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Abstract

Objective—Models of excitable cells consider the membrane specific capacitance as a 

ubiquitous and constant parameter. However, experimental measurements show that the 

membrane capacitance declines with increasing frequency, i.e., exhibits dispersion. We quantified 

the effects of frequency-dependent membrane capacitance, c(f), on the excitability of cells and 

nerve fibers across the frequency range from dc to hundreds of kilohertz.

Approach—We implemented a model of c(f) using linear circuit elements, and incorporated it 

into several models of neurons with different channel kinetics: the Hodgkin-Huxley (HH) model 

of an unmyelinated axon, the McIntyre-Richardson-Grill (MRG) of a mammalian myelinated 

axon, and a model of a cortical neuron from prefrontal cortex. We calculated thresholds for 

excitation and kHz frequency conduction block, the conduction velocity, recovery cycle, strength-

distance relationship and firing rate.

Main results—The impact of c(f) on activation thresholds depended on the stimulation 

waveform and channel kinetics. We observed no effect using rectangular pulse stimulation, and a 

reduction for frequencies of 10 kHz and above using sinusoidal signals only for the MRG model. 

c(f) had minimal impact on the recovery cycle and the strength-distance relationship, whereas the 

conduction velocity increased by up to 7.9% and 1.7% for myelinated and unmyelinated fibers, 

respectively. Block thresholds declined moderately when incorporating c(f), the effect was greater 

at higher frequencies, and the maximum reduction was 11.5%. Finally, c(f) marginally altered the 

firing pattern of a model of a prefrontal cortex cell, reducing the median interspike interval by less 

than 2%.

Significance—This is the first comprehensive analysis of the effects of dispersive capacitance 

on neural excitability, and as the interest on stimulation with kHz signals gains more attention, it 

defines the regions over which frequency-dependent membrane capacitance, c(f), should be 

considered.
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1. Introduction

The lipid bilayer of the cell membrane is a dielectric that creates a capacitance by separating 

charge inside and outside the cell. Such capacitive behavior is represented in electrical 

equivalent circuit models of the cell membrane with an electrical capacitor element 

(McNeal, 1976). The membrane specific capacitance is considered constant and ubiquitous, 

with a value of 1-2 μF/cm2 (Gentet et al., 2000). Accordingly, myriad models of excitable 

cells and axons incorporate a constant membrane capacitance (McIntyre et al., 2002, Rattay, 

1989, Sweeney et al., 1987). However, the dielectric properties of living tissues exhibit 

frequency-dependent behavior (Gabriel et al., 1996a, Gabriel et al., 1996b, Grimnes and 

Martinsen, 2010). The objective of the present study was to quantify the effects of 

frequency-dependent membrane capacitance on neuronal excitation and determine whether 

it is important to represent this feature in electrical models of single neurons.

The permittivity of biological materials decreases monotonically with frequency, with three 

major dispersion regions: alpha, beta and gamma, in the ranges of kHz, hundreds of kHz and 

MHz, respectively (Foster and Schwan, 1989). The cell membrane exhibits similar 

frequency-dependent behavior. For example, several relaxation processes for the membrane 

capacitance of frog skin epithelium were identified in the audio frequency range (i.e., alpha 

dispersion) (Awayda et al., 1999), and the specific capacitance of the squid giant axon 

membrane, which declines by half from dc to 100 kHz (Haydon and Urban, 1985), was 

fitted by a single relaxation between dc to 3 kHz (Fernández et al., 1983). Such behavior 

may influence excitability and it may be necessary to incorporate frequency-dependent 

membrane capacitance into models of excitable cells, particularly if the frequency of 

stimulation extends into the tens of kHz, for example to achieve conduction block (Kilgore 

and Bhadra, 2014) or with waveforms intended to penetrate more deeply into tissue (Medina 

and Grill, 2014).

In this study we introduce a model of a frequency-dependent membrane capacitance using a 

mathematical description of a relaxation process, and we incorporate this formulation into 

several models of excitable cells and axons to quantify the effect of the dispersive 

capacitance on excitability. The only previous study in which dispersion of the membrane 

capacitance was taken into account (Haeffele and Butera, 2007) considered the effects on 

conduction block in a Hodgkin and Huxley model of an unmyelinated fiber, and observed a 

decline in thresholds that did not accurately predict the non-monotonic relationship observed 

experimentally at frequencies > 10 kHz. We conducted a comprehensive analysis of the 

effect of the dispersive capacitance on the excitability of single compartment models of 

excitable cells, distributed cable models of myelinated and unmyelinated axons, and a 

distributed cable model of a cortical neuron. The results show that dispersive capacitance 

reduced activation thresholds for sinusoidal signals only for certain models, reduced block 
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thresholds with kHz frequency signals, increased conduction velocity, and had minimal 

impact on the recovery cycle and the strength-distance relationship.

2. Methods

2.1. Electrical representation of a frequency-dependent capacitance

We modeled a frequency-dependent capacitance, c(s), using the following expression:

(1)

(2)

(3)

where, cdc is the specific membrane capacitance (F/m2) at ω = 0; c∞ is the membrane 

capacitance at ω = ∞; τ is the relaxation time (s); and ω = 2πf is the angular frequency 

(rad/s).

The impedance of c(s) (in Ω/m2) is given by Equation 4, and Equation 5 is the ordinary 

differential equation (ODE) that describes the relationship between the capacitive current 

density (ic in A/m2 and the transmembrane voltage (Vm) across the capacitor.

(4)

(5)

The prime symbol denotes the derivative with respect to time; and a0 = 1, a1 = τ, b0 = cdc, 

and b1 = τc∞ are constant coefficients determined with Equation 1. We reduced Equation 5 

to a system of first order ODEs. However, preliminary analysis showed that this system of 

ODEs was moderately stiff (see Appendix) and thereby presented issues for numerical 

solution.

We therefore used a combination of linear circuit elements to model the frequency 

dependent capacitance, c(f) (Figure 1). The circuit representing c(f) consisted of a 

capacitance (c∞) in parallel with the series combination of a conductance (gΔ in S/m2) and 

capacitance (cΔ), and had an impedance equal to that of Equation 4. The ODEs describing 

the relationship between Vm and ic are given in the Appendix.

2.2. Single-compartment models of neurons

We implemented two single-compartment lumped models (SCMs) of neurons in MATLAB 

(v2014a, Mathworks, Natick, MA). The first, HH SCM, included Hodgkin-Huxley (HH) ion 

channels (Hodgkin and Huxley, 1952) and either a constant membrane capacitance or c(f). 

