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Abstract

The field of vaccinology is increasingly moving toward the generation, analysis, and modeling of 

extremely large and complex high-dimensional datasets. We have used data such as these in the 

development and advancement of the field of vaccinomics to enable prediction of vaccine 

responses and to develop new vaccine candidates. However, the application of systems biology to 

what has been termed “big data,” or “high-dimensional data,” is not without significant challenges

—chief among them a paucity of gold standard analysis and modeling paradigms with which to 

interpret the data. In this article, we relate some of the lessons we have learned over the last 

decade of working with high-dimensional, high-throughput data as applied to the field of 

vaccinomics. The value of such efforts, however, is ultimately to better understand the immune 

mechanisms by which protective and non-protective responses to vaccines are generated, and to 

use this information to support a personalized vaccinology approach in creating better, and safer, 

vaccines for the public health.
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Introduction

Like personalized medicine, personalized vaccinology aims to provide the right vaccine, to 

the right patient, at the right time, to achieve protection from disease, while being safe (i.e., 

free from unintended side effects). The science through which such a vision can be realized 

is a field we have developed and termed “vaccinomics,” which is grounded within the 

immune response network theory[1-5]. The immune response network theory states that “the 

response to a vaccine is the cumulative result of interactions driven by a host of genes and 

their interactions, and is theoretically predictable.”[1] Further, the theory recognizes the 

impact of metagenomics, epigenetics, complementarity, epistasis, co-infections, and other 

factors including polymorphic plasticity. These factors, and others, explain the temporal, 

genetic, and immune responses that are deterministic and predictive of the immune 

response. In fact, we have published an initial equation describing this outcome.[4] 

Vaccinomics then uses this information to reverse engineer new vaccine candidates that 

overcome genetic or other barriers to the development of protective immunity.

Importantly, the above requires systems-level high-dimensional data in order to understand, 

at the whole-system level, the many perturbations a vaccine might induce in a host that 

result in immunity. Like any network, the immune response is composed of connected 

genetic features and networks of feedback loops. While exciting science, it makes 

application of systems biology to immune responses generated by vaccines in the individual 

challenging.

High-dimensional assays are generally resource intensive and typically used to perform an 

unbiased assessment of a biological system in order to generate hypotheses for further 

investigation. For example, measuring mRNA expression via next generation sequencing 

(NGS) allows one to screen approximately 20,000 genes for association with an outcome 

such as vaccine response. Although results from such screening studies must be replicated or 

functionally validated, it is nonetheless critical to avoid false-positive and false-negative 

findings by paying close attention to study design and analysis plans[6, 7]. Our goal herein 

is to convey some of the lessons we have learned over the last decade regarding sound 

principles of study design and analysis in experiments utilizing high-dimensional assays 

such as gene expression or genome wide SNP association studies, as applied to the field of 

vaccinology. While some of the points may appear simple and straightforward, which makes 

them easy to overlook, they require effort to implement in practice. We discuss study design, 

normalization, modeling, and determining statistical significance.

Study design

The relative abundance measures produced by most high-dimensional assays are susceptible 

to experimental artifacts such as batch effects[8]. Such artifacts add uninteresting, and often 

misleading, variation to the data. For example, in an mRNA Seq study we performed 

involving over 450 specimens, reagents were upgraded midway through the study, 

increasing the reads/lane by about 50% (Figures 1, 2). Usually, the causes of batch effects 

are less obvious than a reagent change. Thus, randomization, balance, and blocking are vital 

to ensure that biological effects and experimental artifacts can be distinguished from one 
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another. Further information and detailed examples for how to implement these methods in 

practice are available[6, 9-12].

It is critical that study outcomes are appropriately defined. When studying vaccine response, 

known or established correlates of protection are typically used[13]. For example, an 

antibody level of at least 0.15ug/ml is considered protective against Haemophilus influenza 

type b. In other cases, commonly accepted levels of immunity are used as surrogates of 

protection (e.g., a hemagglutination inhibition antibody (HAI) titer of 1:40 for influenza or a 

neutralizing antibody titer of 1:32 for smallpox). These surrogates of protection represent a 

best guess at what level of immune response is sufficient to protect against overt disease at 

the population level.

