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Abstract
Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer,
including clear cell, low-grade serous and endometrioid carcinomas.We aimed to determinewhether the observed associations
might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays
with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized
Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of
genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS
data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects
are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian
cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with
endometriosis (0.51, 95% CI = 0.18–0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients
(0.48, 95% CI = 0.07–0.89 and 0.40, 95% CI = 0.05–0.75, respectively). High-grade serous carcinoma, which often arises from the
fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11–0.39), despite the absence of a
known epidemiological association. These results suggest that the epidemiological association between endometriosis and
ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.
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Introduction
Ovarian cancer is the most fatal gynaecological cancer. It is not a
single disease but comprises a number of histotypes (1). The
most common subtype is serous carcinoma, accounting for
over 50% of all invasive epithelial ovarian cancers (EOC). Recent
morphological and molecular genetic studies have confirmed
that invasive serous EOC should be further sub-categorized into
high-grade and low-grade types (2,3). The clear cell, endome-
trioid and mucinous EOCs are three most common non-serous
tumours. The heterogeneity among EOC subtypes is manifested
in differences in risk factors, germline and somatic mutations,
gene expression and chemotherapy responsiveness (4).

Endometriosis is a common gynaecological disorder asso-
ciated with pelvic pain and sub-fertility, affecting 10–15% of
women of reproductive age (5). The disease is defined as the pres-
ence of endometrial-like tissue outside the uterine cavity, pri-
marily on pelvic organs. The disease is typically staged using
the revised American Fertility Society (rAFS) classification (6)
based on the differential location of the lesions (ovarian, periton-
eal, recto-vaginal), extent of disease and adhesion formation.

The epidemiological link between endometriosis and ovarian
cancer was first identified in 1925 (7) and has been largely
replicated since (8). Some studies have suggested that the link
might differ between ovarian cancer histotypes (9–11). Recently,
a large collaborative effort by the Ovarian Cancer Association
Consortium (OCAC) reported that endometriosis increases
the risk of clear cell ovarian cancer by 3-fold, and the risk of
low-grade serous and endometrioid subtypes by ∼2-fold, but
that endometriosis was not associatedwith other histotypes (12).

Despite the convincing epidemiological link, themechanisms
underlying the co-occurrence of endometriosis and ovarian
cancer are unknown. Several studies have attempted to demon-
strate a causal relationship between the two conditions via the
identification of somatic mutations that may represent early
events in the transformation of benign endometriotic lesions in
the ovary (endometrioma) to malignancy. For example, one
study identified truncating mutations in ARID1A that cause loss
of expression of BAF250 protein in both clear cell and endome-
trioid tumours, and in two cases the same mutations were
found in endometriotic lesions adjacent to the tumours (13).

An alternative explanation is that the observed associations
may arise from shared germline genetic risk factors, but this
has not been well explored (5,14). Traditionally, studying genetic
correlation requires large family or twin studies with phenotypic
data for both diseases. However, because of the rare co-occurrence
of EOC (particularly of the rare histotypes) and endometriosis in
families, ascertaining sufficient cases for family studies is dif-
ficult. Recently, germline genetic variants predisposing women
to the two diseases have been identified from genome-wide
association studies (GWAS) (15–21). With the exception of the
locus at 1p36 (nearest gene: WNT4) (20,22), there is limited over-
lap in the susceptibility loci for the two diseases, which seems to
lend little support to the hypothesis of shared genetic factors
underlying the two diseases. However, we and others have previ-
ously shown that germline genetic contributions to ovarian
cancer and to endometriosis are not simply limited to the gen-
ome-wide significant variants from GWAS; instead, many more
genetic variants that do not pass the genome-wide significant
threshold contribute to the disease heritability (23,24). Therefore,
to study shared genetic risks between the two diseases, we need
to extend beyond genome-wide significant variants.

In the current study, we applied two complementary statis-
tical genetic methods, genomic-relatedness-matrix restricted

maximum likelihood (GREML) (25,26) and genetic risk prediction
(GRP) (27), both of which evaluate the joint contribution of all
germline genetic variants captured on the genotyping arrays.
The first method predicts the phenotypic similarities from the
genomic relatedness between individuals with distant relation-
ships, thus estimates array heritability (that is, the heritability
attributable to the variants on the genotyping array) in the uni-
variate case or genetic correlation/co-heritability in the bivariate
case. The second method selects genetic variants from a discov-
ery set according to their associations with the trait assessed and
constructs polygenic risk scores in an independent replication
set using the selected variants and weights from the discovery.
An association of risk scores with the trait in the replication set
indicates genetic risks overlap between the two traits assessed.
Both methods allow the use of independent datasets for each
phenotype of interest, thus circumventing the ascertainment
issue in traditional quantitative genetic designs. In addition to in-
vestigating the shared genetic risks between endometriosis and
ovarian cancer, we also estimated the array heritability specific
for EOC histotypes.

