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Abstract

Background—The prevalence of marijuana (MJ) use among youth and its legalization for 

medical or recreational use has intensified public health endeavors of understanding MJ effects on 

brain structure and function. Studies indicate that MJ use is related to impaired cognitive 

performance, and altered functional brain activation and chemistry in adolescents and adults, but 

MJ effects on brain morphology in emerging adults are less understood.

Methods—15 MJ users (age 21.8±3.6, 2 females) and 15 non-using (NU) participants (age 

22.3±3.5, 2 females) were included, demographically matched on age, education and alcohol use. 

High-resolution structural MR images were acquired at 3 Tesla. Cortical thickness (CT) and 

volumetric analyses were performed using Freesurfer. A priori regions of interest (ROI) included 

orbitofrontal and cingulate cortices, amygdala, hippocampus and thalamus.

Results—Whole brain CT analysis did not find significant group differences in a priori ROIs but 

revealed MJ users had significantly less CT (i.e., thinness) in right fusiform gyrus (rFG) compared 

to NU (p<0.05). Thalamic volume was significantly smaller in MJ users compared to NU (right, 
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p=0.05; left, p=0.01) and associated with greater non-planning (p<0.01) and overall impulsivity 

(p=0.04). There were no other group volume differences.

Conclusions—RFG cortical thinness and smaller thalamic volume in emerging adults is 

associated with MJ abuse. Furthermore, smaller thalamic volume associated with greater 

impulsivity contributes to growing evidence that the thalamus is neurobiologically perturbed by 

MJ use. Collectively, altered thalamic and rFG structural integrity may interfere with their known 

roles in regulating visuoperceptual and object information processing.
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1. INTRODUCTION

In 2013, 180.6 million or 3.9 percent of the world population aged 15–64 used marijuana 

(United Nations Office on Drug and Crime, 2013). In the US, the rate of past month 

marijuana use among adolescents aged 12–17 years increased from 6.7 to 7.9 percent 

between 2007 and 2011 (SAMHSA, 2013). It is expected that the prevalence of marijuana 

use will continue to escalate at a rapid rate in the US across all age groups, given the recent 

legalization of medical and recreational use, and a decrease in public perception of harm 

associated with MJ use (Palamar et al., 2014; Schuermeyer et al., 2014). Accordingly, 

54.6% of adolescents aged 12 to 17 perceived smoking marijuana once or twice a week as a 

“great risk” in 2007, which has decreased almost 10%, to 44.8% in 2011 (SAMHSA, 2013). 

Therefore, a better understanding of the long-term effects of marijuana on the brain, 

particularly the developing brain, as young adolescent users transition into emerging 

adulthood (ages 18–24) is an increasingly important public health endeavor. To this end, 

previous studies show that when marijuana use is initiated before age 17, the negative 

impact of chronic marijuana use on cognitive function and brain morphology can last several 

years and may even be permanent (Gruber et al., 2011; Jacobus et al., 2009, 2014; Meier et 

al., 2012; Schweinsburg et al., 2008b; Wilson et al., 2000). As such, investigating the effects 

of marijuana exposure initiated during adolescence and continuing during emerging 

adulthood on vulnerable prefrontal and subcortical regions will offer unique insight into 

structural consequences of short-term persistent marijuana use in emerging adults.

The major psychoactive component in marijuana (MJ) is delta-9-tetrahydrocannabinol 

(THC). The main cannabinoid receptor in the brain is the CB1 receptor, which is a G-

coupled protein that is widely distributed throughout the central nervous system (CNS), with 

greatest densities in the associational areas of frontal and limbic lobes, cerebellar cortex, 

thalamus, pallidum, amygdala, hippocampus and substantia nigra pars reticulata (Glass et 

al., 1997). Marijuana use can broadly affect cognitive processes, and prior research 

demonstrates MJ-related alterations in executive functioning, attention, memory, learning, 

decision-making, and processing speed (Becker et al., 2014; Lisdahl et al., 2014; Meier et 

al., 2012; Swift et al., 2008). Moreover, MJ use has been associated with mental health 

issues, including co-morbid mood symptoms, especially depression and anxiety (Weinstein 

et al., 2013), lower age of onset of psychosis, mania, increased risk of suicide attempts and a 

more severe course of illness (Kvitland et al., 2014). The effects of MJ on mood and other 
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psychiatric symptoms has been linked to the ability of the endocannabinoid system to 

modulate the activity of other neurotransmitter systems, energy metabolism and immune 

functions (Leweke and Koethe, 2008).