Just as each pathogen and disease is different, so too are the immunologic responses critical 

for protection. Therefore, multiple immunologic endpoints may be tested in order to 

understand different components of the immune response. For example, for influenza one 

might consider an HAI titer of 1:40 to be protective, but define successful vaccine response 

as a four-fold increase in HAI titer. Alternatively, one might assess neutralizing antibody 

titer instead of, or in addition to, HAI titer. Also, for a fixed sample size, a dichotomous 

yes/no endpoint has approximately 30% less power than a continuous endpoint due to the 

information loss resulting from the categorization[14].

The proper timepoint(s) before and/or after vaccination must also be selected. For example, 

innate immune responses occur quite rapidly and monitoring after infection/vaccination 

might be hours (e.g., pattern recognition receptor pathway activation or IFNγ) or days (e.g., 

NK cell proliferation and activity). On the other hand, humoral immunity takes more time to 

develop, with IgM titers generally beginning to rise within 3-4 days and with plasmablasts 

being detectable between day 3 and 7, while IgG titers might peak at 2-4 weeks. Similarly, 

cellular immune responses might be best studied 2-3 weeks post-vaccination.

Another important consideration is the appropriate biological specimen for testing. Blood is 

an easily accessible biospecimen and yields both serum (antibody) and important leukocyte 

populations. A benefit of whole blood or peripheral blood mononuclear cell (PBMC) assays 

is that they require less manipulation and preserve cellular interactions among diverse cell 

subtypes. However, whole blood consists of multiple cell types, each with a unique response 

pattern that can be difficult to isolate or deconvolute from one another[15, 16]. Isolation of 

purified cell subtypes (e.g., by magnetic bead selection) allows one to obtain high-quality 

data on a single cell population without competing signals from less relevant cells. However, 

the purification process can be lengthy, with each manipulation provoking a stress response 

from the cells of interest. At the extreme single cell omics assays rapidly separate individual 

cells for study. Initial reports indicate that at the individual cell level, even phenotypically 

“identical” cells can differ dramatically[17]. Thus, at this point, the science is rapidly 

evolving and a gold-standard process is not yet apparent.

Assay quality control and normalization

Assessing data quality after assays are complete is important for both low and high-

dimensional assays. An important step is normalization to remove systematic variation, such 
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as variation in experimental conditions. We have extensively discussed the use of minus 

versus average (MVA) plots and box-and-whisker plots for this purpose elsewhere[12, 18]. 

These plots are useful for determining the appropriate normalization strategy for a given 

dataset as well. While normalization concepts are consistent across most high-dimensional 

assays, the precise strategies are assay dependent. The statistical model should describe all 

technical (normalization) effects and biological effects in the data. The general modeling 

framework is: observed value = experimental artifacts + biological effects +random error. In 

this regard, we briefly describe our experience in evaluating biases and normalization 

strategies for the Illumina DNA methylation 450K array. The complex assay design is 

described in full elsewhere[19]. In brief, there are two probe designs, each yielding an M 

and U intensity value (fluorescence intensity of methylated or un-methylated cells, 

respectively) that are mathematically combined to create an estimate of the percent 

methylation (β-value) in the specimen. We have observed nonlinear biases in both the M and 

U fluorescence intensities through the use of MVA plots (Figure 3a). However, it is not 

possible to model all effects due to confounding of technical and biological effects. We have 

observed, though, that these nonlinearities cancel out in the calculation of the β-value, and 

the between specimen biases on the β-value scale are linear (Figure 3b). A normalization 

strategy we have found to adequately address the technical artifacts without explicitly 

modeling each source of experimental noise is a variation on a strategy first proposed by 

Maribita et al. [20] as follows: 1) color-bias adjustment; 2) quantile normalization of 

intensity values between arrays, within probe design; 3) and beta-mixture quantile 

normalization (BMIQ)[21]. Box-and-whisker plots and MVA plots demonstrated that the 

assumption of only a few CpG sites being differentially methylated seemed to hold in our 

data.

Statistical Modeling

Appropriately applying analytical techniques to data is required to extract valid inferences 

from experimental data. Selecting an appropriate statistical approach requires knowledge of 

the properties of the phenotype, an understanding of the possible relationships between the 

explanatory variables and phenotype, and an evaluation of the ability of the method to detect 

meaningful associations. Correct application of statistical approaches can ensure the validity 

of the analytical results, and enhance the power to detect associations.

