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Abstract

Vaccines have drastically reduced the mortality and morbidity of many diseases. However, 

vaccines have historically been developed empirically, and recent development of vaccines against 

current pandemics such as HIV and malaria has been met with difficulty. The advent of high-

throughput technologies, coupled with systems biological methods of data analysis, has enabled 

researchers to interrogate the entire complement of a variety of molecular components within 

cells, and characterize the myriad interactions among them in order to model and understand the 

behavior of the system as a whole. In the context of vaccinology, these tools permit exploration of 

the molecular mechanisms by which vaccines induce protective immune responses. Here we 

review the recent advances, challenges, and potential of systems biological approaches in 

vaccinology. If the challenges facing this developing field can be overcome, systems vaccinology 

promises to empower the identification of early predictive signatures of vaccine response, as well 

as novel and robust correlates of protection from infection. Such discoveries, along with the 

improved understanding of immune responses to vaccination they impart, will play an 

instrumental role in development of the next generation of rationally designed vaccines.
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Introduction

Since Edward Jenner’s discovery in the late 1700’s that inoculation with the cowpox virus 

provided protection from smallpox infection, vaccines have emerged as one of the greatest 

public health tools in history. The last 60 years have established a golden age in the field of 

vaccinology, marked by events such as the eradication of smallpox by 1980 [1] and the 

development of polio vaccines in the 1950s, which have lead to near-eradication of the 

disease [2]. Despite the great success of these and other vaccines, there remain significant 

challenges for development of new vaccines against current global pandemics such as HIV 

and malaria. Among the many problems facing this field are: (i) most currently used 

vaccines were designed largely empirically. As a result there is little or no understanding of 

what the correlates and mechanisms of protection are for many vaccines. For example, 

although the two commercially available types of influenza vaccine, trivalent inactivated 

(TIV) and live attenuated (LAIV), provide similar levels of protection from infection [3], 

they generate significantly different immune responses. TIV induces higher levels of IgG 

antibody secreting cells (ASCs) in the blood as well as higher levels of serum antibodies 

than LAIV in adults. This is likely due to the different routes of administration, as LAIV, 

which is administered as an intranasal spray, is thought to produce a more local response in 

the nasal mucosa and upper respiratory tract, including IgA (mucosal) antibodies and 

cellular immune responses. As a result, the correlate of protection for TIV is generally 

considered to be serum antibodies, while the correlate of protection for LAIV is less clear 

[3]. (ii) The path to licensure of candidate vaccines involves very lengthy and expensive 

phase IIB and III clinical trials to assess their efficacy and safety. These trials involve 

thousands of subjects and can cost hundreds of millions of dollars to complete. As a result, 

very few vaccine concepts are tested in phase III trials. For example, during the past 30 

years, only 4 HIV-1 vaccine concepts have been tested for clinical efficacy [4], and despite 

repeated failures, the correlates and mechanisms of protective immunity against HIV remain 

poorly understood.

The conventional immunological methods, such as ELISA, ELISPOT, flow cytometry, etc., 

used to study vaccines have played a valuable role in the field of vaccinology, and will 

remain essential in evaluating responses to vaccination in the future. However these 

approaches are generally only able to analyze a single or small number of components of the 

immune system at a given time, and are insufficient to analyze the full complexity of the 

structure and dynamics of the human immune system as a whole. This represents a critical 

obstacle towards understanding the molecular mechanisms by which vaccines generate 

protective immune responses and identifying meaningful correlates of protection.

To address this issue, vaccinologists have turned to systems biology. By examining how 

coordinated interactions at a molecular level give rise to immune responses, systems biology 

approaches enable a holistic view of the immune system and its many components. This 
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developing field provides many promising tools to overcome the challenges facing current 

vaccine development. Enabling researchers to evaluate the immune responses of fewer 

subjects in a more in-depth and detailed fashion has the potential to dramatically improve 

our understanding of the mechanisms of protection of novel vaccines and decrease the 

length and costs of current clinical trials.