Results
Array heritabilities of EOC histotypes

In previous work, we applied the GREMLmethod implemented in
the software Genome-wide Complex Trait Analysis (GCTA) to
ovarian cancer (all histotypes combined) and estimated that
the array heritability was 30% (24). That is, 30% of variance in
risk of ovarian cancer was attributable to the common variants
on commercial genotyping arrays. However, the sample size in
the previous study was insufficient for the estimation of array
heritability for the various histotypes. Here, we used a larger
collection of ovarian cancer case–control data from the OCAC
genotyped using the customized Illumina Infinium iSelect arrays
(iCOGS; sample sizes byhistotypes and studysites in Supplemen-
tary Material, Table S1). We found significant, albeit small, array
heritabilities for all major invasive EOC histotypes except for
mucinous and low-grade serous diseases (Table 1). The most
common EOC subtype, high-grade serous, had the highest array
heritability, 8.8% (95% CI = 6.8–10.8%), followed by clear cell, 6.7%
(95% CI = 0.3–13.1%), and endometrioid, 3.2% (95% CI = 0.06–6.3%).
The mucinous and low-grade serous EOCs were estimated to
have null array heritability. Overall, 5.6% (95% CI = 4.4–6.7%) of
variance on the liability scale can be explained by the SNPs on
the iCOGS array for all invasive EOC, regardless of histotypes.
We also carried out a control–control contrast study, dividing
21 663 controls into four pseudo case–control sets (see the Mate-
rials andMethods section). We estimated the array heritability in
each pseudo case–control set, none of which were significantly
different from zero (maximum h2

g ¼ 2:8%; P = 0.37; Supplemen-
tary Material, Table S2).

Shared genetics between EOC subtypes and
endometriosis

When assessing shared genetics between ovarian cancer sub-
types and endometriosis, the number of SNPs common to the
arrays used in these two datasets was reduced to∼84 K. Nonethe-
less, we found strong genetic correlations between endometriosis
and clear cell EOC (rg = 0.51, 95% CI = 0.18–0.84) and endometriosis
and endometrioid EOC (rg = 0.48, 95% CI = 0.07–0.89), and a moder-
ate genetic correlation between endometriosis and serous EOC
(rg = 0.29, 95% CI = 0.16–0.42). Interestingly, despite a null array
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heritability for low-grade serous EOC, its genetic correlation with
endometriosis was significant (rg = 0.40, 95% CI = 0.05–0.75). The
correlation coefficient was lower for high-grade serous EOC (rg =
0.25, 95% CI = 0.11–0.39) compared with low-grade serous disease.
In contrast, no evidence was apparent for genetic correlation
between endometriosis and the mucinous histotype (rg =−0.01,
95% CI =−0.44–0.42). Overall, the genetic correlation between all
invasive EOC and endometriosis was estimated to be 0.40 (95% CI
= 0.26–0.54).

We then performed the GRP analyses in two ways, firstly
assessing whether the risk scores calculated from summary re-
sults of EOC subtypes were associated with endometriosis, and
secondly, whether the risk scores calculated from endometriosis
were associated with EOC histotypes. The results from the risk
score analyses were highly consistent with the estimated genetic
correlations (Fig. 1A and B). The risk scores from low-grade ser-
ous, endometrioid and clear cell EOC histotypes predicted endo-
metriosis risks, and the risk scores of endometriosis predicted all
EOC subtypes but mucinous. Also, the risk scores of endometri-
osis were more strongly associated with low-grade serous EOC
than with high-grade serous disease. The results remained
almost unchanged in sensitivity analyses where we restricted
the GRP analysis to the less-related samples from endometriosis
and OCAC datasets (genetic relatedness <0.1; Supplementary
Material, Fig. S1) or to the set of SNPs clumped to reduce LD
(∼44 K SNPswith r2 < 0.2; SupplementaryMaterial, Fig. S2), except
that the association between endometriosis and endometrioid
EOC was weaker in the latter case.