After quality control and normalization have been completed, it is essential that the 

distributional properties of the phenotype(s) are appropriate for analysis in a specific 

statistical approach. Because of the statistical power advantages of analyzing data on a 

continuous scale, it is often important that the distribution of the phenotype be reasonably 

well approximated by a normal distribution. If this assumption is not met, data 

transformations [e.g., setting y2 = log(y1)], can often be applied to approximate a normal 

distribution. For some outcomes it is often preferable to utilize models that are explicitly 

developed for the original source data. One example is the use of Poisson or negative 

binomial regression models for count data[22-24]. We and others have shown via use of 

MVA and Quantile-Quantile plots that the mean-variance relationship of mRNA Sequencing 

data agrees with negative binomial distributional assumptions[25].
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Even when distributional assumptions are met, one must determine whether the modeling 

assumptions invoked to describe relationships between phenotype and explanatory variables 

are satisfied [26, 27]. The simplest relationship between explanatory and outcome variables 

is a linear one, which perfectly captures the relationship described by an explanatory 

variable with only two groups[26, 27]. Other relationships are often more appropriate. For 

example, it would not be appropriate to model a relationship that is expected to reflect 

exponential growth with a linear trend[26, 27]. Whether achieved through data 

transformations or by use of more sophisticated models [28], it is important to match 

statistical models to the expected behavior of the data.

Appropriately incorporating data measured in replicates into analyses can provide important 

benefits. Laboratory-based studies, where assay-to-assay variability is expected, are often 

performed in duplicate or triplicate[29-33]. A common analytical approach computes a 

summary measure and uses it as a single measured observation in analyses [34, 35]. 

However, it can be beneficial to utilize all observed values and test for associations while 

accounting for the repeated measurements. To quantify the benefit, we performed a 

simulation study of genetic associations between a SNP and a laboratory outcome, measured 

in triplicate in stimulated and unstimulated states. The results showed that statistical 

analyses that included and accounted for repeated measurements provided greater statistical 

power than analyses based on a single per-subject summary measure (see Figure 4), without 

inflating the false discovery rate. Additionally, when computing a summary measurement 

where subjects are evaluated in a control and an active state, one may be tempted to truncate 

the result and set the difference equal to a value of zero rather than allow a difference 

measure that is contrary to expected assay performance[36, 37]. However, the results from 

these simulations demonstrate that truncation to zero resulted in biased estimates of genetic 

effect size (Figure 5). This bias decreased when greater stimulatory effects were present for 

the assay, and where there was less measurement error, but these are situations with greatly 

reduced temptation for truncation.

Another aspect is whether baseline measurements should be used as an adjusting covariate 

when assessing change in response over time. There has been considerable debate [38-40] in 

the statistical literature on this topic because it is well known that different results—

sometimes dramatic—can occur whether or not baseline is treated as an adjusting covariate. 

This has become known as Lord's Paradox[41] This paradox arises when the amount of 

change is associated with the baseline measurement. Without adjustment, the regression 

models evaluate whether change in response depends on covariates of interest, such as 

genetic markers. In contrast, adjustment for baseline gives a conditional change, conditional 

on groups having the same baseline. These two approaches answer different questions. 

Some advocate only adjusting for baseline when it is not associated with change (e.g., 

randomized studies)[38]. Perhaps the safest approach would be to perform both analyses to 

determine if adjustment for baseline leads to different results or unusual interpretations.

Declaring Statistical Significance

Exploratory analyses for high-dimensional data have great potential to discover new 

biologic mechanisms related to vaccine immunity and response, but come with the challenge 
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of avoiding false-positive conclusions. Testing large numbers of hypotheses together with 

subgroup analyses make it necessary to attempt to control the number of false-positive 

results as well as assure adequate power. In traditional statistical testing, a result is declared 

statistically significant if the p-value is less than a threshold. When conducting a large 

number of statistical tests, the chance of at least one false positive result increases with the 

number of tests. Two commonly used approaches for controlling false discoveries are the 

