spatial
resolution, such as electrocorticography (Winawer et
al., 2013) or intracerebral recordings with depth
electrodes (Jonas et al., 2014) local field potentials
(Norcia, 1996), and single-unit recording (Bonds,
1989). Future studies that link these invasive mea-
surements to surface activity will be particularly
valuable in informing the interpretation of the
SSVEP.

Another issue that is worth a brief discussion is the
relationship between SSVEPs and transient ERPs. As
noted at the beginning of this article, it is often assumed
that SSVEPs are responses to very rapid (.8–10 Hz)
trains of stimuli, in contrast to transient ERPs in which
there is a long (and variable) delay between stimuli. We,
on the other hand, consider the SSVEP to be a periodic
response to a periodic stimulus, without making
assumptions about the minimum rate of stimulation.
Very slow stimulation rates can generate evoked-
response time courses that look indistinguishable from
those of traditional transient ERPs, even though their
spectrum is composed of a series of narrowband
frequency components (see Figures 5 and 9 for
examples). If, however, as in traditional transient ERP
paradigms, the stimulation has random intertrial
intervals, the resulting spectrum is continuous over a
broad band of frequencies. The difference in spectra
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depends on whether or not the input is periodic (Regan,
2009).

In this context, the issue of whether the SSVEP
reflects the linear summation of transient ERPs arises;
this has been discussed by several authors (see
Galambos, Makeig, & Talmachoff, 1981, in the
auditory domain; Capilla, Pazo-Alvarez, Darriba,
Campo, & Gross, 2011, in the visual domain; Regan,
1989 for a discussion of this issue). When transient
ERPs measured from temporally isolated stimuli are
used to predict the SSVEP, there is poor agreement
(Capilla, Pazo-Alvarez, Darriba, Campo, & Gross,
2011). If, however, a different kind of transient-ERP
waveform is generated from responses during a dense,
temporally jittered stimulation sequence, high-fre-
quency SSVEPs (;10 Hz) can be synthesized with good
accuracy.

The main problem that confounds comparisons
between transient and steady-state VEPs is the presence
of both static and dynamic nonlinearities in the visual
pathway. It is important to first make clear that the
concept of linearity that was targeted by Capilla et al.
(2011) is different from the static nonlinearity defined
at the beginning of this article (Figures 1 and 2). A
static nonlinearity distorts the input in exactly the same
way, independent of the frequency of the inputs.
However, when comparing between fast and slow
stimulation rates, it is important to be aware of
dynamic nonlinearities. The output of a system that has
a dynamic nonlinearity will depend on the relative
timing between successive stimulation events. Simple
nonlinear models that have dynamic nonlinearities can
be formed from cascades of linear filters and nonstatic
nonlinearities such as squaring or rectification (Zemon
& Ratliff, 1984).

The complexities introduced by dynamic nonli-
nearities are not limited to periodic stimulation. Fast
nonperiodic stimulation reveals clear violations of
linear temporal superposition (Sutter, 2001). The
temporally dense, time-jittered stimulus that Capilla et
al. (2011) used to generate ERPs engages dynamic
nonlinearities in a different way than does a tradi-
tional ERP presentation mode composed of widely
spaced events. The synthesis results of Capilla et al.
are interesting, but it is unclear how useful this
approach is for predicting other types of SSVEPs. Any
future research comparing transient ERPs and SSVEP
needs to address dynamic nonlinearities as a funda-
mental determinant of responses at different stimula-
tion rates.

Another aspect of ERPs that is tightly related to
dynamic nonlinearities is the nature of the underlying
neural mechanisms that generate the measured
evoked response. A dominant view of evoked-
response generation is that they are the result of time-
locked stimulus-evoked transients in cortex (Dawson,

1954). According to an alternative view, stimulus
presentation generates an evoked potential by
changing the ongoing dynamics, e.g., by phase-
resetting ongoing oscillations (Makeig et al., 2002;
Sayers, Beagley, & Henshall, 1974). This idea that
evoked potentials are created by changing ongoing
dynamics also applies to steady-state stimulation.
Here the idea is that periodic stimulation, rather than
being a (nonlinear) superimposition of stimulus-
evoked transients, entrains oscillators to the stimula-
tion phase. In the visual system, to take a concrete
example, a 10-Hz stimulation rate would give rise to a
large SSVEP response over the visual cortex because
it entrains the prominent ongoing oscillatory rhythm
in the alpha range (8–12 Hz), which is also large over
visual cortex (Spaak, de Lange, & Jensen, 2014).
However, it should be mentioned that the frequency
rate giving the largest SSVEP response is not tied to
the range of 8–12 Hz, but rather depends on the kind
of stimulus property that is modulated. For individ-
ual face stimuli presented in pattern onset/offset
mode, the stimulus frequency giving rise to the largest
face-specific response over the higher level visual
cortex appears to be at around 6 Hz (i.e., six faces/s),
not 10 Hz (Alonso-Prieto et al., 2013). The exact
nature of the underlying generators of the evoked
potential is far from resolved and remains an active
area of current research. The interested reader is
referred to recent critical discussions of the issue of
entrainment of endogenous rhythms (Capilla et al.,
2011; Keitel, Quigley, & Ruhnau, 2014; Shah et al.,
2004).