Systems Vaccinology

Within the past 20 years, advances in high-throughput technologies have granted researchers 

the ability to interrogate the properties and abundances of entire classes of molecular 

components within the cell. For example, development of lower cost next-generation 

sequencing technology has facilitated the growth of transcriptomics, which seeks to measure 

the expression of all RNA transcripts within a cell or population of cells. By sequencing and 

mapping mRNA transcripts, RNA-sequencing enables the accurate quantification of gene 

expression as well as simultaneous identification of RNA structure such as transcription start 

site and exon usage/splice junctions, the regulation of which has been shown to play an 

important role in many biological processes, including within the immune system [5, 6]. 

Simultaneously, in the growing domain of metabolomics, analytical chemistry techniques 

such as liquid chromatography-mass spectrometry (LC-MS) have been harnessed to identify 

and quantify the set of metabolites within cells or tissues [7]. Changes in metabolic activity 

are an important component of both innate and adaptive immune responses [8], such as the 

recognized role that lipid metabolism plays during inflammation [8–10].

Systems vaccinology is an emerging field that applies such ‘omics’ technologies, in 

combination with bioinformatics tools such as transcriptional network analysis and 

predictive modeling, to study immune responses to vaccination [11–13]. As a systems-based 

approach, it aims to use data generated through high-throughput measurements in the 

context of vaccination to characterize the interactions between individual components of the 

immune system in the interest of understanding and predicting behavior of the system as 

whole. This includes analysis of transcriptional, signaling, and metabolic pathways whose 

activity is perturbed in the various cells of the immune system in response to vaccination, as 

well as identification of molecular signatures that are predictive of various measurements of 

protection from infection. The knowledge obtained through these analyses can aid in the 

rational design of new vaccines that generate long-lasting protection and induce improved 

responses in populations with diminished immune function such as the elderly.

5 year historic perspective

The first examples of the use of such approaches to study responses to vaccination were 

performed on the yellow fever vaccine [14, 15]. This vaccine contains a live-attenuated 

strain (YF-17D) of the yellow fever virus, which induces potent and long-lived CD8+ T cell 

and neutralizing antibody responses [16, 17]. By combining high-throughput measurements 

such as microarray gene expression profiling and multiparameter flow cytometry with 

computational modeling, we were able to detect a regulated network of interferon and innate 

antiviral genes that were induced post-vaccination in peripheral blood mononuclear cells 

(PBMCs) [14]. An independent YF-17D study by Gaucher et al. revealed induction of 
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similar transcriptional responses to vaccination, including type I interferon and 

inflammatory pathways [15]. In addition to examining innate immune pathways activated by 

vaccination, we successfully identified unique gene signatures that were capable of 

accurately predicting the CD8+ T cell and neutralizing antibody responses, respectively 

[14]. The predictive CD8+ T cell signature contained complement protein C1qB and 

eukaryotic translation initiation factor 2 alpha kinase 4, which is an orchestrator of the 

integrated stress response. Meanwhile the B cell growth factor receptor TNFRSF17 was 

among the genes included in the antibody response signature. This work demonstrated for 

the first time that the immunogenicity of a vaccine could be successfully predicted using 

early transcriptional measurements within 1 week of vaccination.

Following these initial studies, systems biology approaches have been used to examine 

immune responses to vaccines against a wide range of pathogens, including influenza [18, 