The constant membrane capacitance was set to either cdc = 1 μF/cm2 or c∞ = 0.55 μF/cm2, 
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while c(f) declined from cdc to c∞ with τ = (2π104)−1 s (Figure 2a). We selected values for 

cdc, c∞, and τ based on measurements from a squid giant axon (Takashima and Schwan, 

1974).

The second, MRG SCM, included ion channels representative of mammalian nerve fibers 

(McIntyre et al., 2002) and either a constant membrane capacitance or c(f). We set cdc = 2 

μF/cm2 (Frankenhaeuser and Huxley, 1964), as there are no studies that analyze how the 

membrane capacitance varies with frequency in mammalian axons. c∞ was set to 1.1 μF/

cm2, and τ was kept at (2π104)−1 s.

A more detailed description of the ODEs and parameters of the HH and MRG SCMs is 

given in the Appendix.

2.2.1. Lumped model validation, and implementation, and analysis—We used a 

linear circuit representation of the neural membrane (Figure 1b) to validate the numerical 

solutions of the SCMs. The solution was approximated using the stiff ordinary different 

equation solver, ode15s, in MATLAB, and we verified that the root mean square error 

between the numerical and analytical solutions was < 5×10−4 % (see Appendix).

We used three different types of intracellular current waveforms (A/m2) to stimulate the 

SCMs: a monophasic rectangular pulse, a train of monophasic rectangular pulses, and a sine 

wave (Figure 3). The pulse widths (PWs) of monophasic rectangular pulses ranged from 50 

μs to 10 ms, as this range encompasses the range of possible PWs used in electrical 

stimulation devices.

For stimulation with a train of pulses, PW was set to 100 μs, a typical PW used in deep brain 

stimulation (Kuncel and Grill, 2004), and the frequency of the pulse train ranged from 100 

Hz to 10 kHz. Below 100 Hz, the stimulation thresholds were identical to the stimulation 

thresholds with a single pulse, and at and above 10 kHz, the pulses fused to produce direct-

current stimulation. Therefore, only stimulation thresholds within the above range were 

analyzed.

For sinusoidal stimulation currents, frequencies ranged between 100 Hz and 100 kHz. The 

lower bound of this range was chosen because we assumed that no dispersion occurred at 

frequencies below 100 Hz (see Section 4.3), and the upper bound was chosen so that it 

encompassed the frequencies used in vivo for studying conduction block (Bhadra and 

Kilgore, 2005; Joseph and Butera, 2009).

The nonlinear SCMs (Figure 1a) were solved using ode15s. For stimulation with rectangular 

pulses, we used a variable time-step with a maximum step of 10 μs for PWs ≥ 100 μs, and 5 

μs for PWs < 100 μs; and for sinusoidal stimulation, we used a variable time-step with a 

maximum of 10 ns for frequencies below 10 kHz and 0.5 ns for frequencies above 10 kHz. 

In all simulations, reducing the maximum time-steps by half altered the stimulation 

thresholds by < 1 %. Further, we imposed a 10 ms delay to ensure the model had reached 

steady-state before stimulation, and all simulations were run for 30 ms.
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Thresholds to generate an action potential were calculated using a bisection algorithm 

(relative error < 1 %), and traces of Vm were inspected post hoc to ensure that at least one 

action potential was evoked at the calculated value (Figure 2).

2.3. Cable models of axons

We implemented two distributed models of axons in NEURON (v7.3) (Carnevale and 

Hines, 1997): a HH model of an unmyelinated axon with the same ion channels used in the 

HH SCM and an MRG model of a myelinated axon, which, at the nodes of Ranvier, 

contained the same ion channels used in the MRG SCM. The values that defined the 

membrane capacitance in the HH axon and MRG axon were the same as those used in the 

HH SCM and MRG SCM, respectively (see Section 2.2). For the unmyelinated fiber model, 

we used a 40 mm long axon segmented in 0.5 mm long cylinders (Tai et al., 2005), and the 

axons had diameters ranging from 50 to 800 μm to represent the squid giant axon 

(Matsumoto and Tasaki, 1977), and from 0.4 to 2 μm to represent mammalian unmyelinated 

axons. The myelinated axons were at least 10 mm in length and had diameters (including the 

myelin) ranging from 5.7 μm to 16 μm. The geometric and electric parameters of the myelin 

and intermodal regions were taken from a validated model of a mammalian myelinated axon 

(McIntyre et al., 2002). Both the myelinated and unmyelinated axons were long enough to 

avoid activation at the terminations of the axons, and we confirmed that in all of our 

simulations no action potentials were generated at the ends.

2.3.2. Distributed model implementation and analysis—A number of analyses were 

conducted to assess the effects of c(f) on neural excitability: (1) stimulation thresholds (see 

Section 2.2.2); (2) the recovery cycle, which is the change in stimulation thresholds 

following a supra-threshold conditioning stimulus; (3) the strength-distance relationship, 

which is the relationship between the stimulation thresholds and the axon-to-electrode 

distance; (4) the firing rate of the axon during repetitive pulse stimulation; (5) thresholds for 

conduction block; and (6) conduction velocity.

Stimuli were extracellular currents delivered in an infinite medium with homogeneous and 

anisotropic conductivity. The longitudinal (σz) and transverse (σxy) conductivity were 1/3 

and 1/12 S/m, respectively (McIntyre et al., 2002). We calculated the extracellular potentials 

using the following function (Li and Uren, 1998):

(6)

where, Is is the amplitude of a point source current (in A), which was located at the origin; 

and x, y, and z are the coordinates of a point on an axon. We calculated the extracellular 

potentials in MATLAB and used the “extracellular” mechanism in NEURON to apply 

extracellular stimulation to the model axons. We implemented c(f) in NEURON by setting 

the membrane capacitance equal to zero and using the “LinearMechanism” class to define 

the corresponding ODEs (see Appendix). The axon models were solved using an implicit 

(trapezoidal) integration method with a fixed time step of 1 μs. Halving the time step altered 
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the stimulation thresholds by < 1 %. Unless stated otherwise, there was a 1 ms delay before 

the onset of stimulation, and all simulation were run for a total of 10 ms.

To analyze the recovery cycle, we stimulated a 5.7 μm diameter axon at an electrode-to-

axon distance of 0.6 mm. The point source electrode was positioned over the middle node of 

Ranvier. The output metric was the percent difference in the stimulation threshold between 

two 1 ms rectangular pulses over inter-pulse intervals between 2.5 and 100 ms, as axons 

fully recover excitability after 100 ms (Kiernan et al., 1996).