Findings from neuroimaging studies of MJ users, often focused on either adolescent users or 

adult users, document significant associations between marijuana use and alterations in 

neurobiology, including brain structure, function and neurochemistry (for review, see 

Batalla et al., 2013; Martin-Santos et al., 2010; Sneider et al., 2014). Findings of alterations 

in brain structure reported using magnetic resonance imaging (MRI) are somewhat 

heterogenous, however, and the significance of the changes identified using this technology 

remains controversial because of conflicting findings among existing studies. For instance, 

while some studies report alterations in whole brain and regional volumes, and in cortical 

thickness and subcortical volumes (Ashtari et al., 2011; Cousijn et al., 2012; Matochik et al., 

2005; Yucel et al., 2008), other investigations fail to report significant differences in brain 

structure between adult MJ users and comparison subjects (Block et al., 2000; Jager et al., 

2007; Tzilos et al., 2005). Importantly, there is mounting evidence that MJ use, particularly 

exposure to THC, may be more deleterious during adolescence, a time when cognitive 

development and brain maturation are rapidly ongoing (Lisdahl et al., 2013). For instance, 

adolescent MJ users exhibit altered frontal region and insula cortical thickness, suggestive of 

aberrant gray matter (GM) development or maturation that could persist beyond adolescence 

(Lopez-Larson et al., 2011), and also exhibit alterations in prefrontal cortex, amygdala and 

cerebellum, some of which are sex-specific (McQueeny et al., 2011; Medina et al., 2009, 

2010). It also has been reported that smaller orbitofrontal cortex volumes observed at age 12 

years predict initiation of MJ use by age 16 years, whereas volumes of other regions such as 

amygdala, hippocampus, and anterior cingulate cortex were not predictive of later MJ use 

(Cheetham et al., 2012). Furthermore, in a longitudinal study of adolescent MJ users, greater 

lifetime exposure to MJ predicted greater cortical thickness in the left and right superior 

frontal gyri, left pars opercularis, right pars triangularis, right supramarginal, and left 

inferior parietal cortex after adjusting for baseline cortical thickness, suggesting that heavy 

MJ use during adolescence alters the trajectory of cortical GM development (Epstein and 

Kumra, 2015).

Collectively, previous investigations have focused on identifying regions that exhibit 

structural alterations related to the effects of MJ use measured during adolescence or during 

adulthood, but there are few investigations specifically examining structural alterations in 

emerging adults who initiated MJ use in adolescence. Thus, the present study aimed to 

characterize potential neurobiological consequences of MJ use on cortical thickness and 

subcortical volumetric differences in emerging adult MJ users compared with age-matched 

non-using subjects. A priori regions of interest (ROIs) included orbito-frontal, dorsolateral 

prefrontal, and anterior cingulate cortices (OFC, DLPFC, and ACC respectively), and 

superior and middle frontal gyri, as well as subcortical amygdala, thalamus, and 

hippocampus regions.

Frontal ROIs were chosen based on previous reports of MJ-related functional alterations in 

each region during cognitive task performance. Specifically, altered OFC and DLPFC 

activity is associated with impaired decision-making and poor adaptation to negative 
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consequences (Bolla et al., 2005), and ACC hypoactivity is associated with error awareness 

and performance monitoring (Hester et al., 2009) and memory retrieval during spatial 

navigation (Sneider et al., 2013). Increased activity has been observed in superior and 

middle frontal gyri in MJ users during inhibitory processing, suggesting inefficient 

functional responses and potential overcompensation by neighboring tissue to adequately 

perform the task (Tapert et al., 2007). Given the sub-optimal functional response of these a 

priori regions in MJ users during cognitive task performance, it is possible that surface-

based cortical thickness analyses will reveal corresponding structural changes, with lower 

cortical thickness related to MJ use in these regions.

Hippocampus, amygdala and thalamus, regions demonstrating high CB1 receptor 

distribution (Herkenham et al., 1991), also were selected for volumetric analysis based on 

evidence that MJ users exhibit functional and neurochemical alterations in these regions 

related to marijuana use (Ashtari et al., 2011; Bolla et al., 2005; Cousijn et al., 2012; 

Demirakca et al., 2011; Gilman et al., 2014; Glass et al., 1997; Hester et al., 2009; 

Mashhoon et al., 2013; Matochik et al., 2005; Schacht et al., 2012; Sneider et al., 2013; 

Sneider et al., 2014; Yucel et al., 2008). Clinical measures of mood and impulsivity were 

examined relative to cortical thickness and brain volume to further probe potential links with 

neurobiological consequences of marijuana use.