Prospects for the future of the SSVEP

While much has been learned from the SSVEP up to
this point, there are many opportunities and challenges
that lie ahead. Some of the opportunities involve
extension of the technique to broader classes of visual
stimulation and to studies of multisensory integration
(Giani et al., 2012; Nozaradan, Peretz, & Mouraux,
2012; Regan, He, & Regan, 1995; Saupe, Schroger,
Andersen, & Muller, 2009). In addition, through the
continued innovation of more sophisticated experi-
mental designs, researchers will be able to address
questions relating to higher level cognitive processes,
such as memory and decision making. Better signal-
processing procedures, such as those being developed
for brain–computer interfaces, could be applied to
studies of visual processing (Davila, Srebro, & Ghaleb,
1998; Friman, Volosyak, & Graser, 2007; Garcia
Molina & Zhu, 2011; Zhu et al., 2010). A particularly
fruitful avenue for future study is parallel application
of SSVEP protocols in studies with intracranial
electrodes, either in animal models or in humans.
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Parallel studies with voltage-sensitive dye imaging
(Benucci, Frazor, & Carandini, 2007) or other imaging
modalities with high temporal resolution will be
particularly important for understanding the underly-
ing nonlinear processes involved in generating the
response and the extent to which activity recorded at
the surface is representative of activity within different
cortical areas. By combining these new technical
approaches with formal computational modeling that
links the underlying processing to their manifestations
at the scalp, the SSVEP will become even more useful
and its strengths and weaknesses will be better
understood.

Keywords: visual evoked potentials, steady-state,
spectrum analysis, vision, attention, perceptual organi-
zation
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Appendices

Appendix 1. Estimating delay from SSVEP
responses

One of the advantages of EEG recording is that it
can measure activity on the scale of milliseconds. This
level of temporal resolution enables the measurement
of the dynamics of brain processes at their native time
scale. An important parameter of response dynamics is
response latency, i.e., the time it takes for a response to
be generated after the stimulus is present. This concept
is straightforward in the time domain, where a
commonly used latency measure is the first deviation of
a signal from baseline. However, this latency is difficult
to quantify because it requires measuring signals that
are at the edge of detectability. An arbitrary choice

must be made as to what constitutes a significant
deviation. This choice is further complicated because
one must repeatedly test successive time points for
deviation, and there can thus be many false alarms due
to the multiple-testing problem (Maris & Oostenveld,
2007). A common strategy to reduce this problem is to
require multiple significant samples in a row, akin to a
cluster-wise correction in fMRI. In addition, the choice
of the number of significant samples must be carefully
made with regard to the filtering of the signal. Another
problem is that the latency of the first deviation will
correlate with the SNR of the measurements. As noise
levels decrease, earlier latencies become significantly
different from baseline. If one is not careful, this can
cause difficulties in comparison between different
conditions and experiments.

In order get away from the small-signal problems, an
alternative is to use a peak in the measured time-
averaged response. This requires first defining the
corresponding peaks, e.g., the first positive maximum
or the maximum response between 140 and 210 ms.
Peaks provide strong signals but have the problem that
using them to measure latency does not distinguish
between a signal that starts early and rises slowly from
a signal that starts late and rises fast. Aside from these
methods, there are various other ways to determine
latency in the time domain. No matter what method is
used in the time domain, extreme caution should be
used when latency measures are derived after temporal
filtering has been performed, because temporal filtering
will distort the shape of the response (Acunzo,
Mackenzie, & van Rossum, 2012; Rousselet, 2012).

The frequency-domain analog to delay is phase,
which measures latency using the entire waveform,

Figure A1. Schematic showing a response of two systems, one with no delay (solid lines) and one with a 0.125-s delay. (a) Waveforms

and phasor diagram for 1-Hz input, showing that a 0.125-s delay translates to a 458 phase angle. (b) Waveforms and phasor diagram

for a 2-Hz input, showing that the same 0.125-s delay causes a 908 phase angle.