In the strength-distance analysis, we stimulated a population of fifty myelinated axons with 

diameters of 5.7 μm, and each simulation was independent of each other, i.e., there were no 

axon-axon interactions. The axons were randomly placed in the medium so that the 

electrode-to-axon distances (r) were uniformly distributed between 0.1 mm and 1 mm - a 

range in which thresholds have been measured experimentally (BeMent & Ranck, 1969) - 

and the central node of Ranvier was laterally displaced by between −0.5 and +0.5 inter-

nodal lengths from the point source electrode. We used least-squares regression to fit the 

stimulation thresholds (Ith) to the function: Ith = k1 + k2r2, where k1 and k2 are constant 

coefficients. The output metric in this analysis was k2.

To quantify the response of the distributed fiber models to repetitive pulse stimulation, we 

applied a train of 50 rectangular pulses of 100 μs duration and amplitude 10 % larger than 

the threshold for a single pulse. The time between the pulses ranged from 0.1 to 10 ms (i.e., 

frequencies of 100 Hz to 10 kHz), and the duration of the simulation was set to deliver 50 

pulses. We counted the number of action potentials to obtain the spikes per pulse, which was 

the output metric in this analysis.

To quantify thresholds to achieve block of action potential conduction, we followed the 

approach of (Bhadra et al., 2007). Using an extracellular point source electrode located 1 

mm above the middle of the fiber, we delivered a sinusoidal signal (3 – 40 kHz). 40 ms after 

the onset of the sinusoidal signal, we applied an intracellular test stimulus to one end of the 

fiber and determined whether the evoked action potential propagated to the other end. We 

used a bisection algorithm (1 μA resolution) to determine the minimum amplitude of the 

extracellular sinusoidal signal that blocked the conduction of the test action potential.

Finally, the conduction velocity was calculated by applying a suprathreshold 250 μs 

rectangular stimulus to a 101-node fiber and averaging local conduction velocities from 

node to node for the myelinated fiber and in segments of 0.5 mm for the unmyelinated fiber. 

Displacements from the location where the action potential was initiated to the location 

where the action potential was recorded were positive; therefore, by definition, all velocities 

were positive.

2.4 Model of a cortical neuron

We quantified the effect of c(f) on the firing rate of a model of a pyramidal neuron from 

prefrontal cortex (PFC). We used the “intrinsic bursting” cell type of (Sidiropoulou and 

Poirazi, 2012), and the NEURON implementation as available in the modelDB database 

(https://senselab.med.yale.edu/modeldb/ShowModel.asp?model=144089). The model 
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comprises a large variety of membrane mechanisms distributed in one axon, one soma and 

43 dendrites, and includes an artificial current with Poisson characteristics to simulate the 

ion channel noise observed in vitro. We inserted c(f) in all compartments as described in 

Section 2.3.2. We applied intracellular 500 ms constant current stimulation to the soma and 

quantified the number of action potentials. We calculated the input-output response function, 

i.e., the f-I curve, defined as the average firing rate as a function of stimulus amplitude in the 

range from 0.1 to 1.6 nA. Next, we applied natural patterns of synaptic stimulation as 

described in detail in (Sidiropoulou and Poirazi, 2012). Briefly, the dendrites were 

stimulated with 200 randomly distributed excitatory synapses that were activated 10 times at 

20 Hz, and the soma was stimulated with 5 inhibitory synapses at 50 Hz. In this test, we 

increased the conductance of the Ca++-activated non-selective cation (CAN) current to 106 

μS/cm2 to induce persistent activity and calculated the inter-spike interval (ISI) distribution 

for 25 five s duration simulations that differed in the randomly selected location of the 

excitatory synapses.

3. Results

We implemented single compartments models of neurons, distributed cable models of 

axons, and a distributed cable model of a cortical neuron and used these models to quantify 

the effects of frequency-dependent capacitance on neural excitability.

3.1. The effects of c(f) on thresholds for activation and conduction block

The effects of c(f) on thresholds for stimulation and block depended on the ion-channel 

kinetics and stimulation waveform. c(f) had a negligible effect on the stimulation thresholds 

of SCM neurons with HH ion channels: across all cases, stimulation thresholds were altered 

by at most 6.3 % (median = 1.4 %). In contrast, c(f) had a marked effect on the stimulation 

thresholds of the MRG SCM but only for sinusoidal waveforms (Figure 3). In the MRG 

SCM, incorporation of c(f) decreased the stimulation thresholds of sinusoidal waveforms by 

up to 48 % at f > 8 kHz. However, changing from cdc to c(f) had negligible impact on the 

stimulation thresholds with a train of 100 μs pulses at frequencies between 100 Hz and 10 

kHz.

Similar results were observed in the distributed axons models, and the effect was slightly 

more accentuated in smaller diameter fibers (Figure 4c). The activation thresholds using 

sinusoidal stimulation declined by up to 19.3%, 14% and 11.5% for MRG axons with fiber 

diameters of 5.7, 11.5 and 16 μm, respectively. For unmyelinated axons, the activation 

thresholds varied less than 5.6% (median = 0.2%). The fidelity of the fiber response to 

repetitive pulsatile stimulation, which deteriorated at shorter inter-pulse intervals, was not 

affected by c(f) (Figure 4d).

c(f) had negligible effects on both the recovery cycle and strength-distance relationship of 

the axon models (Figure 4). Switching from cdc to c(f) altered the recovery cycle by at most 

1.4 % (median = 0.4 %) and k2 by 7.9 %. In the strength-distance relationship, the lateral 

displacements of the nodes relative to the electrode affected the thresholds, and this effect 

was greater for shorter electrode-to-axon distances. The thresholds were more widely 

scattered for electrode-to-axon distances smaller than 0.5 mm, and the subset of axons 
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laterally displaced by less than 0.1 inter-nodal lengths had thresholds ~60% lower than those 

displaced more than 0.3 inter-nodal lengths (Figure 4b). On the other hand, this difference 

decreased to ~10% for electrode-to-axon distances greater than 0.5 mm. This was expected 

because fiber excitation with monopolar point-source electrodes is more affected by the 

distance from the electrode to the closest node than the perpendicular distance to the fiber 

(Rattay, 1989).