19], malaria [20], smallpox [21], and HIV [22]. In particular, as YF-17D is a live-attenuated 

vaccine that induces an acute viral infection, the study of influenza vaccination (TIV) 

enabled investigation into to whether or not similar methods could be used to identify 

molecular signatures predictive of response to an inactivated vaccine. We identified 

transcriptional signatures related to the expansion of plasmablasts and the unfolded protein 

response within B cells on day 7 post-vaccination that correlated with and were predictive of 

day 28 influenza-specific antibody responses [18]. Indeed, these findings were consistent 

with studies by Bucasas et al. [19] and Obermoser et al. [23]. Interestingly, TNFRSF17, 

which was predictive of antibody responses to YF-17D, also appeared in the signatures 

predictive of TIV response [18]. Recently, Tsang et al. [24], and Furman et al. [25] have 

extended this approach to search for baseline signatures capable of discriminating between 

high and low responders to vaccination. However, possibly due to limited sample sizes and 

weaker signal at baseline, neither study was able to successfully predict antibody response 

using baseline transcriptional measurements alone. Instead, Tsang et al. utilized cell subset 

frequencies, while Furman et al. generated a model based on transcriptional modules, serum 

cytokines, cell subset frequencies, and pre-existing antibody titers. Additionally, as these 

studies were conducted using cohorts from an individual flu season, the effect of changes in 

influenza strains included in the TIV vaccine on the performance of these models remains to 

be examined. To address this question, we are performing a comprehensive analysis of over 

400 adults vaccinated with seasonal TIV during 5 consecutive influenza seasons (Nakaya et 

al., manuscript in preparation). This analysis is an important step towards generating robust 

and clinically relevant signatures that can be used to predict the efficacy of vaccines in 

clinical trials.

Among the vaccines under investigation, malaria is one for which a human challenge model 

exists, allowing for identification of subjects who are protected from or susceptible to 

infection [26]. Vahey et al. used this model, in which subjects vaccinated with the RTS,S 

malaria vaccine were challenged using mosquitos infected with an antimalarial-sensitive 

strain of Plasmodium, to identify transcriptional signatures in PBMCs capable of 

discriminating between protected and nonprotected vaccinees [20]. Protected subjects had 

increased expression 2 weeks post-vaccination (but before challenge) of genes involved in 

the immunoproteasome degradation pathway, involved in MHC peptide processing, 
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compared to subjects who developed parasitemia [20]. These systems-based approaches can 

be used to identify early signatures of efficacy of other vaccines for which human challenge 

models have been developed, such as typhoid [27, 28] and Shigella [29], enabling rapid 

evaluation of novel candidate vaccines in future clinical trials.

A critical question is the degree to which transcriptional responses to vaccination were 

conserved across vaccines, and whether or not there are universal signatures capable of 

predicting antibody responses to vaccination. To this end, we used a systems-based 

approach to compare signatures induced by different types of vaccines [YF-17D, LAIV, 

TIV, the carbohydrate meningococcal vaccine (Menimmune), and the conjugate 

meningococcal vaccine (Menectra)] [30]. We observed that while recall antibody responses 

to inactivated vaccines (e.g. seasonal influenza vaccine, diphtheria toxoid component of the 

conjugate meningococcal vaccine) were associated with transcriptional modules related to 

plasmablast differentiation, the antibody responses of live-attenuated vaccines (e.g. yellow 

fever vaccine) were highly correlated with modules involving innate immunity and type I 

interferon responses. Meanwhile, antibody responses to polysaccharide components of the 

meningococcal vaccines were associated with increased proinflammatory cytokines as well 

as activation of antigen-presenting cells [30]. Thus, these preliminary results suggest that 

vaccine-induced signatures of immunity are significantly dependent on the class of vaccine 

in question.

Finally, systems approaches could also potentially be used to identify signatures of vaccine 

safety. Adverse reactions to vaccination pose major regulatory challenges to vaccine 

development. Relatively mild adverse reactions such as transient fever, local swelling at the 

injection site are fairly common and occur within a few hours or days after vaccination. The 

more serious adverse reactions such as the often fatal viscerotropic disease caused by yellow 

fever vaccination are very rare (1 in 250,000 cases [16]. The ability to identify signatures at 

baseline that would be predictive of such adverse reactions would thus represent an 

important advance, however a major obstacle to this is the rarity of such serious adverse 

events. In this context, detailed immunological characterization of a patient who developed 

viscerotropic disease after yellow fever vaccination, revealed a 200-fold expansion of 