Figure A2. Waveforms from a system with a 200-ms delay and

two stimulation frequencies: 2 Hz (solid line) and 3 Hz (dashed

line). The arrows indicate the time that the responses coincide.

Because there is a 1-Hz difference between stimulation

frequencies, the repetition period is 1 s.
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obviating the need to choose any specific feature. Phase
is directly related to delay, and the relationship directly
scales with the frequency of the response. For example,
at 1 Hz a 908 phase delay translates into 0.25 s, while at
2 Hz a 908 phase delay is 0.125 s (see axis labels in
Figure A1). A constant delay of 0.125 s correspond to a
458 phase delay at 1 Hz and a 908 phase delay at 2 Hz
(Figure A1). In other words, if the delay is constant,
doubling the frequency doubles the phase angle. It
should be noted that two different sign conventions for
phase exist in the literature. The one used here is that
positive phase change means increasing delay. In other
works, including most engineering literature, negative
phase change means increasing delay.

Phase as a measure of delay differs from time-
domain measures in ways that are important to
understand. Phase is a circular variable, with a 08 phase
angle identical to a 3608 phase angle. Because of this
circularity, care must be taken to respect the funda-
mental circularity of the distribution of phase values
when doing phase analysis. In particular, circular
statistics should be used (for a thorough treatment of
this issue and a MATLAB toolbox for circular
statistics, see Behrens, 2009).

A major issue with the circularity of the phase
variable is that at high stimulation rates, response
phase can wrap around one or more times, making the
phase measurement ambiguous in terms of absolute
latency. For example, at 10 Hz the same phase angle
repeats every 100 ms. Another ambiguity exists because
negative and positive responses are equally informative
in EEG. If one is interested in the absolute delay of the
response, this effectively halves the absolute repetition
period (e.g., from 100 to 50 ms). This is not a problem if
one is interested in small relative latency differences
between conditions. This is illustrated nicely in the
phase values plotted for the contrast and spatial-
frequency sweeps in the lower panels of Figure 2, which
show smooth changes in response phase associated with
changes in contrast or spatial frequency. These smooth
changes can be understood as follows: A general
principle of sensory systems is that responses speed up
as the stimuli become increasingly visible (Shapley &
Victor, 1978). Speeding up of the response corresponds
to a smaller lag of phase with respect to the stimulus. In
the plots, 0 phase indicates 0 phase (time) lag with
respect to the stimulus. Decreasing phase lag (faster
response) is indicated in the contrast-sweep plot as a
downward shift of the phase going from low to high
contrasts, i.e., from low to high visibility. In the spatial-
frequency sweep, visibility increases with decreasing
spatial frequency. As in the case of the contrast sweep,
we see the same direction of phase shift as we go from
high spatial frequency (low visibility) to low spatial
frequency (high visibility). In the case of the contrast
sweep, phase changed by ;308. At the 5-Hz stimulus

frequency, 308 of phase shift is 1/12 of a period of the
fundamental, or ;17 ms of decreased lag going from
low to high contrast. With a single response-frequency
measurement, it is often not possible to determine the
absolute amount of delay with respect to the stimulus.

For the more general case when an absolute measure
of delay is desired, it is possible to derive such a
measure by recording response phase at multiple
stimulation frequencies (Lee et al., 2012; Lopes da Silva
et al., 1970; Regan, 1966; Spekreijse, 1978). This
approach follows directly from the earlier argument
regarding the correspondence between delay and phase
shift. The choice of the frequencies used to estimate
delay is important. In the limit, only two are needed,
but when only two different frequencies are used, there
is still an ambiguity in absolute terms that is equal to
the difference between the two frequencies. Figure A2
illustrates this with 2-Hz and 3-Hz responses, both with
latencies of 200 ms. The only places the two signals are
commensurate occurs precisely at the delay and then
again 1 s later (the difference between 2 and 3 Hz). It is
much more plausible, physiologically, that the delay is
200 ms rather than 1200 ms for most stimuli.