3.1.2. Thresholds for conduction block with sinusoidal signals—The threshold 

amplitudes of a sinusoidal signal to achieve block of action potential conduction were 

reduced by c(f), and the effect was more pronounced for smaller diameter fibers and higher 

signal frequencies (Figure 5). The maximum reductions in block threshold were 11.5 % 

(median 5.7%), 5.9 % (median 3 %) and 5.5 % (median 1.8%) for fiber diameters of 5.7, 10 

and 15 μm, respectively.

3.2. The effects of c(f) on conduction velocity

The action potential conduction velocity was increased by the incorporation of c(f), and the 

effect was greater for the myelinated fiber (Figure 6). The maximum increase in conduction 

velocity was 7.9% (median 7.1%) and 1.7 % (median 1.3 %) for the myelinated and 

unmyelinated fibers, respectively.

3.3 Effect of c(f) on the excitability of a cortical neuron

The incorporation of c(f) had a minimal effect on the firing properties of the model of a PFC 

neuron. Although reducing the (constant) capacitance to c∞ increased the firing rate by up 

to 25%, the f-I curve with c(f) overlapped with that with cdc (Figure 7b). With the simulated 

natural patterns of excitation, the model neuron fired persistently for both the cdc and the c(f) 

cases, but fired slightly more rapidly in the latter case, as reflected in the inter-spike interval 

(ISI) histogram (Figure 7c). The median ISI for cdc and c(f) was 15.9 ms (min = 0.2, max = 

106.2) and 15.7 ms (min = 0.2, max = 84.2), respectively, across 25 simulations.

4. Discussion

We developed computational models of neural elements that included the dependence of the 

membrane capacitance on frequency, c(f), that arises from dielectric dispersion, and we used 

these models to quantify the effects of c(f) on neural excitability. The results revealed that 

substantial effects were restricted to changes in stimulation and block thresholds for 

sinusoidal signals at frequencies above 10 kHz. In addition, dielectric dispersion affected the 

conduction velocity of the action potential, but had a negligible effect on firing rate. 

Therefore, one should consider the effects of c(f) on neural excitation, particularly when 

studying the response of neural elements to stimulus waveforms with spectral content ≥ 10 

kHz.

The results of our study may be of interest for applications in which kilohertz frequency 

signals are used to either stimulate or block nerve fibers. Since the impedance of the skin 

declines with increasing frequency, transcutaneous electrical stimulation (TES) may be 

optimized using kHz frequency signals (Medina and Grill, 2014). Examples of TES 
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applications employing these signals are interferential currents, in which the paths of two 

kHz currents cross to produce an amplitude modulated signal (Ward, 2009), and the 

transdermal amplitude modulated signal (TAMS), in which a high-frequency sinusoidal 

carrier is modulated by rectangular pulses (Shen et al., 2011). Further, kHz frequency 

signals can produce transient conduction block of peripheral nerve fibers (Ackermann et al., 

2011), and this principle was used for amputee pain relief by the application of a 10-20 kHz 

waveform to the sciatic nerve proximal to a distal neuroma (Soin, 2012). Finally, rectangular 

pulses delivered at rates of 5 or 10 kHz are used in clinical applications of spinal cord 

stimulation (Tiede et al., 2013) and vagus nerve stimulation (Sarr et al., 2012) for the 

treatment of pain and obesity, respectively.

4.1. Modeling dielectric dispersion

The decrease in the membrane capacitance with increasing frequency, or dielectric 

dispersion, can be modeled as an n-step relaxation process (Awayda et al., 1999):

(7)

(8)

where, for the ith relaxation step, cΔ,i is the change in the membrane capacitance, τi is the 

relaxation time, and γi is the Cole-Cole power-law factor, which is between 0 and 1 (Cole 

and Cole, 1941, Cole and Cole, 1942). In our analyses, we approximated dielectric 

dispersion using one relaxation step (i.e., n = 1), and we assumed γ1 = γ = 1 so that c(f) 

could be modeled using linear circuit elements.

Dielectric dispersion at frequencies below 100 kHz is typically referred to as α dispersion 

and is associated with ionic diffusion processes at the cell membrane (Foster and Schwan, 

1989). Because the relaxation event occurring at the neural membrane is not a first order 

process (Chew and Sen, 1982), one τ may not be suitable to describe α dispersion. The 

representation of c(f) can be improved by using n + 1 capacitances and n conductances to 

model n relaxation steps (Figure 8a). For example, using two relaxation steps better 

approximated the experimental values of c(f) (Figure 8b), but despite the better fit to the 

data, the stimulation thresholds only changed by at most 8.3 % (median = 2.0 %) compared 

to n = 1 (Figure 8c). Therefore, one τ was a reasonable approximation for α dispersion.

Alternatively, the assumption that all τi are all well separated (i.e., τ1 << τ2 << ... << τn) can 

be relaxed, which means some γi ≠ 1(Foster and Schwan, 1989). For many biological 

tissues, γi ≠ 1 (Gabriel et al., 1996c); therefore, the γi that describe dispersion in the neural 

membrane are likely not equal to one. For n = 1, changing γ from 1 to 0.7 reduced the 

relative percent difference between c(f) and the experimental data (Figure 2a) from between 

−19 % and +7.3 % (Figure 2a) to between −10 % and +4.3 % at frequencies between 1 kHz 

100 kHz (not shown). However, relaxing the assumption that all γi = 1 is not trivial because 

this leads to a relationship between Vm and ic that involves fractional derivatives (Biswas et 

Howell et al. Page 9

J Neural Eng. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2006). Solving a system of ODEs with fractional derivatives is not as straightforward as 

solving a system of ODEs with integer-valued derivatives (Diethelm et al., 2005). Therefore, 

it may be more practical to use a larger n with all γi = 1 than a smaller number of n with 0 < 

γi < 1, as the former may be more computationally tractable.

4.2. Basis for the effects of c(f) on neural excitability

4.2.1. The effects on stimulation thresholds—To understand why c(f) had an effect 

in some instances but not in others, we must first understand how changing a constant 

membrane capacitance (cm) affects Vm. For a constant cm, , and

(9)

As positive and negative charge builds up on the inner and outer surfaces of the neural 

membrane, respectively, the membrane is depolarized, and Vm increases more for a 

membrane with a smaller cm. In other words, when cm is smaller, it takes less charge to 

reach the threshold for excitation. This explains why decreasing cm from cdc to c∞ 

decreased stimulation thresholds (Figure 3).