Bonferroni correction and false-discovery rate (FDR). The two differ in the scope of tests 

considered. The Bonferroni correction controls the family-wise error rate (i.e., the chance of 

at least one false positive among all tests conducted), and is applied as the significance 

threshold divided by the total number of tests performed. FDR is a measure of the number of 

false discoveries, among those claimed to be significant, and is used to create an FDR-

corrected p-value called a q-value[42]. If in truth there is at most one true effect out of the 

many statistical tests performed, then controlling the family-wise error rate is sensible, and 

the Bonferroni correction is the appropriate way to control false positives. In genome-wide 

association studies (GWAS), extremely small p-values, less than 5×10-8, have become 

standard for claiming statistical significance[43], with the benefit of producing reproducible 

results. Although this threshold is not solely based on the Bonferroni correction, but rather 

determined by empirical and simulation methods that capitalize on the linear structure of 

chromosomes and linkage disequilibrium among SNPs, it emphasizes the need for extremely 

small p-values when conducting hundreds of thousands to millions of statistical tests. In the 

field of gene-expression analyses, where there is prior biological evidence that many genes 

are often differentially expressed, the FDR and q-values have been the standard. Whether 

extreme p-values by Bonferroni correction, or less conservative FDR and q-values, are 

better depends on the number of underlying causal effects and whether the study is 

exploratory in nature versus being centered on planned hypotheses regarding an a priori list 

of genes. Another approach that focuses analysis on p-values is to evaluate whether small p-

values tend to cluster in specified sets of genes (e.g., gene pathways). This sort of 

enrichment analysis, evaluating whether some genesets are more enriched for small p-values 

than other sets, has been widely popular for analyses of gene expression[44, 45], and to 

some extent for analysis of SNPs in GWAS[46, 47]. Given that most published findings are 

false[48], and p-values are not used as objectively and reliably as perceived[49], it is 

important to pay attention to the actual effect size, its confidence interval, and the sample 

size when interpreting results. In the end, reproducible results must be the gold standard[50].

An advantage of high-dimensional data is that one can examine the entire distribution of p-

values to identify the existence of extreme p-values, and thereby make conclusions 

concerning statistical significance. When there is no true causal effect in a set of data, the p-

values are expected to be uniformly distributed between 0 and 1. A skew of p-values toward 

0 suggests that there is likely a mixture of true effects (with small p-values) and null effects 

(with p-values uniformly distributed 0-1). Although one could use a histogram to see if the 

p-values have a uniform distribution, a more refined way is a quantile-quantile (QQ) plot, 

which plots the observed versus null expected distributions. Any points deviating from the 

diagonal of the plot suggest departures from the null. In GWAS with few expected true 

effects, extremely small p-values are expected to depart the diagonal only at the end, where 

small p-values occur. Departure from the diagonal for many p-values, even those not 
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extremely small, is a strong indicator of systematic bias, such as batch effects, or population 

stratification. Population stratification can arise in GWAS when the cases and controls are a 

heterogeneous mixture of different ancestral groups. A simple way to control for population 

stratification is to estimate the principal components of the SNP correlation matrix, and use 

those principal components that explain the most variation in the matrix as adjusting 

covariates[51]. Alternatively, in gene expression studies, many p-values are expected to 

deviate from the diagonal since many true effects are generally expected. Deviation 

indicating a skew toward non-significance could indicate presence of heavy between-gene 

correlation in the data, or that model assumptions are not satisfied. The principal component 

approach can be used for gene expression studies that have subtle batch effects to increase 

power, using principal components from the gene expression correlation matrix.

The importance of replicating a result found from an exploratory study cannot be over 

emphasized. But, replication can be a challenging and expensive task. Because of the 

importance of replication, and the challenges implementing it, the National Cancer Institute 

and National Human Genome Research Institute held a workshop on this topic for genotype-

phenotype associations, resulting in published guidelines on evaluating and interpreting 

initial reports on genotype-phenotype associations, as well as criteria for replication (Table 

1)[50]. Because replication is challenging, becoming more standard, and required by high-

profile journals for publication, it is tempting to split a sample in half to use half for 

discovery and half for replication. This strategy, however, only works if both halves have 

sufficient power. Splitting a sample into two low-powered samples has lower power than a 

single sample analysis[52]. To emphasize, a low-powered discovery sample will likely miss 

important effects, never having the opportunity to replicate. Also, a low-powered replicate 

sample will likely fail to replicate an important discovery. It is better to analyze all the data 

for initial discovery, with optimal power, and find alternative ways to replicate (via 

collaborations) or to conduct functional studies.

Predicting vaccine immune response

One of the goals of high-dimensional analysis in vaccine studies is to use early changes in 

post vaccination gene expression to predict an individual's immune response. Early changes 

due to cellular activation and signaling induced by the vaccine are believed to set in motion 

steady-state immunogenicity and/or reactogenicity that may be predicted from the patterns 

of early expression change. For example, machine learning methods have been used for 

prediction of systemic adverse events in smallpox vaccine[53, 54] and high versus low HAI 

titer in yellow fever[55] and influenza[56].