This method works for any two frequencies, but care
must be exercised in choosing these frequencies.
Frequencies should be close enough together to reduce
the ambiguity of absolute latency, as in the example
just given. However, the closer together the frequencies,
the stronger the influence of noise on the latency
estimate. Put simply, the measured phase difference
should be larger than the uncertainty in the phase
measurement itself. Formally, the relationship is that
latency is proportional to the derivative of phase with
respect to frequency. This relationship, along with
fitting a line to the change in phase versus frequency,
has been used for many years (Fiorentini & Trimarchi,
1992; Lopes da Silva et al., 1970; Regan, 1966). One
difficulty is that because phase is only measured
between 08 and 3608, the method to fit the data must
respect this nonlinearity, either by unwrapping phase
prior to fitting the line (Lee et al., 2012; Strasburger,
1987) or using a nonlinear fitting procedure.

Appendix 2. Detecting significant SSVEP activity

There are several approaches available to determine
whether a statistically reliable SSVEP response is
present. One common method is based on a threshold
SNR. The SNR is obtained by dividing the EEG
amplitude at response frequency f by a noise value.
Noise can be computed at the same frequency f during
a baseline period (Meigen & Bach, 1999; see also
Cottereau et al., 2011). It can also be extracted from the
average of the amplitude at frequency bins adjacent to
the tagged frequency f (i.e., f� df and fþ df, where df is
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the frequency resolution of the Fourier analysis). By
averaging noise values from frequencies immediately
above and below the response frequency, one can
interpolate the additive background noise likely to be
present at the response frequency during the actual
SSVEP recording. This has two advantages: The first is
that the noise is estimated under the same state
conditions (e.g., movements and arousal are the same),
and the second is that the interpolation takes into
account the slope of the background EEG spectrum,
which can be quite steep at low frequencies. Threshold
values for SNR corresponding to different levels of
statistical significance can be obtained from empirical
sampling distributions (Norcia et al., 1989).

When long-duration recordings are used, the noise
can be also computed over a larger number of narrow
frequency bins (e.g., by using 20 neighboring bins; see
Rossion et al., 2012; Srinivasan et al., 1999). This
approach is valid as long as the chosen frequency bands
do not include any of the harmonics of the input
frequency (or IM frequencies for multiple input
designs; see Multiple periodic visual inputs). The
advantage of this approach is that the variance of the
noise around the frequency of interest can be estimated,
so that statistical tests (i.e., a t value or a z-score) can be
performed to determine if the response at the frequency
bin of interest is significant (e.g., Liu-Shuang et al.,
2014). If the noise is not distributed normally around
the frequency bin of interest, nonparametric tests can
be used. The SNR at higher order harmonics of the
stimulus tagging frequency F (i.e., at 2f, 3f, . . .) can be
computed following the same approach.

If the multiple harmonics are thought to reflect a
common response (see Heinrich, 2010), it is possible to
compute a global SNR for multiple harmonics (e.g., the
two first odd harmonics of the tagged frequency) by
pooling together all the moduli of their Fourier
coefficients using their root-mean-square value. This
operation is equivalent to summing the powers of the
individual harmonics and then taking the square root

(Appelbaum et al., 2006). This pooled value is then
divided by the root-mean-square of the associated noise
magnitudes (see Cottereau, McKee, & Norcia, 2014).

Several approaches have been proposed to charac-
terize the variability of the Fourier components at a
given frequency during a steady-state stimulation.
These approaches use the distribution of the Fourier
coefficients produced by the individual trials of an
SSVEP recording to compute variance estimates for
response amplitude. They were adapted from standard
statistics from other contexts (see e.g., Picton, Vajsar,
Rodriguez, & Campbell, 1987; Strasburger, 1987).
More developed versions, such as the well-known T2

circ
statistic (Victor & Mast, 1991), use the real and
imaginary parts of Fourier components to determine
confidence limits for the SSVEP response at a given
frequency. These approaches can be used to determine
if a signal is significantly different from zero and to
compare the SSVEPs obtained from different condi-
tions. As a statistical test, T2

circ achieves the highest
efficiency for detecting a true activation out of noise. It
achieves this efficiency by making the strong parametric
assumption of independent identically distributed
Gaussian noise on the Fourier coefficients. A limitation
of this approach is that it requires more than
approximately five independent samples. If these
samples have a short duration, the experiment can be
reasonably limited in time. Single long-duration re-
cordings, while providing high SNR, do not provide
error estimates for amplitude or phase unless they are
segmented into separate epochs or variability is
measured across another dimension, such as across
participants. In theory, averaging many short-duration
trials or a few long-duration trials should give rise to
roughly identical SNRs. But practically, different trial
lengths may have a variety of uncontrolled differences
between them (e.g., different artifacts and participant
compliance), and empirical tests of the difference are
currently lacking.
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