Next, we consider how the spectrum of Vm affects c(f). Below the threshold for excitation, 

the response of the neural membrane to a rectangular pulse of intracellular current resembles 

the response of the parallel combination of a resistor and capacitor (Figure 9a). Since the 

majority of the signal power in this exponential response is in the frequency band below 1 

kHz (Figure 9a), and since c(f) ≈ cdc for frequencies <1 kHz, one expects that pulse 

stimulation thresholds will not be markedly different between the c(f) and cdc cases (Figures 

3a and 3c).

With a train of rectangular pulses, the majority of the power in Vm is also in the frequency 

band below 1 kHz, even if the pulses are delivered at frequencies greater than 1 kHz. For 

example, consider a train of 100 μs pulses delivered at 5 kHz. One expects that Vm will have 

spectral content at 5 kHz because the power-spectral density of a 5 kHz train of pulses is 

maximal at the stimulation frequency. Indeed, during subthreshold stimulation, Vm appears 

to oscillate at 5 kHz but about a dynamic baseline that resembles the response of the parallel 

combination of a resistor and capacitor to a direct-current stimulus (Figure 9b). This occurs 

because as the frequency of the train approaches its fusion frequency (10 kHz, in this 

example), more power is concentrated near 0 Hz (Figure 9b), explaining why the stimulation 

thresholds did not differ markedly between the c(f) and cdc cases.

Unlike the pulsed rectangular stimulation, Vm followed the frequency of stimulation during 

subthreshold sinusoidal stimulation, and the majority of the power in the membrane 

response was concentrated near the stimulation frequency (Figure 9c). Therefore, at 

stimulation frequencies where c(f) was substantially less than cdc, one expects a reduction in 

the stimulation thresholds, which is what was observed (Figure 3b).

Examination of Vm also explained why c(f) had an effect on the MRG model thresholds but 

not on the HH model thresholds. At the onset of the sinusoidal stimulus, Vm oscillated at the 

stimulation frequency about a transiently changing baseline, which is known as the natural 
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or characteristic response of the system. The time constant of the natural response (τnat) is 

equal to cm/gm, which is approximately equal to cm/gL for sub-threshold stimulation. 

Because gL in the HH model was more than 10 times larger than gL in the MRG model (see 

Appendix), the natural response was significantly longer in the HH model (Figure 10a). In 

the HH models, the natural response exhibited a marked amount of signal power in the 

frequency band below 1 kHz (Figure 10a), which, we hypothesized, caused c(f) to behave 

more like cdc.

If the natural response was the reason that c(f) had a negligible effect on sinusoidal 

stimulation thresholds in the HH models, then reducing the magnitude of the natural 

response should alter the results. We tested this prediction using a modified sinusoidal 

stimulus: the peak-to-peak amplitude of the sinusoid increased linearly from 0 to its 

maximum value over the course of 1 ms (Figure 10b), and this substantially reduced the 

magnitude of the natural response. With the ramped sinusoid, stimulation thresholds 

decreased appreciably for frequencies > 10 kHz (Figure 10c), which is what was observed in 

the MRG model (Figure 3b).

Moreover, we calculated the frequency response of the equivalent circuit proposed by 

(Sabah and Leibovic, 1969) for small-signal approximation of an HH cell (Figure 10d). The 

admittance, Y, of this circuit quantifies the steady-state transmembrane voltage for a sub-

threshold sinusoidal current stimulus. The magnitude of Y increased with increasing 

frequency similarly to the threshold for sinusoidal stimulation, and upon incorporation of 

c(f), Y deviated for frequencies > 1 kHz. This further supports the effect of the natural 

response on the HH cell, since the admittance does not account for the transient cell 

response. Therefore, the natural response could explain the qualitative differences in the 

sensitivity of the HH and MRG models to the representation of the membrane capacitance.

4.2.2. The effects on the thresholds for conduction block—Thresholds for 

conduction block increased with increasing frequency, and larger fiber diameters exhibited 

lower block thresholds, consistent with experimental measurements (Bhadra et al., 2007). 

c(f) reduced thresholds for all cases, and the effect was more pronounced as the frequency of 

the block signal increased. As the frequency increases, more current flows through the 

capacitive component of the membrane. However, c(f) reduces the capacitance at higher 

frequencies and therefore more current is available for the ionic conductance. Thus, it is 

likely that c(f) acted by causing slightly larger oscillations of the transmembrane voltage at 

higher frequencies thereby reducing the current needed to block the fiber. For example, in 

Figure 5, we applied the same block stimulus of 2.4 mA to both cases, cdc and c(f). After the 

onset activity, the membrane voltage at the middle node, i.e., the node where block 

occurred, oscillated with an amplitude of 75.9 mV and 81.7 mV for the cdc and c(f) cases, 

respectively. Our results are in agreement with those of (Haeffele and Butera, 2007), who 

observed a reduction of block thresholds by incorporating a different implementation of a 

frequency-dependent capacitance into a model of an unmyelinated fiber with HH channels. 

As in our study, dispersive capacitance could not explain the experimental observations in 

sea-slug unmyelinated fibers that block threshold varied non-monotonically with frequency 

(Joseph and Butera, 2009), and therefore further investigation is needed to determine the 

basis for these findings.
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4.2.3. The effects on conduction velocity—The incorporation of c(f) increased the 

conduction velocity in both myelinated and unmyelinated fibers, and this effect was more 

pronounced in myelinated fibers (Figure 6). Saltatory conduction in the myelinated fiber 

occurs through the passive charge and discharge of the internodal axolemma. Therefore, if 

the axolemma capacitance declines, then the time constant of the internodal segment drops 

and the speed increases, which we observed when we reduced the (constant) membrane 

capacitance to c∞. In turn, our formulation of c(f) incorporated linear circuit elements that 

increased the order of the circuit representation, and the internodal axolemma may have 

charged more rapidly due to the multiple time constants. Accordingly, we observed an 

increase in the conduction velocity with c(f). On the other hand, the propagation of an action 

potential along an unmyelinated fiber requires the activation of ionic channels along the 

entire length of the axon, and this continuous active conduction may be less dependent on 

passive membrane properties. Consequently, we observed a more modest impact of c(f) on 

the conduction velocity of the unmyelinated fiber. Notwithstanding, the reduced (constant) 

capacitance affected conduction velocity, suggesting that under continuous active 

propagation the charge and discharge of the axolemma still plays a role. Further, the 

calculations of (Matsumoto and Tasaki, 1977) suggest that the conduction velocity of 

unmyelinated fibers is inversely proportional to the membrane capacitance. Accordingly, we 

found that in the unmyelinated fiber model a 45% reduction in membrane capacitance 

increased the conduction velocity by 53% on average.