2. MATERIAL AND METHODS

2.1. Participants, demographics and procedure

Fifteen marijuana users (MJ; 2 females, age 21.8 ± 3.6) and fifteen non-using controls (NU; 

2 females, age 22.3 ± 3.5) were included in this study. Participants were selected from a 

larger pool of subjects that underwent structural MRI scanning at McLean Hospital as part 

of two larger functional magnetic resonance (MR) imaging and MR spectroscopy studies 

(Silveri et al., 2011; Sneider et al., 2013). All participants were matched on age, education 

and alcohol use, and underwent a Structured Clinical Interview for DSM-IV Non-Patient 

Edition (SCID-I/NP), which is widely used to reliably determine Axis I disorders in general 

research populations (First et al., 2002). All subjects were screened for other substance use 

prior to study enrollment. Subjects were excluded if they had: (1) A history of having 

consumed more than 10 alcoholic drinks per week for a period of two months or more at any 

time in their lives or more than 3 drinks in a 24 hour period more than once a week; (2) A 

history of having used any other psychoactive substance more than 6 times in the last six 

months and more than 10 times in their lifetime; (3) A positive drug urine screen on the day 

of scanning, except for THC positive test in MJ users. Other exclusion criteria included 

history of head injury, loss of consciousness, seizure disorder, any Axis I diagnosis except 

for the MJ abuse, and any contraindication for MR scanning.

Marijuana users were included if they met the minimum inclusion criteria: smoked 

marijuana a minimum of 1450 times as indicated by self report (at least 500 times in the past 

two years), used marijuana at least 5 times in the last seven days prior to the study visit, 

tested positive for urinary cannabinoids on the day of scanning and met DSM-IV criteria for 

marijuana abuse or dependence (Silveri et al., 2011; Sneider et al., 2013). NU participants 

reported fewer than 5 lifetime episodes of marijuana use. Nicotine use was assessed in all 
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subjects. None of the control subjects were nicotine smokers. The nicotine use was minimal 

in the marijuana users, with only three out of fifteen marijuana users reporting nicotine use. 

Their use was reported as one pack per day, one pack per month and occasional use 

respectively.

McLean Hospital Institutional Review Board approved all study procedures. All participants 

gave informed consent prior to beginning the study and received monetary compensation for 

participating. All participants completed questionnaires about alcohol use and received a 

urine drug screen prior to the scanning session.

2.2. Clinical variables

Participants were assessed on a battery of clinical instruments prior to imaging. The Profile 

of Mood States (POMS; McNair et al., 1971) was used to identify both transient and 

enduring mood states and feelings across six mood states that include tension–anxiety, 

depression–dejection, anger–hostility, vigor–activity, fatigue–inertia, and confusion–

bewilderment. The Barratt Impulsiveness Scale (BIS-11, Patton et al., 1995) was used to 

measure of impulsivity, including a total score for trait impulsivity, and subscale scores for 

cognitive (rapid shifts in attention/impatience with complexity), motor (impetuous action), 

and non-planning (lack of future orientation) impulsivity. The Positive Affect Negative 

Affect Schedule (Watson et al., 1988) was used to distinguish positive and negative affect.

2.3. Structural MR imaging

High-resolution anatomical images were obtained on a 3.0 Tesla Siemens Trio (Siemens 

Medical Solutions USA Inc., Malvern, PA, USA) whole body MRI scanner at the McLean 

Hospital Imaging Center. A standard quadrature head coil was utilized to acquire 

magnetization-prepared, rapid acquisition with gradient echoes (MPRAGE) T1-weighted 

images for 3D reconstruction. The parameters utilized for imaging were as follows: 128 

sagittal slices; 1.0 × 1.0 × 1.3mm3 spatial resolution, 256×256 matrix, echo time (TE) = 2.7 

ms; repetition time (TR) = 2100 ms; inversion time (TI) = 1100 ms; flip angle = 12°. 

Imaging parameters were chosen to optimize signal contrast between white matter (WM) 

and gray matter (GM) as well as between GM and cerebro-spinal fluid (CSF), to facilitate 

subsequent cortical surface segmentation and reconstruction processes.

2.4. Cortical thickness processing

The Freesurfer morphometric analysis suite (v5.3.0; freesurfer.net) was utilized for all 

cortical surface reconstruction, cortical thickness, and volumetric estimate processing. The 

technical details of these methods have been described previously (Dale et al., 1999; Fischl 

and Dale, 2000; Fischl et al., 2002; Segonne et al., 2004), and have been utilized in previous 

cortical thickness studies by our group (Mashhoon et al., 2014). Briefly, the Freesurfer 

standard pipeline automates procedures that incorporate removal of non-brain tissue and 

skull (Segonne et al., 2004), linear Talairach atlas registration, voxel intensity classification 

and normalization, and cortical surface segmentation (Fischl et al., 2002). Freesurfer 

processing produced cortical models with tesselated GM and WM boundaries that were then 

registered to a spherical atlas that applies individual cortical folding patterns to closely align 

cortical geometry across all participants and enable accurate morphological matching of 
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cortical vertices and regions along the reconstructed surface (Dale et al., 1999). During an 

automated process, each hemisphere was then parcellated into 74 distinct cortical regions 

(Desikan et al., 2006; Fischl et al., 2004). Automated algorithms calculate cortical thickness 

by mapping spatial intensity gradients across different tissue types and measuring the closest 

distance between the GM/WM boundary to the GM/CSF boundary at each vertex on the 

tessellated cortical surface (Fischl and Dale, 2000). Accordingly, the surface maps do not 

rely on absolute signal intensity and are capable of distinguishing submillimeter 

microarchitectural differences between groups (Fischl and Dale, 2000). Furthermore, 

automated cortical thickness procedures have been tested and validated against histological 

analysis (Rosas et al., 2002) and manual measurements (Salat et al., 2004). To ensure quality 

control, each data set was manually checked and necessary edits were made to ensure 

accurate Talairach transform, skull stripping, pial surface boundary placement, tissue 

intensity normalization, white matter segmentation and to check for topological defects.