CD14+CD16+ inflammatory monocytes during the period of disease, and a 20-fold 

elevation in the numbers of such cells even during the convalescent phase, long after the 

virus had been cleared [63]. This raises the possibility that the persistently elevated levels of 

the CD14+CD16+ inflammatory monocytes may have predisposed this subject towards 

viscerotropic disease after vaccination with the yellow fever vaccine. The further evaluation 

of this possibility is stymied by the rarity of these adverse reactions, and the difficulty in 

obtaining samples to perform detailed analysis. Future efforts should thus be aimed at 

creating a clinical infrastructure that would facilitate the acquisition of samples from vaccine 

adverse reactions at multiple time points, including the convalescent phase.

Challenges

Systems vaccinology analyses face challenges from both the biological and technological 

perspectives (Fig. 1). These problems must be tackled simultaneously in order to achieve a 

deeper understanding of how the immune system as a whole responds to vaccination. This is 
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why it is important that systems vaccinology be carried out through collaboration between 

vaccinologists, immunologists and bioinformaticians. As biological knowledge and insight 

as well as rigorous and sound data analysis are both required for successful discovery, these 

two groups should work in close contact and coordinate throughout each phase of the 

scientific process, including hypothesis generation, experimental design, execution, and data 

analysis.

Biological Challenges

A major factor complicating the analysis of responses to vaccination is the sheer diversity 

within the human population. The state of the immune system is a function of a host of 

variables, including genetics [38], previous infections/vaccinations, age [34], chronic 

diseases, and environmental factors such as diet [39], gut microbial composition [40], stress 

[41], and physical activity [42]. While the role of genetics in creating susceptibility to cancer 

and many heritable diseases has been well established, its effect on vaccine response is less 

clear. A recent study of immune function in twins by Brodin et al. found that while a 

majority of immune variation is due to non-heritable factors, certain responses, such as IL-2 

and IL-7 induced STAT5 phosphorylation in T cells, were highly heritable [43]. In addition, 

candidate gene studies as well as genome-wide association studies are beginning to be used 

to identify polymorphisms in genes associated with improved or diminished vaccine 

responses [44]. Another source of genetic immune variation in humans is that of HLA 

alleles. As a key step in generating adaptive immune responses involves antigen processing 

and presentation to T and B cells, the capability of the HLA molecule to bind peptides 

derived from processed infectious agents or vaccines affects the ability of the immune 

system to successfully respond to infection or vaccination. Therefore, recent studies have 

examined the impact that variation in HLA alleles has on antibody responses to vaccines 

against influenza [45, 46], measles [47], smallpox [48, 49], and hepatitis B [50].

Although human diversity is a challenging aspect of immunology and vaccinology, systems 

biology approaches are particularly well suited to characterize and account for the complex 

inter-individual differences within a population [13]. Regression models and machine 

learning algorithms are able to analyze the effect of many phenotypic variables on 

responsiveness to vaccination simultaneously. As our understanding of how factors such as 

genetics, age, and gut microbiome affect immune responses improves, it is reasonable to 

believe that we will see development of specific vaccine formulations tailored to specific 

populations such as the elderly or immunocompromised that are designed to stimulate the 

deficient components of the response unique to each group.

In particular, effect of age on vaccine response is a critical issue. While vaccines are largely 

successful in preventing infection among the young and in healthy adults, many vaccines, 

such as the influenza vaccine [31], zoster vaccine, and pneumococcal vaccine [32] show 

reduced effectiveness in the elderly. This represents a pressing problem for vaccine 

development, as the world population is rapidly aging, with an expected doubling in the 

proportion of the population over 60 from 10% in 2000 to 21.8% in 2050 [33]. The 

mechanisms responsible for the decrease in vaccine efficacy in the elderly are just beginning 

to be examined. For example, the lower efficacy of TIV in elderly compared to young adults 
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has been associated with the some of the changes resulting from natural age-associated 

deterioration of immune functions (immunosenescence) [34]. At a cellular level, this 

includes a reduction in number of antibody-secreting cells (ASC) [35], loss of the less 

differentiated influenza-specific memory CD8+ T cells [36] and lower frequency of effector 

memory CD4+ T cells [37]. However, the causes of reduced vaccine efficacy in the elderly 

at a molecular level remain largely unknown. We are currently performing a comparative 

analysis of young and elderly (>65 years) subjects vaccinated with TIV, using miRNA and 

gene expression profiling, to explore the age-dependent regulation of transcriptional 

responses to vaccination (Nakaya et al., manuscript in preparation).