4.2.4 The effects on firing rate—Our results showed a minimal effect of c(f) on the 

firing rate of a cortical neuron model (Figure 7). The motivation to quantify the impact of 

c(f) on the firing rate of a pyramidal cell came from the findings of (Wang et al., 2012), who 

in a two compartment model of a pyramidal cell, observed great variation in the firing 

patterns of the cell by altering the (constant) capacitance of one or both compartments. In 

their model they defined quiescent, spiking, and bursting activity, and by introducing an 

imbalance between somatic and dendritic capacitance, the firing pattern transitioned 

between these states. Furthermore, reducing the membrane capacitance of any compartment 

increased the firing activity, as we observed in the f-I curve for the c∞ case. For example, 

simultaneously halving the capacitance of both compartments, approximately halved the 

inter-burst interval. Similarly, introducing c(f) to all compartments of the PFC model neuron 

reduced the average ISI by 4% as compared to the model with cdc. Since an artificial current 

with Poisson characteristics was injected in the soma, the net effect of c(f) can be a 

interpreted as a reduction of the capacitance due to broad band input.

4.3. Limitations and remaining questions

We limited our analysis to three basic waveforms: a monophasic rectangular pulse, a train of 

monophasic rectangular pulses, and a sinusoid. Simplifying the stimuli allowed us to 

develop a fundamental understanding of how c(f) affected neural excitability. However, in 

practice, the waveforms used for electrical stimulation are more complex. For example, the 

rectangular waveforms used in electrical stimulation therapies typically have two phases; the 

first (stimulation) phase is used to elicit the physiological response, and the second (opposite 

polarity charge-balancing) phase is used to reverse electrochemical reactions that may 

damage the electrode and/or tissue (Merrill et al., 2005).
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To determine if a charge-balancing phase would alter the conclusions, we used a biphasic 

rectangular pulse to stimulate the MRG SCM. At all the PWs considered in this study (i.e., 

50 μs to 10 ms), the addition of a symmetric charge-balancing phase of equal duration 

altered the stimulation thresholds by at most 7.9 % (median = 0 %) when the membrane 

capacitance was changed from cdc to c(f). The charge-balancing phase in many electrical 

stimulation therapies, however, is not symmetric but asymmetric. Similar results were 

observed when the charge-balancing phase was 9 times the duration and 1/9 times the 

amplitude of the stimulation phase. Therefore, we predict that the trends observed in this 

study will not be greatly impacted by the addition of a subsequent charge-balancing phase.

However, there are other aspects of electrical stimulation that may also play a role in 

altering the shape of the stimulation waveform. For example, the charge transduction 

process that occurs at the electrode-tissue interface (ETI) (Butson and McIntyre, 2005, 

Cantrell et al., 2008, Howell et al., 2014) and dielectric dispersion in the nervous tissue 

(Bossetti et al., 2008, Medina and Grill, 2014) can both alter the time course (shape) of the 

voltages appearing in the tissue. We observed that modification to the stimulus waveform 

could alter the response of the neural membrane and thereby the effects c(f) on neural 

excitation (Figure 10). Therefore, when studying the effects of c(f) in specific applications of 

electrical stimulation, the charging of the ETI and dielectric dispersion in the tissue should 

also be considered.

The parameterization of c(f) in this study was based on data from a limited number of 

studies on squid giant axons (Haydon et al., 1980, Haydon and Urban, 1985, Takashima and 

Schwan, 1974). These studies all indicate that the membrane capacitance is approximately 

constant from 100 Hz to 1 kHz and declines by approximately 50 % between 1 kHz and 100 

kHz. Because none of these studies provided data for frequencies below 100 Hz, we 

assumed the low frequency membrane capacitance was constant. We also assumed that the 

membrane capacitances of mammalian and squid axons would exhibit similar frequency 

dependence. These were reasonable assumptions given the goal of this study was to develop 

an understanding of how c(f) impacted neural excitability.

5. Conclusions

We developed a versatile approach for incorporating dielectric dispersion (i.e., the 

dependence of membrane capacitance on frequency) into models of the neural membrane, 

and we used these models to assess the effect of a frequency-dependent capacitance on 

neural excitability. Dielectric dispersion had negligible effects on the stimulation and 

blocking thresholds for pulsatile stimulation but markedly reduced the stimulation and 

blocking thresholds for sinusoidal stimulation. The effect of dielectric dispersion on the 

sinusoidal stimulation thresholds depended on the electrical properties of the neural 

membrane. Moreover, dielectric dispersion increased action potential conduction velocity. 

Therefore, one should consider the impact of a frequency-dependent capacitance when 

studying the response properties of neural elements at frequencies of tens of kilohertz and 

above.
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Appendix: Model Development and Validation

Validation of Frequency-Dependent Capacitance

We modeled a lumped single-compartment (SCM) neuron with linear circuit elements 

representing the neural membrane (Figure 1b). The membrane conductance (gm in S/m2) 

was constant and the membrane capacitance varied with frequency. The following system of 

ordinary differential equations (ODEs) model the response of the SCM neuron to a single 

monophasic rectangular pulse:

(A.1)

(A.2)

(A.3)

(A.4)

The frequency-dependent membrane capacitance consisted of a capacitance (c∞) in parallel 

with the series combination of a conductance (gΔ) and capacitance (cΔ). Vm and Vrest denote 

the transmembrane and rest voltages, respectively; VcΔ is the voltage drop across cΔ; is(t) is 

the waveform of the applied stimulus (in A/m2); the bar denotes a vector quantity; and T is 

the transpose operator.

When is(t) is a single monophasic rectangular pulse, the solution of Equations A.1-A.4 takes 

the following form:

(A.5)

(A.6)

(A.7)
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(A.8)

(A.9)

λ1/2 are the eigenvalues of A.3, and Vo is the initial value of Vm. We compared the analytical 

solution (i.e., A.5-A.9) to the numerical solution (see Section 2.1.1). The root mean square 

error (RMSE) between the numerical and analytical solutions was < 5×10−4 %.

When is(t) is a sinusoid, the solution of Equations A.1-A.4 takes the following form:

(A.10)

(A.11)

(A.

12)

(A.13)

(A.14)

For sinusoidal stimulation, the RMSE between the numerical and analytical solutions (A.10-

A.14) was < 5×10−4 %.