2.5. Volumetric measurements and analysis

Following all automated processing, parcellation, and completed quality control procedures, 

Freesurfer was again utilized to extract absolute segmented volumes of subcortical regions 

that included the amygdala, thalamus, hippocampus, pallidum, caudate, putamen, and 

cerebellum, in addition to estimated intracranial volume (ICV), and total gray matter and 

total white matter volumes (Fischl et al., 2002). In order to control for individual variability 

in brain volume (Giedd et al., 1996), subcortical volumes were analyzed as ratios to ICV. 

All subcortical and total estimated volumes were imported from Freesurfer to SPSS for 

analysis.

2.6. Statistical analyses

Whole-brain surface maps were statistically assessed using a two-group unpaired t-test, 

controlling for age and sex, implemented in Freesurfer to investigate differences in cortical 

thickness between MJ and NU. Resulting p-value maps were thresholded at p=0.01 and were 

smoothed using a Gaussian kernel with a full-width half-maximum level of 10, to identify 

contiguous clusters of significant cortical thickness differences between groups in each 

hemisphere. In order to account and correct for multiple comparisons corrections, a Monte 

Carlo simulation cluster analysis, which is part of the Freesurfer processing stream, was 

performed with 10,000 iterations to identify significant differences with a cluster-corrected 

threshold of p = 0.05.

SPSS 19.0 (SPSS, Chicago, IL, USA) was also used for statistical analyses. A p<0.05 was 

used as the statistical significance threshold. Demographic, substance use and clinical 

measures were analyzed using ANCOVAs to compare age- and sex-matched MJ and NU 

groups. Analyses of subcortical volume differences were performed using repeated measures 

ANCOVAs with hemisphere (right vs. left) as the within-subjects factor and group (MJ vs. 

NU) as the between-subjects factor. Effect size f (ES) was calculated for significant main 

effects and interactions using G*power (Version 3.1.9.2; Faul, Erdfelder, Lang, and 

Buchner, Dusseldorf, Germany). Correlations of significant ROI cortical thickness measures 

and subcortical volume measures with clinical measures and self-reported MJ use were 
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assessed using Pearson s r correlation coefficients. Bootstrap confidence intervals (BSCI) at 

90% were calculated for significant correlations.

3. RESULTS

3.1. Demographics and substance use

There were no significant differences between MJ and NU groups in age, gender 

distribution, education or amount of alcohol consumed weekly (Table 1). All MJ use 

variables are also reported in Table 1.

3.2. Clinical data

There were no significant differences between MJ and NU groups on total or subscale scores 

on the POMS or PANAS (Table 1). MJ users did differ significantly from the NU group on 

multiple BIS measures (Table 1). MJ exhibited higher scores on the BIS motor (F(1,29) = 

4.21, p=0.05, ES=.39) and non-planning (F(1,29) = 9.38, p=0.005, ES=.59) impulsivity 

subscales, and higher BIS total impulsivity scores (F(1,29) = 7.79, p=0.009, ES=.53) 

compared to NU. Groups did not differ on the BIS cognitive/attention impulsivity subscale.

3.3. Structural MRI data

3.3.1. Cortical thickness—Whole brain voxelwise analyses revealed a number of 

clusters in each hemisphere that exhibited differences in cortical thickness between MJ and 

NC at an uncorrected threshold of p<0.01, including a priori OFC (p<0.008) and middle 

frontal gyrus (p<0.005) regions. There were no differences at this level of significance 

observed, however, in a priori regions in the superior frontal gyrus, ACC, and DLPFC 

regions.

The cluster-wise correction for multiple comparisons analysis revealed a single cluster in the 

right hemisphere fusiform gyrus (rFG) as the only surviving cluster to show significant 

group differences at a corrected significance of p<0.05) (Figure 1).

3.3.2. Volumetric analysis—There were no differences in ICV (p=0.54) between MJ 

users and NU participants, thus subcortical volumes were analyzed as ratios to ICV. 

Repeated measures ANCOVA showed a main effect of group on thalamic volume, 

(F(1,28)=6.91, p=0.014, ES=.50) and post-hoc analysis revealed that thalamic volume in 

both hemispheres was significantly smaller in MJ users compared to NU participants (right, 

F(1,29)= 4.1, p=0.053, ES=.38; left, F(1,29)=8.07, p=.008, ES=.54). Given that thalamic 

volume was significantly smaller in MJ users across both hemispheres, the data were 

collapsed into total thalamic volume (F(1,29)=6.91, p=0.014, ES=.50) (Figure 2). Other a 

priori subcortical region volume measures, including the amygdala and hippocampus, were 

not significantly different between groups.