Meanwhile, for vaccines stimulating recall responses such as the influenza and zoster 

vaccines, history of exposure to the pathogen is very important, as pre-existing antibodies 

are associated with a decreased response to vaccination [51, 52]. As these antibodies may be 

neutralizing viral particles from the vaccine and preventing an otherwise capable immune 

system from generating a response, this factor should be considered when examining the 

mechanisms of response. While several groups have attempted various methods to 

normalize the measure of antibody response to account for variations in baseline antibody 

levels [19, 24], there is not yet a consensus approach.

Finally, a considerable challenge for developing successful vaccines is to identify reliable 

correlates of protection from infection. While antigen-specific antibody titers are established 

as the primary correlate of protection for most vaccines [53], emerging research suggests 

that in many cases other measures may be equally if not more indicative of protected status. 

For example, there has been recent work suggesting that serum antibody titers may not be 

predictive of risk of influenza infection in the elderly [54]. Instead, McElhaney et al. found 

that strong influenza-specific T cell responses (identified by high IFN-γ:IL-10 ratios 

following ex vivo stimulation of PBMCs with influenza virus) were indicative of a reduction 

in risk of illness in elderly subjects [54]. In addition, there is evidence that T cell responses 

may play an important role in preventing infection for many of the vaccines under current 

development such as HIV [55], tuberculosis [56], and malaria [57].

Even when antigen-specific antibody titers are a robust correlate of protection, the 

techniques used to measure them may not be reliable. Two of the most widely used assays to 

measure influenza-specific antibodies, hemagglutination inhibition (HAI) and virus 

neutralization (VN) have been shown to have significant reproducibility issues. In a 

comparison of antibody titer measurements on identical samples across several laboratories, 

HAI and VN assays had geometric coefficients of variation ranging from 138–261% and 

256–369%, which corresponded to fold differences of 16–128 and 91–724 respectively [58]. 

For the VN assay, 21% of replicate measurements within the same laboratory differed by 

more than 2-fold [58]. Many studies of influenza vaccination use the FDA criteria of 

seroconversion [18, 59, 60] (>4 fold increase in HAI titer post-vaccination) to categorize 

subjects into ‘responders’ and ‘nonresponders’ to vaccination; these results demonstrate that 

this classification may vary greatly between laboratories. As the accuracy of the endpoint 

measurement is crucial for obtaining meaningful analysis in any study, improvements in 

standardization of these assays will be of great benefit to the field.
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Alternatively, systems biology approaches can be harnessed to establish novel correlates of 

protection. Currently, nested case-control studies are used in clinical trials to retrospectively 

compare subjects who developed infection with subjects that remained uninfected and 

identify distinguishing biomarkers [61, 62]. The development of experimental challenge 

models (such as those available for malaria, typhoid, Shigella, and dengue fever as described 

above) provides a complementary approach to enable detection of subjects protected from or 

vulnerable to infection. Systems level profiling of these subjects can then be used to reveal 

reliable molecular markers of vaccine-induced protection.

Technological Challenges

A distinct feature of a true systems analysis of vaccine response is the integration of diverse 

measurement types. Due to the high coverage and relative ease of measurement provided by 

microarrays and RNA-sequencing, most of the initial work in systems vaccinology has 

focused on transcriptional responses to vaccination. However, modulation of gene 

expression represents only one of many methods by which biological systems respond to 

perturbation. Among other factors, changes in protein, metabolite, and signaling molecule 

abundances, post-translational modifications, and shifts in cell subset populations all 

contribute to the immune response post-vaccination. As the technologies capable of 

detecting these additional layers of biological regulation improve, future systems 

vaccinology analyses should incorporate these measurements in order to develop a more 

complete picture of the biological mechanisms of vaccine-induced immunity.