There are numerous machine learning classifiers to choose from: tree-based (Random 

Forest, ADA Boost, etc.), Naïve Bayes, k-nearest neighbors, logistic regression, support 

vector machines (SVM), and discriminant analysis via mixed integer programming 

(DAMIP), etc.[57-60]. Most classifiers can yield competitive classification performance if 

sound internal model validation practices such as cross validation are utilized to provide 

honest estimates of model performance[14, 61]. K-fold cross validation is accomplished by 

leaving 1/k of the data out for validation and using the remainder to build a model. The 

process is repeated until all data has been left out for validation. Most classification methods 
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have “tuning” parameters that must be estimated by using an inner cross validation loop 

called nested cross-validation[62, 63]. For gene expression data, sample size calculations for 

classifier development has been shown to rely primarily on the number of genes or features, 

maximum fold change, and the proportion of subjects in each group[64, 65].

Most algorithms are designed to predict dichotomous outcomes that can be used for 

outcomes such as ≥4-fold increase in HAI titer. However, one may wish to predict the 

continuous Day 28 HAI titer after adjusting for covariates like age and sex. The trivalent 

influenza vaccine also poses a challenge to defining outcome because there is an HAI 

outcome for each vaccine virus strain. A common solution is to use the maximum HAI from 

the three strains[56, 66]. For such continuous predictor and outcome data types, linear 

regression is a simple but powerful approach, and penalized regression has the added benefit 

of selecting important predictors, called feature selection[59].

Machine learning approaches typically use single-gene variable selection to select a set of 

genes for use in predicting response. However, immune response to vaccination is likely 

reflected in gene expression data by subtle variation distributed throughout functional gene 

networks. Analytical methods utilizing sets of genes believed to be functionally related, 

called genesets or modules, have been shown to have greater power than single-gene 

analyses, presumably due to the aggregation of multiple genes working in concert to achieve 

response to vaccination[67-69].

Immune-specific genesets and modules have been developed[70-73] and used for modeling 

vaccine response, and can be helpful in reducing the number of input variables[74, 75]. 

Modules and genesets have the potential to improve the predictive ability of machine 

learning classifiers since they are more likely to be rooted in biological function. Tan et al. 

successfully used single-sample GSEA (ssGSEA) scores[76] to summarize geneset activity 

as inputs into a classifier[72]. While use of previously defined modules reduces the risk of 

false positives, it has the risk of missing novel gene expression variation or interactions that 

may occur in a new vaccine, season or population. Data-driven module derivation should be 

included within a nested cross-validation procedure to avoid biased estimates of 

classification error rates.

Genes are generally included in a classifier that is based on single gene marginal 

associations with the outcome. However, additional information may reside in interactions 

among genes. Networks constructed from statistical gene-gene interactions have been able 

to detect gene hubs that influence smallpox vaccine response[77]. Relief-F is an algorithm 

that has been used to detect such interactions for microarray, RNA-Seq, and GWAS in 

measles and smallpox vaccine studies[78, 79]. Again, internal and external validation of 

findings is necessary.

Summary and Conclusions

The use of high-dimensional data in vaccinology has immense potential to advance the 

science and enable the creation of better and safer next-generation vaccines that protect the 

public health. Such scientific advances, however, are expensive since the generation, 

analysis, visualization, and interpretation of such data is extremely challenging. Rigorous 
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attention to study design and the factors discussed above represent solutions to a number of 

the many challenges. The nature of understanding and predicting immune responses 

demands that large numbers of heterogeneous groups be studied under carefully controlled 

studies and processes. Discovery, replication, and validation of study findings require that 

consortia and “team” science be fully implemented in order to advance the science with 

alacrity. In turn, this requires the further development of increasingly more precise yet 

cheaper omics technologies, new analytic routines for visualization and interpretation of the 

data, and the collaboration of teams of scientists with content expertise in study design, 

bioinformatics, biostatistics, virology, immunology, and other disciplines. Particularly 

important is the need for large sample sizes, which can become prohibitively expensive; yet, 

without such sample sizes, the small to moderate size of genetic effects anticipated in 

immune response will likely go undetected. Large sample sizes are particularly important 

when studying rare vaccine phenomena such as adverse events – a field we have termed 

“adversomics”[4, 80, 81].