3.4. Correlations: Cortical Thickness, Volume, Clinical Measures and Drug Use

Right FG thickness was not correlated with any MJ use variables, clinical measures, or with 

reported current alcohol use in either MJ or NU groups. Total thalamic volume was 

negatively correlated with the BIS non-planning subscale (r = −0.510, p<0.004, BSCI: r = 
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−0.706 to −0.241) and BIS total impulsivity score (r = −0.371, p=0.043, BSCI: r = −0.608 to 

−0.073) (Figure 3) but was not correlated with any other MJ use variables (such as age of 

onset or frequency of use), any clinical measures, or with current reported alcohol use in 

either MJ or NU groups. There were no significant correlations between current alcohol use 

(number of alcohol drinks consumed per week) and cortical thickness or thalamic volume.

4. DISCUSSION

Emerging adult MJ users exhibited cortical thickness and volumetric differences relative to 

healthy emerging adult NU. Findings revealed less rFG cortical thickness (i.e., rFG cortical 

thinness), and smaller thalamic volumes in MJ users. Unlike cortical thinning, which is a 

continuous measure collected with longitudinal data, cortical thinness is a descriptive term 

that has previously been operationally defined (Mashhoon et al., 2014) as indicating less or 

lower cortical thickness measured between populations at a cross-sectional time point. Other 

regional a priori cortical thickness analyses in orbitofrontal, cingulate and cerebellar 

cortices, and superior and middle frontal gyri did not result in any significant group 

differences, although there were some trends towards cortical thickness differences in OFC 

and middle frontal gyri between groups. Additional volumetric analyses also did not result 

in significant differences in other subcortical regions, including hippocampus or amygdala, 

between MJ and NU groups. Smaller total thalamic volume was significantly associated 

with higher BIS non-planning and overall impulsivity scores in MJ and NU participants. MJ 

users also had higher BIS motor scores, compared to NU, but these measures were not 

associated with smaller thalamic volume or rFG cortical thinness. Other clinical measures 

reflecting mood state did not correlate significantly with cortical or subcortical differences.

The current finding of rFG cortical thinness and smaller thalamic volume contributes toward 

a growing literature elucidating persistent measurable differences in brain alterations 

associated with heavy MJ use in MJ users relative to non-using individuals. Such findings 

are observed across the age span, to include adolescents, emerging adults and adults. Indeed, 

the period of emerging adulthood occurs during the final stage of neuromaturation (Bennett 

and Baird, 2006), indicating an extended vulnerability of the brain to psychoactive 

substances that lasts into the early 20s. White matter myelination, synaptogenesis, gray 

matter synaptic pruning, dendritic growth and proliferation, and axonal growth are all 

neurodevelopmental processes that guide target-specific synaptic connectivity and neuronal 

communication patterns (Berghuis et al., 2007; Rakic, 2006; Wang et al., 2003; Wonders 

and Anderson, 2006). While primarily initiated during embryonic and early postnatal 

development, these neuromaturational transformations continue throughout adolescence and 

into early emerging adulthood (Armstrong et al., 1995; Spear, 2013), which prolongs their 

structural vulnerability to MJ use and repeated cannabinoid CB1 receptor activation.

CB1 receptor activation has been previously associated with morphological and functional 

changes in glia and neurons and, consequently, neuronal signaling (for review, Cachope, 

2012; Stella, 2010). As an inhibitory G-protein-coupled receptor, CB1 receptors bind to and 

suppress excitatory actions of lipids, neurotransmitters, and molecules such as adenylyl 

cyclase, which is an important enzymatic component of the cyclic adenosine 

monophosphate (cAMP) signaling pathway (Haj-Dahmane and Shen, 2010; Kano et al., 
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2009; Schlicker and Kathmann, 2001). The cAMP pathway plays a prominent role in 

regulating different types of associative learning, long-term memory, and memory 

consolidation (Baldwin et al., 2002; Ma et al., 2009) in addition to modulating synaptic 

morphology and thus the strength of connectivity between neurons (Kandel, 2012). CB1 

receptor inhibition of adenylyl cyclase, and in turn cAMP signaling, has been previously 

shown to interfere with the formation and recruitment of new functional synapses, 

suggesting that cannabinoids can directly alter and inhibit the strength of synaptic 

connectivity between neurons as well as prevent new synapse formation (Kim and Thayer, 

2001). This neuromodulatory process would be particularly disruptive and maladaptive 

during neurodevelopment and maturation of the CNS in adolescence, and likely extending 

into emerging adulthood.