As with any type of assay, measurements made using high-throughput technologies suffer 

from varying degrees of noise. This creates difficulty in reliable detection of weak signals, 

such as those coming from low-expressed transcripts or metabolites present in limited 

amounts. Unfortunately, the abundance of a particular molecule is not necessarily an 

indicator of its importance, and these difficult to detect components often have significant 

biological impact. Primary examples of this are transcription factors, which are often present 

in very low numbers but are important regulators of many biological processes [64]. 

Measurement noise, along with batch effects (particularly in the case of microarrays) [65], 

can also reduce the reproducibility of results. This is an important obstacle that needs to be 

overcome in order for laboratory findings such as predictive signatures of vaccine efficacy 

to be translated into tools with clinical diagnostic value.

Another challenge common to many areas of medical research is the limited number of 

samples and time points available in a given dataset due to ethical and logistical constraints. 

As sample collection and processing is both taxing on trial participants and costly, studies 

are often restricted to a small group of subjects who are evaluated at a handful of time 

points. While small sample sizes create obvious problems in statistical hypothesis testing, 

the limited availability of time course data also poses a significant obstacle to successful 

kinetic modeling of immune responses to vaccination. As immune responses involve 

coordinated interactions between diverse cell types across multiple tissues, understanding of 

cellular and transcriptional dynamics post-vaccination is an important goal of systems 

vaccinology. However, while transcriptional responses can take place within minutes to 

hours [66], in clinical studies sample collection is often only feasible on the time scale of 
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days to weeks. This is complicated by the fact that while immune cells migrate between the 

blood, the site of infection/vaccination, and the lymph nodes, analysis is often performed 

only on immune cells within peripheral blood. These limitations, combined with the inter-

individual variability in responses, make it extremely difficult to capture the entirety of 

transcriptional and cellular events that occur in vivo post-vaccination.

In addition to limited number of samples, in some cases (e.g. pediatric studies) researchers 

are also constrained by the small sample volume that can be collected from subjects. Typical 

guidelines for blood sample volume limits range from 1–5% of total blood volume, in 

children this equates to 1–3 mL/kg of body weight [67]. The available blood drawn from 

neonates may therefore be <5 mL. As the concentration of PBMCs is typically around 1 

million per mL of blood, a neonatal blood sample may only contain a few million PBMCs. 

This limits the potential analyses that can be performed, as assays such as flow cytometry 

and ELISPOT normally utilize larger numbers of cells. Development of more sensitive 

technologies that require fewer cells or less starting material, such as RNA-sequencing in 

place of microarrays, will enable improved analysis of vaccine response in these 

populations.

Unlike conventional techniques, which generate a limited number of measurements, high-

throughput technologies produce tens or hundreds of thousands of measurements per 

sample. These developments have resulted in an explosion of datasets where the number of 

features (or dimension, p) is much larger than the sample size (n), known as ‘large p, small 

n’ or ‘high dimension, low sample size’ (HDLSS) data. Under these conditions, traditional 

statistical and computational algorithms perform poorly due to the resulting sparsity of the 

dataset; this is known as the ‘curse of dimensionality’. As a result, an entire branch of 

statistics has emerged to handle this type of data and reduce spurious results [68]. In order to 

avoid being swamped by false positives, suitable corrections for multiple hypothesis testing 

must be used to control false discovery rates [69, 70]. Machine learning techniques [71] 

such as logistic regression, Bayesian networks, support vector machines (SVMs), and 

artificial neural networks (ANNs) are being used to predict antibody responses to 

vaccination based on expression values of sets of genes (or other measurements such as cell 

population frequencies) made shortly after vaccination (or even potentially at baseline). 