The epidemiological association between EOC and endomet-
riosis means that women with ovarian cancer are more likely to
have a history of endometriosis compared with the general
female population. Hence, we investigated whether the observed
genetic overlaps between EOC and endometriosis arose from
women with both diseases. We used self-reported data on endo-
metriosis from the OCAC (12) to exclude women with histories of
endometriosis or with missing data. A limitation here was that a
few OCAC studies did not ascertain endometriosis status; thus,

the sample size for this sub-analysis was substantially reduced
(nearly 45% reduction). Nonetheless, we found that the risk
scores calculated from the discovery set of endometriosis were
still significantly associated with high-grade serous, low-grade
serous and endometrioid EOC (Fig. 1C). The significance of the
genetic overlap between endometriosis and clear cell EOC was,
however, considerably attenuated.

Psychiatric Genomics Consortium (PGC) data as
negative controls

We used the PGC data for negative control experiments because
psychiatric disorders are not likely to share genetic risk factors
with the two gynaecological diseases studied here.We examined
the genetic overlaps of endometriosis and ovarian cancer with
schizophrenia and bipolar disorder in the GRP analyses (28,29).
Based on∼130–170 K overlapping SNPs, we found no associations
of risk scores from schizophrenia or bipolar disorder with all in-
vasive EOC (P > 0.1 for all P-values; Supplementary Material,
Fig. S3). Since the control subjects from the Wellcome Trust
Case Control Consortium (WTCCC) study were included in the
PGC data, and also used as the controls for the UK endometriosis
study, we only assessed the polygenic risk scores from the two
psychiatric disorders in the Australian endometriosis data.
Based on analysis of 440–470 K overlapping SNPs, we found no
evidence for genetic overlap between endometriosis and schizo-
phrenia or bipolar disorder (P > 0.1 for all P-values; Supplemen-
tary Material, Fig. S3).

Discussion
While various studies have demonstrated a consistent epidemio-
logical association between endometriosis and risk of ovarian
cancer, the underlying mechanism is not clear. Here, we exam-
ined whether shared genetic risk factors, beyond the limited
number of genome-wide significant variants, might underlie
the observed association.

On the premise of polygenic architecture of both diseases
(23,24), we derived the shared genetics from the aggregate effect
of germline genetic variants captured on genotyping arrays,
using two complementary statistical genetic methods, GREML
and GRP. Both methods have been widely applied to investigate
shared genetics between traits and diseases (25,27,30–32). The
bivariate GREML method provides unbiased estimates of genetic
correlation. However, it requires genotype data that may not be
readily available inmany cases, whereas theGRPmethod only re-
quires summary results from the discovery set (although care
needs to be taken to ensure that no subject overlaps between
the discovery and target sets). The results from our control–con-
trol contrast and negative control experiments showed that the
two methods are reliable and that the results we presented
here are unlikely to be artefacts.

Further to our previous work that estimated array heritability
for ovarian cancer (all histotypes combined), we reported
the array heritabilities from the customized iCOGS genotyping
array, for individual histotypes of ovarian cancer. Among five
major EOC histotypes, we found significant array heritability for
high-grade serous (8.8%, 95% CI = 6.8–10.8%), clear cell (6.7%,
0.3–13.1%) and endometrioid EOC (3.2%, 0.06–6.3%), but not in
mucinous or low-grade serous disease. To our knowledge, be-
cause of the low disease prevalence, no family or twin studies
have examined EOC histotypes. Through the large OCAC dataset,
wewere able to estimate, for the first time, the array heritabilities
specific for the histotypes. However, compared with our previous

Table 1. Array heritability estimated from iCOGS array for invasive
EOC, stratified by histotypes

EOC histotype N case/control
(relatedness <0.1)

K h2
g % (95% CI)

High-grade serous 4121/21 663
(4098/21 242)

0.0055 8.8 (6.8–10.8)

Low-grade serous 363/21 663
(362/21 242)

0.0005 0.0 (0–9.3)

Endometrioid 1350/21 663
(1342/21 242)

0.001 3.2 (0.06–6.3)

Mucinous 662/21 663
(658/21 242)

0.0005 0.0 (0–5.4)

Clear cell 621/21 663
(620/21 242)

0.0005 6.7 (0.3–13.1)