The FG is moderately distributed with cannabinoid CB1 receptors (Wong et al., 2010), 

which may underlie the reported structural vulnerability of this region to chronic marijuana 

use (James et al., 2011; Matochik et al., 2005). Furthermore, the FG displays elevated 

sensitivity to acute MJ exposure, as healthy volunteers who received an acute MJ challenge 

prior to performing a visual stimulation functional magnetic resonance imaging (fMRI) task 

exhibited increased activation in the left FG (Winton-Brown et al., 2011). MRI studies 

implementing face and object visual processing tasks have frequently reported finding 

greater face-sensitive (relative to object-sensitive) activation in the FG, though notably, the 

rFG commonly exhibits dominant face perception activation bias (Hasson et al., 2002; 

Rossion et al., 2000; Yovel et al., 2008). The role of the rFG in regulating face perception 

and recognition is a highly specialized product of neurodevelopmental processes throughout 

adolescence and into adulthood that involves experience-dependent dynamic synaptic 

pruning and reorganization of neural connections (Cohen Kadosh and Johnson, 2007; 

Golarai et al., 2007). Typically, pruning eliminates asymmetrical excitatory synapses, 

indicating that glutamatergic transmission is commonly affected throughout 

neuromaturation in adolescence and early adulthood (Brenhouse and Andersen, 2011). 

Previous preclinical studies have shown that THC exposure during the adolescent 

developmental window may disrupt normative patterns of excitatory synapse elimination, 

thereby interfering with maturation of regional glutamatergic systems and functional 

network connections (Rubino et al., 2014). Thus, the cortical thinness observed in the rFG 

may be a consequence of abnormal pruning patterns related to persistent long-term MJ use 

throughout adolescence and into emerging adulthood.

Similar to the FG, the thalamus is also moderately distributed with CB1 receptors (Glass et 

al., 1997; Wong et al., 2010) and has also exhibited altered gray matter tissue density 

(Matochik et al., 2005) and neurometabolite levels (Silveri et al., 2011; Mashhoon et al., 

2013) in MJ users. Chronic consumption of MJ, such as the patterns established by MJ users 

in the present study, and consequent regular binding of THC to CB1 receptors may directly 

alter the volume of the thalamus through a combination of axonal, neuronal and myelin loss 

(Evangelou et al., 2000; Hof et al., 2003). Oligodendrocytes are myelin-producing neuroglia 

widely distributed throughout the central nervous system (CNS) that express CB1 receptors 

(Molina-Holgado et al., 2002). Repeated marijuana use and overstimulation of 

oligodendrocyte CB1 receptors may result in regional oligodendrocyte downregulation 

possibly associated with demyelination and myelin loss (Dalton and Zavitsanou, 2010; 

Mashhoon et al. Page 9

Drug Alcohol Depend. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zalesky et al., 2012). Similar to the potential pathophysiology of cortical thinness in the FG, 

neuronal loss in the thalamus also may result from MJ-related alterations in normative 

regional synaptic pruning patterns. Furthermore, the thalamus may sustain neuronal loss, 

and consequently loss in volume, from retrograde neuronal degeneration as a consequence 

of MJ-related pathology in frontal cortex that can damage axon terminations of 

thalamocortical relay neurons (Gilbert et al., 2001; Zikopoulos and Barbas, 2007). Changes 

to the structural morphology of the thalamus could have drastic consequences for the critical 

function of this substrate in relaying multisensory and adaptive cognitive information 

processing to the cortex as well as maintaining thalamocortical network neurotransmission 

(Marzinzik et al., 2008).

The present finding of thalamic volume differences in MJ users is consistent with and 

contributes to growing evidence that suggests the thalamus is neurobiologically perturbed by 

chronic MJ use. Consequences of chronic MJ exposure are evident in measurable alterations 

to the microarchitectural integrity of the thalamus. Greater gray matter tissue density has 

been reported in the right thalamus in male MJ users, relative to non-MJ-users, (Matochik et 

al., 2005) that may be related to abnormal synaptic pruning. Previous work also has revealed 

neurochemical differences in the left thalamus, a hypothesized component of left-

hemisphere lateralized cognitive inhibition circuitry, in male MJ users compared to non-

using individuals (Mashhoon et al., 2013). Lower levels of myo-Inositol (mI), a glial marker 

involved in neuronal metabolism, neural signaling, and regulating cellular energy use (Ho et 

al., 1995; Maragakis and Rothstein, 2006) were reported in the left thalamus of MJ users 

that were associated with greater cognitive impulsivity (Mashhoon et al., 2013).