A nascent example of such consortia is the NIH-funded and sponsored Human 

Immunophenotype Consortium (HIPC, http://www.immuneprofiling.org/) within which the 

authors are contributing scientists. An advantage of such consortia is the ability to bring 

together teams of scientists working in different disciplines, centered on common scientific 

questions. Data generated from such studies are deposited into publically available databases 

for use by other scientists to further advance the science. Through participation in this 

Consortium, we have learned valuable lessons in the need for normalization, documentation, 

and standardization so that datasets can be productively shared with the larger research 

community. One important aspect is the development of transparent analysis pipelines that 

are robust and user-friendly for a broad user base. While we did not address this or analysis 

software here due to space constraints, the development of such pipelines in the absence of 

gold standard algorithms is not straightforward and requires immense communication.

The public health demands that new, better, and safer vaccines be developed – particularly 

against such threats a Ebola virus, hepatitis C, pandemic influenza viruses, malaria, TB, and 

a myriad of other hyper-variable viruses. In this regard, we believe that the use of 

vaccinomics and adversomics has the real potential to solve some of mankind's most 

pressing and vexing vaccine problems.
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Figure 1. 
(a) Minus versus Average (MVA) plot demonstrating the effect of change in reagents and 

sequencing software. There is one data point for every feature measured on the assay. The x-

axis is the average of each feature over all specimens in the study. Generally, the y-axis is 

the difference of each feature from the mean. Thus, if the observations are identical to the 

mean, all data points would lie on the y=0 line. Here, the y-axis is the difference between the 

before reagent change mean and the after reagent change mean. A reference line for y=0 as 

well as a loess smoother are included on the plot. If the smoother overlays the y-0 line, no 

normalization is needed. If the smoother is parallel to the y=0 line but shifted up or down, 

this indicates that between specimen biases are similar for all abundance levels and a linear 

normalization is needed. The nonlinear smoother demonstrates that nonlinear bias is present. 

(b). The same study shown after normalization and filtering out genes with median count 
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<32. The fact that the smoother is now straight and lies on the y=0 line demonstrates that the 

bias has been removed.
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Figure 2. 
Box-and-whisker plots showing global distribution of per-gene counts on the log scale (y-

axis) by lane (x-axis) sorted by assay order. Top, mid-line and bottom of boxes indicate 75th, 

50th and 25th percentiles, respectively. (a) Pre-normalization. The total counts/lane increased 

from ∼150million to ∼200million after reagent and software upgrades. This is evident from 

the general shift up approximately two-thirds of the way across the plot. A failed specimen 

with median nearly half that of the neighboring specimens is evident about one-third of the 

way across the plot. The failed specimen was deleted in subsequent analyses. (b) Post-

normalization. After normalization via Conditional Quantile Normalization (CQN)[82], the 

distributions of the specimens are aligned exactly at the maximum, 75th and 50th percentiles 

as expected. The lower counts are not exactly aligned since the smallest counts are not 

adjusted in CQN.
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Figure 3. 
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Over 450 PBMC specimens from healthy subjects aged 50-74 years old on were assayed on 

five bead array plates of the Illumina DNA methylation 450K assay. The assay utilizes two 

probe designs, each yielding an M and U intensity value (fluorescence intensity of 

methylated or un-methylated cells, respectively). These intensity values are mathematically 

combined to create an estimate of the percent methylation (β-value) in the specimen. (a) 
There is evidence of nonlinear between-specimen biases in the M and U expression 

intensities as demonstrated by these residual MVA plots. Each smoother represents one 

specimen. Nonlinearities are evident. (b) Between-specimen biases are near linear on the 

beta-value scale (left), are not large, and are essentially eliminated via this strategy (right).
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Figure 4. 
Power to detect genetic associations as a function of ordinal genotypic effect size for three 

different analyses, and with two different levels of significance. 1000 data sets were 

generated for each combination of parameters. Panel (a) shows statistical power for α=0.05 

and panel (b) shows statistical power for a genome-wide significance threshold (α=5×10-8).
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Figure 5. 
Bias in estimating an ordinal genotypic effect, as a function of the simulated ordinal 

genotypic effect size for three different analytical approaches.
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Table 1
Summary of published guidelines for replication studies

• A strong rationale for what to replicate

• Sufficient sample size in replicate study

• Replication in independent data

• Similar replicate population as initial study

• Similar phenotype and biological assays

• Similar magnitude and direction of effect

• Statistical methods similar to the initial study

• Pre-specified statistical criteria for replicated significance
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