All invasive EOC 10 065/21 663
(10 014/21 242)

0.009 5.6 (4.4–6.7)

N case/control (relatedness <0.1): case/control sample size, and case/control

sample size restricting pairwise genetic relatedness between individuals <0.1

(see the Supplementary Material, Table S3, for comparison of results using the

cut-off of 0.05); K: disease prevalence of EOC histotype, defined as the lifetime

risk of invasive ovarian cancer (∼0.9%, see the Materials and Methods section)

times the fraction of the corresponding EOC histotype; h2
g (95% CI): array

heritability and its 95% confidence intervals that were estimated using ovarian

cancer iCOGS data, while adjusting for 10 PCs and study sites.
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estimate of 30% heritability for all invasive EOC using Illumina
Human610-Quad and Human1M-Duo arrays (24), the estimates
presented here are small due to the limited genome coverage
on the iCOGS array. The iCOGS array includes 211 K SNPs [195 K
post quality control (QC) in our analyses], although many of
these are concentrated on particular regions of the genome,
with little or no coverage of some genomic regions. In contrast,
the 471 K SNPs common to Illumina Human610-Quad and Hu-
man1M-Duo arrays provide an even coverage of most of the gen-
ome. For the histotypes that did not show significant array
heritabilities (mucinous and low-grade serous EOC), the true her-
itabilities may be too low to be detected with the current case
numbers, or the underlying SNPs may not be well represented
on the iCOGS array. We acknowledge that the estimates would
be more informative if such large dataset were genotyped on
the arrays with full-genome coverage.

We found widespread shared genetics between endometri-
osis and most EOC histotypes. The strong genetic correlations
of endometriosis with clear cell EOC (rg = 0.51, 95% CI = 0.18–
0.84), with endometrioid EOC (rg = 0.48, 95% CI = 0.07–0.89) and
with low-grade serous EOC (rg = 0.40, 95%CI = 0.05–0.75)were con-
sistent with epidemiological links between endometriosis and
these EOC histotypes (12). Our results, therefore, suggest that

shared genetics partly explains the observed link between endo-
metriosis and EOC for these histotypes. Interestingly, we ob-
served a weaker but significant genetic correlation between
endometriosis and high-grade serous EOC (rg = 0.25, 95% CI =
0.11–0.39), despite the absence of a known epidemiological asso-
ciation (12). The weaker correlation may reflect that high-grade
serous carcinoma often arises from fallopian tubes (33). The spe-
cific lack of association with mucinous EOC dovetails with the
lack of epidemiological risk factors for that tumour type (11).
Overall, the genetic correlation between all invasive EOC and
endometriosis was 0.40 (95% CI = 0.26–0.54). In addition, the
shared genetics between endometriosis and EOC histotypes, ex-
cept for clear cell, remained after the exclusion of women with
histories of endometriosis, suggesting that our results were un-
likely to be solely attributable to women with both diseases.
Compared with the other EOC histotypes, the attenuated results
in clear cell EOCwere likely due to the largest reduction in the case
numbers, which was expected given that the epidemiological
association is the most pronounced between endometriosis
and this histotype. The genetic overlap between endometriosis
and most EOC histotypes suggests that women with endometri-
osis may be at elevated risk of later EOC. Bearing in mind that
the germline genetic contribution to absolute risk is relatively

Figure 1. Genetic risk prediction between endometriosis and EOC histotypes [serous, high-grade and low-grade serous (denoted as “Srs High-grade” and “Srs Low-grade”

respectively), mucinous, endometrioid and clear cell]. (A) EOC histotypes as discovery and endometriosis as target; (B) endometriosis as discovery and EOC histotypes as

target; and (C) endometriosis as discovery and EOC histotypes as target, after the exclusion of women with endometriosis in the ovarian cancer case–control set. The

figures show the association (y-axis: −log10P) between genetic risk scores calculated from the discovery set and the target disease. The shading denotes the P-value

bins used to select SNPs from the discovery set. The dashed horizontal line marks the significance threshold (P = 0.05). The genetic risk scores were calculated from all

platform-overlapping SNPs without LD clumping.
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small, it will be of interest in future studies to quantify better how
genetic predisposition to endometriosis confers risk of EOC.