The current study also demonstrated associations between smaller total thalamic volume and 

greater impulsivity, specifically non-planning and overall impulsivity. The BIS non-

planning impulsivity subscale is associated with lack of forethought and poor future 

planning. In MJ smokers, this likely reflects lack of behaving with forethought of negative 

consequences and frequently impulsive decision-making. The thalamus is a critical hub in 

neural circuitry regulating cognitive inhibition; MJ-related neurochemical (Mashhoon et al., 

2013) and volumetric alterations to thalamic structural stability and integrity could directly 

interfere with cortico-thalamic signaling that functionally supports cognitive inhibition and 

manages impulsive decision-making by integrating and relaying information across 

reciprocal connections to frontal cortex (Haber, 2003). Furthermore, chronic MJ use could 

negatively inhibit the efficient transmission of information through thalamo-cortical 

projection networks via persistent CB1 receptor-mediated actions on synaptic activity, such 

as disrupted cAMP signaling, within the thalamus.

One influential thalamo-cortical projection network is the pathway that regulates attention 

by transmission of visual information from input sources in the visual cortex through 

thalamic projections to the frontal cortex that is significant for behavioral contexts (Rees, 

2009; Saalmann and Kastner, 2009). Moreover, the thalamus is also involved in visual 

object localization and organization (Ward and Arend, 2007). Importantly, the rFG also 

plays a principal role in visual information processing. Though often functionally associated 

with face-selective perception and recognition processing, the FG is also involved in 

elemental stages of visual object information retrieval and categorization (James et al., 2011; 
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Wheatley et al., 2005). Studies utilizing fMRI have shown that the rFG is part of the ventral 

visual pathway (Mahon et al., 2007a; Mahon et al., 2007b; van der Linden et al., 2011) and a 

critical lateralized component of visuoperceptual processing of basic-level object 

identification (Bruffaerts et al., 2013), as well as of object size and location (Grill-Spector et 

al., 1999). These visuoperceptual representations are subsequently often stored in visual 

working memory. Thus, findings of rFG cortical thinness and smaller thalamic volume in 

emerging adult MJ users may be connected through their key roles in the visual information 

processing pathway.

The current study did not probe visual working memory directly, however a growing body 

of evidence suggests that MJ users demonstrate difficulty and less cognitive efficiency in 

performing visual working memory tasks (e.g. (Bolla et al., 2002; Kanayama et al., 2004; 

King et al., 2011; Padula et al., 2007; Schweinsburg et al., 2008a, 2008b; Smith et al., 2010). 

It is possible that chronic MJ use measurably alters cortical pathways that transmit basic-

level visuoperceptual information that is applied toward a behavioral response. The rFG 

cortical thinness and smaller thalamic volume measured in MJ users in the present study 

may reflect neurobiological alterations related to persistent MJ use in regions specifically 

involved in visuoperceptual and object information processing. Impaired visuoperceptual 

processing, particularly in visuomotor or visuospatial domains, can be of significant concern 

in practical realms such as navigational ability and applying cognitive-motor skills to drive a 

vehicle (Weinstein et al., 2008).

A limitation of the study was that differences in morphology within discrete thalamic nuclei 

cannot accurately be measured and thus our interpretations of the smaller thalamic volume 

findings in MJ users are limited. Furthermore, the current cross-sectional structural and 

volumetric group differences cannot aid in determining if the alterations were pre-existing in 

participants prior to initiation of MJ use or if they are a consequence of persistent use. 

Though other structural neuroimaging studies have shown MJ-related differences in 

hippocampal and amygdala volume relative to non-using counterparts (e.g., Ashtari et al., 

2011; Cousijn et al., 2012; Demirakca et al., 2011; Schacht et al., 2012; Yucel et al., 2008), 

our study did not find any structural differences in these regions between MJ and NU 

groups. Other investigations have also previously reported a lack of hippocampal volume 

alterations in male and female young adult short-term MJ users (Block et al., 2000) and 

heavy long-term MJ users (Tzilos et al., 2005) and suggest that the direct influence of MJ 

use on hippocampal volume may be impacted by other variables; these include potential 

underreporting and/or inaccurate reporting of other lifetime drug and alcohol use in both MJ 

and NU groups (Tzilos et al., 2005) and possible hippocampal volume abnormalities that are 

not detectable by current assessment techniques (Block et al., 2000). An additional study 

limitation was the small overall sample size of n=15 MJ and n=15 NU groups, which could 

have precluded finding relevant differences in other brain regions due a limited sample. 