However, a large majority of the measurements made using high-throughput technologies 

are not relevant to the particular biological processes being examined, and these algorithms 

are not equipped to identify the subset of features (genes, metabolites, etc.) that are most 

predictive of responsiveness to vaccination. Therefore, an additional step known as feature 

selection must be performed, in order to reduce the computational complexity of the 

problem and to prevent overfitting (in which the algorithm performs well on training data 

but poorly on independent testing data). Various approaches to this task have been 

developed, such as random forests [72], filter and wrapper approaches [73], and Bayesian 

methods [74], however this is an area of ongoing research. This is a critical step, because the 

identification of a small number of predictive features is necessary for clinical diagnostic 

applications, and the identity of these features provides insight into the underlying biology 

of the immune response to vaccination.
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Finally, the generation of such large amounts of information requires appropriate 

computational resources as well as data management and storage. Creation of relevant and 

centralized databases such as the Immunology Database and Analysis Portal (ImmPort) [75] 

(http://immport.niaid.nih.gov/) will promote data sharing between groups and facilitate 

integration of diverse data types. Standardization of measurement techniques as well as data 

formatting should be encouraged, as this will empower the meta-analysis of multiple related 

studies, enabling discovery of novel associations which were previously undetectable.

Drowning in a Sea of Big Data

The revolution in high-throughput technologies has created a dramatic change in the 

landscape of biological research: with such large amounts of information generated with 

each experiment, we are now ‘drowning in a sea of big data.’ A cornerstone of successful 

systems vaccinology is the ability to extract meaningful knowledge from this wealth of data, 

and then to harness this knowledge to generate improved biological understanding of the 

immune system’s response to vaccination. In the first transition, from data to knowledge, 

statistical approaches [76] are generally used to identify sets of genes, metabolites, etc. that 

undergo significant changes during system perturbation (e.g. before and after vaccination). 

However, a simple list of differentially expressed genes or metabolites is not highly 

informative, and may contain false positives. One approach to improve this type of analysis 

is to integrate expression measurements with a priori knowledge about the interactions and 

co-expression of genes within a given biological context. One such bioinformatics tool is 

gene-set enrichment analysis [77], which identifies enrichment of biologically relevant 

groups of genes (modules) within gene lists ranked by response to perturbation. This can be 

performed using manually curated sets of biological pathways, such as the Kyoto 

Encyclopedia of Genes and Genomes [78] and Reactome [79] databases, or through 

extraction of gene modules from existing data by searching for groups of co-expressed genes 

across experimental conditions or biological contexts [30, 80, 81]. MSigDB, a popular gene 

set database, contains collections of both types [82]. Examining changes in activity of 

pathways or modules rather than individual genes reduces noise and appearance of false 

positives while simultaneously providing improved biological meaning and functional 

context to the data analysis.

Differential transcriptional pathways and networks can also be coupled with feature 

selection and machine learning algorithms (such as those mentioned in the previous section) 

to generate biologically informative predictive signatures of vaccine response (Fig. 2). These 

signatures can be used to assess vaccine efficacy and identify subjects at risk for infection. 

In addition, analysis of predictive pathways can yield insight into the mechanisms 

responsible for deficient immune responses. Once predictive signatures are generated using 

the data at hand, they should be validated in independent cohorts to ensure their robustness 

across diverse populations.

While the knowledge of biological pathways activated or suppressed in response to 

vaccination is useful in its own right, achieving deeper understanding and control over the 

mechanisms by which vaccines induce protective immune responses requires human 

knowledge and insight coupled with traditional methods of experimental validation. Ideally, 
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observations made through high-throughput data analysis can help generate biological 

hypothesis that are then tested in animal models such as knockout mice. Recently our group 

has used this approach to identify a novel role for the integrated stress response, mediated by 

EIF2AK4 [eukaryotic initiation factor 2 α-kinase 4, also known as general control 

nonderepressible 2 kinase (GCN2)], in stimulating autophagy and antigen presentation 

within dendritic cells during response to YF-17D [83]. In our original systems biology 

analysis of the YF-17D vaccine, expression of GCN2 in PBMCs on day 7 post-vaccination 

was shown to be predictive of the later CD8+ T cell response [14]. As a regulator of the 

integrated stress response, accumulation of uncharged tRNA during amino acid starvation 

activates GCN2, which results in phosphorylation of eukaryotic initiation factor 2 α (eIF2α). 