Numerical Implementation

We used the ratio of the largest eigenvalue to the smallest eigenvalue, known as the stiffness 

ratio (LeVeque, 2007),

(A.15)

, to assess the numerical stability of the ODEs describing c(f). ∥ denotes the absolute value 

or magnitude of the eigenvalues. If a system of ODEs is stiff, S is typically >> 1, which 

means small to moderate perturbations in the system can lead to large fluctuations in some 
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variables that force the numerical method to have large errors or become unstable (Spijker, 

1996). For A.3, S ≈ 230.

When c(f) was modeled using Equation 5, achieving an RMSE of < 5×10−4 between the 

analytical and numerical solution required time step sizes of < 0.5 μs. To compare, when c(f) 

was modeled using Equations A.1-A.4, achieving the same degree of accuracy required time 

step sizes of < 0.1 ms. Compared to the other variables, the values of  (see Equation 5) 

were disproportionately large, which could explain the large errors that resulted when 

modeling c(f) with Equation 5. Therefore, the stiffness of the ODEs consider in this work 

was only an issue when dealing with higher order terms (e.g., ).

Hodgkin-Huxley Model

We used the equations from the seminal work of Hodgkin and Huxley to model three current 

densities in a SCM of a HH neuron (Hodgkin and Huxley, 1952).

(A.16)

(A.17)

(A.18)

The sodium current density (iNa) had a maximum conductance (gNa,max), an activation gate 

(m), and an inactivation gate (h). The potassium current density (iK) had a maximum 

conductance (gK,max) and an activation gate (n). The leakage current density (iL) had a 

constant conductance (gL,max). The reversal voltages for iNa, iK, and iL were ENa, Ek, and EL, 

respectively.

The ODE describing the rate of change of the gate variables (ϕ = m, h, or n) with respect to 

time took the following form:

(A.19)

(A.20)

Where, q10 is a scaling factor that accounts for the effect of temperature (T in C°) on the rate 

constants (in s−1), α and β, for each gating variable. The equations describing the 

relationship between the rate constants and Vm can be found in (Abbott and Kepler, 1990).

The ODEs describing the response of the HH SCM neuron to an arbitrary stimulus, is, are 

given by the following:
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(A.21)

(A.22)

The parameters of the HH SCM neuron are summarized in Table A.1 (Abbott and Kepler, 

1990). Note that the system of ODEs described in (Abbott and Kepler, 1990) is a modified 

form of the original HH equations (Hodgkin and Huxley, 1952). In the original HH 

equations, Vrest = 0 mV, whereas in the modified HH equations, Vrest = −65 mV.

McIntyre-Richardson-Grill (MRG) Model

We implemented a validated model of a mammalian myelinated axon (McIntyre et al., 

2002), and we used the equations describing the ion current densities and Vm to build a SCM 

neuron with faster ion channel kinetics. The transient sodium current density (iNa,t) and iL 

had the same form as Equations A.16 and A.18., respectively. The persistent sodium current 

density (iNa,p) and iK were described by the following equations:

(A.23)

(A.24)

Where, mp is the activation gate of iNa,p, and s is the activation gate of iK.

Note, in the work by McIntyre et al., q10 is implicit in the ODEs describing ϕ’. That is, the 

αs and βs of the gating variables have already been multiplied by their corresponding q10 

values at T = 37 C°:

(A.25)

Where, mt and ht are the activation and inactivation gates of iNa,t, respectively.

The response of Vm to is is given by the following ODE:

(A.26)

VcΔ has the same form as A.22.

Howell et al. Page 17

J Neural Eng. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table A1

Electrical Properties of the HH Model
*

Parameter Description Unit(s) Value

gNa, max Maximum sodium conductance mS/cm2 120.

gK, max Maximum potassium conductance mS/cm2 36.0

gL, max Maximum leakage conductance mS/cm2 0.30

ENa Sodium reversal voltage mV 50.0

EK Potassium reversal voltage mV −77.0

EL Leakage reversal voltage mV −54.4

Vrest Membrane resting voltage mV −65.0

T Temperature C° 6.30

*
The parameters are summarized in (Abbott and Kepler, 1990).

Table A2

Electrical Properties of the MRG Model
a

Parameter Description Unit(s) Value

gNa, t, max Maximum transient sodium conductance mS/cm2 3.00×103

gNa, p, max Maximum persistent sodium conductance mS/cm2 10.0

gK, max Maximum potassium conductance mS/cm2 80.0

gL, max Maximum leakage conductance mS/cm2 7.00

ENa
b

Sodium reversal voltage mV 50.0

EK Potassium reversal voltage mV −90.0

EL Leakage reversal voltage mV −90.0

Vrest Membrane resting voltage mV −80.0

T Temperature C° 37.0

a
The parameters are summarized in (McIntyre et al., 2002)

b
The transient and persistent sodium channels have the same reversal voltage
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Figure 1. 
Equivalent electrical circuit representations of the neural membrane. (a) The membrane was 

modeled using a nonlinear sodium conductance (gNa in S/m2), a nonlinear potassium 

conductance (gK), a linear leakage conductance (gL), and a frequency-dependent capacitance 

(dashed box). The frequency-dependent membrane capacitance consisted of a capacitance 

(c∞) in parallel with the series combination of a conductance (gΔ) and capacitance (cΔ). E 

and Vm denote the reversal and transmembrane voltages, respectively. (b) An analytic 

expression for Vm was obtained by replacing gNa, gK, and gL with a single linear constant 

membrane conductance (gm). Vrest is the resting voltage of the membrane. Expressions for 

the circuit elements are given in the Appendix.
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Figure 2. 
Action potentials (left) in single-compartment lumped models (SCMs) of neurons with 

constant or frequency-dependent membrane capacitance (right). (a) 10 kHz sinusoidal 

stimulation of a SCM with HH ion channels and a membrane capacitance that was either 

constant (i.e., cdc or c∞) or declined with increasing frequency (right). Vm is the 

transmembrane voltage, and the arrow indicates the onset of stimulation. (b) Intracellular 

monophasic pulse stimulation (i) of a SCM with MRG ion channels found in the node of 

Ranvier of a myelinated axon. The pulse was 100 μs in duration. Note that the repetitive 

action potentials following a single stimulus are the result of implementing in a single 

compartment model membrane dynamics that were originally parameterized to represent a 

node of Ranvier in a multi-compartment cable model. The experimental data are from 