Importantly, groups were age- and sex-matched, alcohol use (drinks per week) did not differ 

between groups, and nicotine use was minimal in study participants. With regard to nicotine 

use, a significantly smaller thalamic volume (p=.039) and evidence for reduced cortical 

thickness in the fusiform (uncorrected) were maintained when the three MJ subjects with 

positive nicotine use histories were removed from analyses. As even minimal nicotine use 

could impact study findings, future studies should more thoroughly account for smoking 
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status. Nonetheless, significant differences observed between groups on impulsivity and 

brain measures produced medium to large effect sizes. Sex differences in measures of ICV 

(Block et al., 2000) and amygdala volume (McQueeny et al., 2011) in MJ users have been 

previously reported. It is possible that MJ use during neurodevelopment may have interfered 

with sex-specific maturational processes in the amygdala, and thus subtle alterations to 

amygdala morphometry between males and females may obscure the influence of MJ use 

(McQueeny et al., 2011). We cannot presently parse apart sex differences in regional 

structure or volume, given that there were only two females in each group. Future 

investigations of MJ-related morphological alterations should account for sex-related 

differences in neural composition. Finally, this study relied on self-report for establishing 

patterns of past and current marijuana use, as well as for measures of mood states and 

impulsivity. Self-report can often be negatively influenced or compromised by individual 

willingness to respond accurately, estimation ability, and social context and perceived 

admissibility (Del Boca and Darkes, 2003). Participants were assured that responses to all 

drug use questions, in addition to all other responses on mood and impulsivity measures, 

would be kept confidential, with sufficient time permitted to recall and report MJ use. To 

this end, it is plausible that this self-selected group of MJ users was willing and able to 

effectively produce reliable detailed reports.

In conclusion, the present investigation revealed rFG cortical thinness and smaller thalamic 

volumes in MJ using emerging adults, relative to NU healthy age-matched control 

participants, that may be related to neurobiological consequences of heavy MJ use. 

Furthermore, the present finding of smaller thalamic volume associated with greater 

impulsivity contributes to growing evidence that the thalamus is uniquely neurobiologically 

perturbed by persistent MJ use. Collectively, alterations to the structural integrity of the 

thalamus and the rFG, a lateralized component of visuospatial identity processing, may 

interfere with established roles in regulating visuoperceptual and object information 

processing. As such, MJ users may experience greater difficulty in completing visual 

working memory tasks that rely on efficient visuoperceptual and visuospatial processing.
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Research Highlights

• Used Freesurfer to measure cortical thickness and volume in emerging adult 

marijuana (MJ) users

• Less cortical thickness in right hemisphere fusiform gyrus in MJ users v. 

nonusers

• Smaller thalamic volume in MJ users, v. non-users, related to greater 

impulsivity

• RFG and thalamus may be connected through visual information processing 

pathway

• Altered rFG and thalamus integrity may impair visuoperceptual processing in 

MJ users
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Figure 1. 
Significant differences in right hemisphere fusiform gyrus (rFG) cortical thickness between 

marijuana (MJ) users and non-users (NU) are shown. Left. Representation of statistically 

significant cluster of fusiform gyrus cortical thinness in right hemisphere (inflated medial 

view) in MJ users compared to (NU). Right. Group differences in rFG cortical thickness. All 

values are the means ± SD.
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Figure 2. 
Significant group differences in total thalamic volume between marijuana (MJ) users and 

non-users (NU) are shown. Volume is shown as a ratio to intracranial volume (ICV). All 

values are the means ± SD. *p≤0.01
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Figure 3. 
Scatterplots representing individual marijuana (MJ) users and non-users (NU) data and 

showing significant relationships between smaller total thalamic volume and Barratt 

Impulsiveness Scale (BIS) non-planning subscale and total impulsivity scores. Volume is 

shown as a ratio to intracranial volume (ICV).
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Table 1

Demographic and Substance Use Measures

Measures NU (n=15) MJ (n=15) p

% Male 87% 87% ns

Age 22.3 ± 3.5 21.8 ± 3.6 ns

Education 15.2 ± 2.1 14.0 ± 1.6 ns

Number of alcohol drinks/week 2.8 ± 3.8 4.9 ± 3.9 ns

Age at MJ use onset - 16.1 ± 1.9

Duration of MJ use (years) - 5.2 ± 2.5

Lifetime MJ smokes - 3808 ± 1812

THC-COOH (ng/ml): Creatinine (mg/dL) - 249.5 ± 99.7

BIS motor 19.7 ± 5.2 23.4 ± 4.8 .05

BIS non-planning 23.0 ± 4.8 28.1 ± 4.4 .01

BIS cognitive 15.3 ± 3.8 17.5 ± 4.3 ns

BIS total 58.0 ± 10.4 69.0 ± 11.2 0.01

POMS Vigor 19.6 ± 6.0 17.3 ± 5.4 ns

POMS Anger 3.3 ± 3.7 4.3 ± 6.5 ns

POMS Confusion 5.9 ± 2.9 7.5 ± 3.4 ns

POMS Tension 6.1 ± 4.0 5.4 ± 3.2 ns

POMS Fatigue 5.1 ± 5.7 4.3 ± 4.5 ns

POMS Depression 3.2 ± 4.5 6.2 ± 10.6 ns

PANAS Positive 34.2 ± 7.7 32.1 ± 9.4 ns

PANAS Negative 11.4 ± 2.4 12.6 ± 3.5 ns

PANAS Total 45.6 ± 8.2 44.7 ± 9.3 ns

Values represent mean ± standard deviation.
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