In light of substantial heterogeneity among ovarian cancer
histotypes (4), here we investigated the shared genetics between
endometriosis and ovarian cancer, stratified by ovarian cancer
histotypes. Further investigation of the links stratified by differ-
ent stages of endometriosis may be worthwhile, especially in
the localized formof ovarian endometriosis (also knownas endo-
metriomas). By rAFS classification, endometriomas fall in Stage
III/IV (moderate to severe endometriosis) (6). Interestingly, a pre-
vious study showed increased genetic loading in women with
moderate to severe endometriosis compared with those with
minimal disease (19).

It is worth noting that our results were derived either from
SNPs on the iCOGS array or from the overlap of SNPs on the
iCOGS and commercial GWAS arrays. Hence, the numbers of
SNPs included in the analyses were appreciably smaller than
the numbers in a typical GWAS. Analyses can be performed on
imputed data; however, since the SNPs on the iCOGS array were
not designed to tag the whole genome, imputation would still be
limited to certain genomic regions that are represented on the
array. Further analyseswill bewarrantedwhen themore compre-
hensive genotyping array, Infinium OncoArray-500K BeadChip,
which integrates a genome-wide backbone of 250 K tag SNPs, be-
comes available.

In summary, using the large OCAC dataset genotyped on the
iCOGS array, we established that the majority of ovarian cancer
histotypes have a polygenic architecture. More importantly, we
found that genetic risks overlap between endometriosis and all
histotypes of ovarian cancer, except for mucinous. These results
suggest that the epidemiological association between endomet-
riosis and ovarian cancer is, at least partly, attributable to shared
genetics. Therefore, future studies should focus on identifying
common molecular pathways underlying both diseases.

Materials and Methods
Data

We used two GWAS datasets of surgically confirmed endo-
metriosis cases from International Endogene Consortium (IEC)
in this study, one from Australia and the other from the UK
(19,23). In the Australian study, 2270 women with endometriosis
were recruited from QIMR Berghofer Medical Research Institute
and genotyped using Illumina Human670Quad BeadArrays. The
controls were 1870 unrelated Australians from an adolescent
twin study recruited in the same institute, genotyped using
Illumina Human610-Quad arrays. The UK cases (n = 924) were re-
cruited through the University of Oxford and also genotyped on Il-
lumina Human670QuadBeadArray.We used 5190 individuals from
the WTCCC who were genotyped on the Illumina Human1M-Duo
array as the UK controls. We applied standard QC to the Australian
set, that is, subjects with >5%missing genotypes were excluded, as
were SNPs with minor allele frequencies <0.01, call rates <0.99 or
P-values from testing Hardy–Weinberg equilibrium <0.0001 (24).
As noted before (23,24), the UK dataset using WTCCC controls re-
quiredmore stringentQC, so additional QC criteria including differ-
ential missingness between cases and controls (P < 0.001) and two-
locus QC (34) (P < 0.02) were applied. We merged the two datasets
for analyses (SNPs with strand-ambiguous alleles were excluded),
yielding genotype data on a common set of 483 940 SNPs for 3194
cases and 7060 controls, all of European ancestry (19).

For ovarian cancer, we used data from OCAC study that com-
prises 47 630 cases and controls from 43 studies genotyped using

the iCOGS arrays. This array was designed to accommodate
211 155 SNPs that were selected as either GWAS replication,
fine-mapping or candidate SNPs from breast, prostate and ovar-
ian cancer consortia. The details of array design and QC have
been described elsewhere (15). We applied similar QC, except
that we selected only subjects of European ancestry and with in-
vasive EOC tumours of clearly identified histotypes. In total, data
from 10 065 women with invasive EOC (4121, 1350, 662, 621 and
363 for the high-grade serous, endometrioid, mucinous, clear
cell and low-grade serous histotypes, respectively) and 21 663
controls, typed for 195 183 SNPs, were available for analyses
(see the Supplementary Material, Table S1, for details of individ-
ual OCAC studies).