This process leads to reduced activity of the eIF2 complex, resulting in reduced rates of 

protein synthesis and stress granule formation [84]. However, GCN2’s role in immune 

responses is not clear. The capability of GCN2 expression to predict CD8+ T cell responses 

to YF-17D led us to believe that this kinase may be important for priming of the adaptive 

immune response. Follow up work in mice revealed that YF-17D induced amino acid 

starvation in dendritic cells, inducing autophagy and antigen cross-presentation in a GCN2-

dependent manner [83]. This reveals an unappreciated connection between the ancient 

nutrient sensing pathway and elicitation of adaptive immunity by dendritic cells.

Another mechanistic discovery enabled by a systems vaccinology is the role that the 

intestinal microbiota play in stimulating antibody responses to vaccination. This 

development was prompted by the finding in our systems-level analysis of human immune 

responses to TIV vaccination that expression of the toll-like receptor TLR5 on day 3 post-

vaccination was significantly correlated with the day 28 antibody response [18]. As TLR5 is 

a receptor specific for flagellin, the protein subunit of bacterial flagellum, its association 

with antibody response to a viral vaccine was unexpected. The importance of TLR5 sensing 

of intestinal bacteria during TIV vaccination was confirmed in experiments with antibiotic 

treated, germ-free, and TLR5−/− mice, all of which experienced significant reduction in 

antibody responses after TIV vaccination compared to controls [85]. Further work 

demonstrated that sensing of flagellin by TLR5 promoted plasma cell differentiation directly 

and by stimulating lymph node macrophages to produce plasma cell growth factors. 

Interestingly, the loss of intestinal microbiota did not result in reduction of humoral 

responses to adjuvanted vaccines or the live-attenuated YF-17D vaccine, indicating that the 

microbiota may be acting as a natural adjuvant in the absence of other sources of immune 

stimulation. As the microbiome is affected by diet and varies widely across the world [86], 

gut microbial composition adds another layer of diversity in the human population that 

should be considered in future studies of immune responses to vaccination. The 

experimental evaluation of the role of the microbiome in promoting immunity during 

vaccination in humans is ongoing.

Conclusions

Developments in high-throughput technologies are enabling vaccinologists to investigate the 

immune responses induced by vaccines at a greater depth than ever before. More 

importantly, these advances are facilitating the identification of robust molecular and 

cellular signatures of protective immunity, which can help to generate diagnostic tools that 
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reduce the length and cost of current clinical trials. In this developing field, vaccinologists, 

immunologists, bioinformaticians, and systems biologists must work hand in hand to 

advance our understanding of the molecular mechanisms by which vaccines induce 

protective immunity and help drive development of the next generation of vaccines.
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Figure 1. 
Biological and technological challenges in systems vaccinology.
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Figure 2. Predictive analysis of vaccine response
The goal of predictive analyses is to identify early transcriptional signatures capable of 

predicting vaccine-induced immune responses. Integration of transcriptomic measurements 

with gene co-expression networks or biological pathways provides improved functional 

understanding of the immune processes activated in response to vaccination. These gene or 

module-level features can then be used as inputs to feature selection and machine learning 

algorithms. Such tools enable identification of molecular signatures that are predictive of 

responses to vaccination, such as antibody or T cell responses. Once predictive signatures 

are verified through blind prediction of independent datasets, they can be employed in a 

clinical setting to rapidly identify vaccinees with deficient responses and assess vaccine 

efficacy.
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