(Takashima and Schwan, 1974).
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Figure 3. 
The effect of a frequency-dependent membrane capacitance on stimulation thresholds. A 

single rectangular pulse (a), a sinusoid (b), or a train of 100 μs rectangular pulses at fstim (c) 

was used to stimulate a single-compartment model with MRG ion channels. i is the applied 

intracellular current density. The membrane capacitance that was either constant (cdc = 2 

μF/cm2) or frequency-dependent, c(f). The middle plots show the spectra of the stimulation 

signals pulse, and the bottom plots show the percent difference in the stimulation thresholds 

(ith) between the c(f) and cdc cases (i.e., [c(f) – cdc]/ cdc).
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Figure 4. 
The effect of frequency-dependent membrane capacitance on (a) recovery cycle, (b) 

strength-distance relationship, (c) thresholds for fiber activation with sinusoidal stimulation, 

and (d) firing rate during repetitive pulse stimulation of the MRG fiber model. (a) A 1 ms 

suprathreshold pulse stimulus was followed by a 1 ms test stimulus, and the threshold for 

activation was determined as a function of the inter-pulse interval. The transmembrane 

voltage at the node of excitation after a supra-threshold stimulus (afterpotential) is plotted on 

the same time scale. (b) Activation threshold as a function of electrode-to-axon distance. (c) 

Ratio of the activation threshold (Thr) difference between c(f) and c∞ to the threshold 

difference between cdc and c∞ using sinusoidal stimulation. (d) Number of action potentials 

(spikes) per pulse for repetitive pulsatile stimulation of varying inter-pulse interval. The 

stimulus train was composed of fifty 100 μs duration pulses.
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Figure 5. 
Conduction block thresholds. (a) Transmembrane voltage at the middle node (i.e., just below 

the electrode) and the end node opposite to the application of the test stimulus, for constant, 

cdc, and frequency dependent, c(f), membrane capacitance. The block signal was a 2.4 mA 

peak-to-peak 30 kHz sine wave, and the test stimulus was applied at 40 ms. The arrow 

indicates that the test action potential propagated, i.e., conduction block was not achieved. 

(b) Threshold to achieve conduction block of the test stimulus as a function of the sinusoidal 

blocking signal frequency for three fiber diameters.
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Figure 6. 
Effect of c(f) on action potential conduction velocity. (a) Transmembrane voltage (Vm) of a 

10 μm myelinated fiber (MRG) and a 2 μm unmyelinated fiber (HH) that had either constant 

(cdc = 2 μF/cm2 or c∞ = 1.1 μF/cm2 for the myelinated fiber, and cdc = 1 μF/cm2 or c∞ = 

0.55 μF/cm2 for the unmyelinated fiber) or frequency-dependent, c(f), capacitance. Vm was 

recorded at two different locations along each fiber as indicated in the insets (arrow: 

recording position, black dot: electrode position). The bottom plot shows the applied 

extracellular stimulus (−250 μA and −100 μA for the myelinated and unmyelinated fiber, 

respectively). (b) Conduction velocity as a function of fiber diameter for the myelinated 

(top) and unmyelinated (bottom) fiber models.
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Figure 7. 
Effect of c(f) on the firing properties of a distributed multi-compartment cable model of a 

cortical neuron. (a) Transmembrane voltage, Vm, of the soma upon application of a 500 ms 

(black bar) intracellular constant current step of 300 pA. Vm for c(f), which overlapped with 

Vm for cdc, is not shown for clarity. (b) Average firing rate as a function of the amplitude of 

a 500 ms intracellular current step. (c) Histogram of the inter-spike intervals for the cell in a 

state of persistent activity induced by natural patterns of excitation as described in 

(Sidiropoulou and Poirazi, 2012).
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Figure 8. 
Sensitivity of the stimulation thresholds to changes in the representation of the frequency-

dependent membrane capacitance, c(f). (a) Dielectric dispersion, or c(f), can be modeled 

with a single capacitance (c∞) in parallel with n different series combinations of a 

conductance and capacitance (see Equation 7). (b) Three curves of c(f) for the MRG SCM: 

the baseline fit (black line), where, n = 1, cdc = 2 μF/cm2, c∞ = 1.1 μF/cm2, and τ = 

(2π104)−1 s (see Section 2.2); an alternative fit similar to the baseline, except c∞ = 0.1 

μF/cm2 (grey line); and a second alternative fit (dashed line), where n = 2, c∞ = 1.1 μF/cm2, 

cΔ,1 = 0.5 μF/cm2, cΔ,2 = 0.4 μF/cm2, τ1 = (2π4.9×103)−1 s, and τ2 = (2π5.0×104)−1 s. 

Experimental data from (Takashima and Schwan, 1974). (c) The stimulation thresholds of 

the MRG SCM for each of the three different representations of c(f) in part b. The stimulus 

was an intracellular sinusoidal current density (i).

Howell et al. Page 29

J Neural Eng. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
The subthreshold response of the neural membrane in the MRG SCM. Reduced 

transmembrane voltage (vm = Vm – Vrest) in response to subthreshold stimulation and the 

power-spectral density (PSD) of vm (bottom) with (a) a 100 μs rectangular pulse, (b) a train 

of 100 μs pulses at 5 kHz, and (c) a 1 kHz sinusoid.
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Figure 10. 
The effect of the natural response on stimulation thresholds. (a) Reduced transmembrane 

voltage (vm = Vm – Vrest, top) and the PSD of vm (bottom) in the HH axon model (left) and 

the MRG axon model (right) in response to subthreshold stimulation with an intracellular 10 

kHz sinusoidal current. (b) The transmembrane voltage (Vm, right) of the HH model axon in 

response to an intracellular sinusoidal current (left) with a peak-to-peak amplitude that 

increases linearly from 0 to its maximum value over 1 ms. (c) Differences in the stimulation 

thresholds between the cdc and c(f) cases for the HH axon model using a sinusoid and the 

ramped sinusoid described in (b). (d) Magnitude of the admittance, |Y|, of the equivalent 

circuit of the linearized HH cell with the small-signal approximation of (Sabah and 

Leibovic, 1969).
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Table 1

Symbols and Abbreviations

Symbol/abbreviation Description/definition SI units

c Specific capacitance F/m2

g Specific conductance S/m2

V Voltage V

i Current density A/m2

I Current A

τ Relaxation time s

MRG McIntyre, Richardson, and Grill none

HH Hodgkin and Huxley none

SCM Single Compartment Model none
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