Analysis

We applied two statistical genetic approaches in this study. The
first approachwas GREML, which involved the estimation of gen-
etic relatedness between subjects using genotyping array data
and links the resultant relationshipmatrix to univariate or bivari-
ate phenotype(s). We used GCTA (35) to construct the relation-
ship matrix using all available SNPs post QC. In the univariate
analysis of EOC histotypes, the genetic relatedness of subjects
with the corresponding EOC histotype was estimated using var-
iants on the iCOGS arrays and compared with the relatedness
among OCAC controls in order to estimate array heritabilities
ðh2

gÞ: Intuitively, the array heritability is high when case–case
and control–control pairs are more genetically similar than
case–control pairs (that is, individuals with higher genetic
relatedness share more similar phenotype). In the bivariate ana-
lyses of endometriosis and EOC histotypes, the genetic related-
ness of subjects in one case–control set was compared with
relatedness in the other set, thus to estimate genetic correlation
(rg) between the two diseases. The genetic correlation is zero
when genetic relatedness among cross-trait case–case pairs is
the same as cross-trait case–control pairs; it is positive when re-
latedness among cross-trait case–case pairs is higher than
among cross-trait case–control pairs, and negativewhen related-
ness among cross-trait case–case pairs is lower than cross-trait
case–control pairs (32).

In the GREML analyses, we excluded closely related indivi-
duals to avoid confounding from shared environmental factors.
For endometriosis datasets, a very stringent relatedness thresh-
oldwas applied (genetic relatedness between samples <0.025, ap-
proximately equivalent to the relatedness between 3rd and 4th
cousins); while for EOC data on iCOGS arrays, we applied a less
stringent threshold in order to retain sufficient sample size for
rare EOC histotypes (relatedness <0.1, less than first cousin; we
also applied a threshold of 0.05 as a sensitivity check, see the
Supplementary Material, Table S3). All analyses were adjusted
for 10 principal components (PCs) and for study site. We also
transformed the array heritability on the observed binary scale
to an underlying quantitative liability scale taking into account
the disease prevalence. According to the Surveillance, Epidemi-
ology, and End Results Program DevCan database (SEER 18 In-
cidence and Mortality, 2014 submission; http://surveillance.
cancer.gov/devcan/canques.html), the lifetime risk of ovarian
cancer by the age of 80 is 1.07% (1.37% by age 95+) in 2010–2012
for non-Hispanic whites (the race of subjects in the present
study; 1.00% for all races). Since 80–90% of all ovarian malignan-
cies are invasive disease (36), we used 0.9% as the prevalence of
invasive EOC in this study (also used 1% as a sensitivity check;
Supplementary Material, Table S3). The prevalence of individual
EOC histotype was then calculated as the prevalence of all
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invasive EOC times the fraction of the corresponding histotype
(37) (values of prevalence are listed in Table 1). rg estimates are
approximately the same on the observed and the liability scales,
thus not dependent on disease prevalence (25).

Our second approach was GRP based on the aggregate effects
of many genetic variants; one dataset serves as the discovery
set, with associations examined in a second replication set (27).
The genetic risk scores of individuals in the replication set were
calculated as the sum of their risk alleles weighted by the allelic
effects that were estimated from the discovery set. These risk
scores were then examined for associations with disease status
in the replication set, while adjusting for PCs and study site.
This method requires duplicate samples in the discovery and
replication sets to be removed (e.g. the same individual present
in the endometriosis data andOCAC studies).We used genetic re-
lationship calculated from GCTA to identify duplicate samples
(with relatedness >0.85) and excluded one in each pair from the
analyses. To assess the impact of relatedness, we also applied
the relatedness threshold of 0.1 as a sensitivity check (Supple-
mentary Material, Fig. S1). When calculating risk scores, we
used SNPs without clumping for high linkage disequilibrium
(LD; we also applied LD clumping, i.e. dropping the SNPs in
high LD with index SNPs, as a sensitivity check, Supplementary
Material, Fig. S2). The risk scores were calculated in PLINK (38),
and logistic regression was performed in R.

Control–control contrast studies and negative control
experiments

To evaluate the reliability of the two approaches, we conducted
control–control contrast studies using OCAC controls and nega-
tive control experiments using data from the PGC. For control–
control contrast studies, we split 21 663 OCAC controls into 8 sets
(7 sets had 2694 subjects and 1 set had 2805 subjects), which were
then randomly assigned as 4 pseudo case–control sets. We per-
formed the univariate GREML analyses on these sets. Since we
did not have access to the full genotype data from the PGC, we
only performed the GRP analyses in the negative control experi-
ments. The publically available GWAS summary results for the
two major psychiatric conditions, schizophrenia and bipolar
disorder (both from studies with ∼20 000 case and control sub-
jects) (28,29) were used to calculate the genetic risk scores in
our endometriosis and OCAC datasets.

Supplementary Material
Supplementary Material is available at HMG online.
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