
VASCULOPROTECTION AS A CONVERGENT, MULTI-
TARGETED MECHANISM OF ANTI-AD THERAPEUTICS AND 
INTERVENTIONS

Narayan R. Bhat
Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425

Abstract

Using a variety of animal models of Alzheimer’s disease (AD), there have been a number of 

recent studies reporting varying degrees of success with anti-AD therapeutics. The efficacies are 

often discussed in terms of the modulatory effects of the compounds tested on identified or 

assumed targets among the known (or proposed) pathogenic and neuroprotective mechanisms, 

largely within the context of the dominant amyloid cascade hypothesis. However, it is clear that 

several of the relatively more efficacious treatments tend to be multifunctional and target multiple 

pathological processes associated with AD including most commonly, oxidative and metabolic 

stress and neuroinflammation. Increasing evidence suggests that vascular and neurodegenerative 

pathologies often co-exist and that neurovascular dysfunction plays a critical role in the 

development or progression of AD. In this review, we will discuss the significance of 

vasculoprotection or neurovascular unit (NVU) integrity as a common, multi-targeted mechanism 

underlying the reported efficacy of a majority of anti-AD therapeutics - amyloid-targeted or 

otherwise - while providing a strong support for future neurovascular-based treatment strategies 

and interventions.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of dementia among the elderly 

accounting for two-thirds of all dementia cases, currently estimated to be over 35 million 

worldwide (http://www.alz.co.uk/research/world-report-2014). While the early-onset 

familial forms are relatively rare, the late-onset sporadic disease accounts for the majority 

(over 95%) of cases. Of particular concern, the incidence of this age-related 

neurodegenerative disease is set to increase exponentially with increased population growth 

and life expectancy. AD is associated with selective neuronal and synaptic loss along with 

characteristic pathological hallmarks including extracellular senile plaques containing beta-
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amyloid and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated 

tau. Although there has been an impressive progress in our understanding of the genetics, 

neurobiology and neuropathological characteristics of the disease, clinical trials based on the 

dominant pathogenic mechanisms proposed i.e., ‘amyloid cascade’, have mostly failed (1). 

The only approved drugs available are symptomatic i.e., acetylcholine esterase inhibitors 

and an NMDA receptor antagonist, memantine. The lack of availability so far of any 

disease-modifying drugs is an indication that the precise disease mechanism for this 

complex condition remains unclear (2). Increasing evidence suggests that cognitive 

impairment in sporadic AD can occur independent of amyloid deposition, which may in fact, 

represent a down-stream result and not the cause of the disease (3). Although tau pathology 

seems to correlate better with cognitive decline suggesting the potential value of tau-targeted 

therapy (4), there have been no promising candidates so far.

In the wake of failed amyloid-targeted drug trials and immune therapies, recent efforts are 

directed towards a broad range of alternative mechanisms of AD including mitochondrial 

dysfunction, metabolic stress, altered insulin signaling and, related to the ‘vascular 

hypothesis of AD’ (5), cerebrovascular dysfunction. Accumulating evidence in fact supports 

the notion that cerebro- or neurovascular dysfunction may represent a primary initiator of a 

cascade of pathogenic events leading to neurodegeneration in AD (5–7). This mechanism 

takes on added significance when one considers increasing evidence linking sporadic AD 

with a number of vascular disorders including hypertension, hypercholesterolemia, obesity 

and type 2-diabetes (8–11). A pathological convergence between vascular cognitive 

impairment (VCI) associated with such metabolic disorders as well as stroke, and AD-type 

dementia recently referred to as ‘vascular contributions to cognitive impairment and 

dementia’ (VCID) (12, 13), likely occurs at the level of neurovascular dysfunction. 

Neurovascular dysfunction comprises the loss of neurovascular unit (NVU) integrity (-

structural and functional) including blood brain barrier (BBB) disruption due to oxidative/

metabolic stress and inflammation under a variety of brain injury and disease conditions 

(14). The concept of NVU originally proposed in the context of stroke has been expanded to 

incorporate its critical role in both health and disease and there is increasing evidence in 

support of its dysfunction associated with many neurodegenerative diseases, in particular 

AD (15, 16). With increasing emphasis on combination, drug repositioning or 

polypharmacology approaches to combat complex diseases, the attention has shifted towards 

functional units such as the NVU and other cellular networks commonly affected in 

neurodegenerative diseases. In a systems biology perspective, network perturbation or 

dysfunction can be viewed as a disease phenotype (17) and altered nodes and modules of the 

network represent potential multifunctional targets. In this review, we will make the case 

that the vascular component (-a key module) of the NVU represents a shared target for a 

variety of drug candidates with multitarget activity and hence vasculoprotection per se could 

be an effective and multi-targeted approach to treat AD. In support of this perspective, we 

will include a brief account of the recent literature on specific compounds that have shown 

efficacy in models of AD that may have in common, neurovascular dysfunction as a 

multifunctional target for treatment.
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LOSS OF NVU INTEGRITY AND METABOLIC UNCOUPLING IN AD 

PATHOGENESIS

Evolving out of its original concept of a coupling between neuronal activity (energy 

demand) and local blood flow (energy supply), the term NVU now embodies an integrated 

multicellular system comprising cerebrovascular cells, glia and neurons and their milieu that 

tightly regulates brain homeostasis and function in health and disease (14, 18, 19). In the 

healthy brain, well-regulated interactions among components of the NVU i.e., vascular cells 

(endothelial cells, pericytes and artery/arteriole-associated smooth muscle cells), glia 

(astrocytes and microglia) and neurons maintain the structural and functional integrity of the 

unit thereby ensuring cerebrovascular autoregulation, functional hyperemia and intact BBB. 

Most significantly, an intact BBB ensures immune surveillance and regulated solute 

exchange at the barrier, energy (glucose and oxygen) supply to neurons through regulated 

CBF, trophic support and overall homeostatic balance (18, 20). As part of the BBB 

organization lining the brain capillaries is a specialized endothelium sealed by tight 

junctions that communicates with surrounding brain cells through a continuous basement 

membrane. This structure also embeds pericytes with long processes extending along the 

vessel wall as well as end-feet of perivascular astrocytes (14). The vascular hypothesis of 

AD proposes a loss of structural and functional integrity of the NVU as an early event 

leading to BBB deregulation, chronic cerebral hypoperfusion, hypoxia, neurovascular 

uncoupling, neuronal and glial hypometabolism or metabolic failure preceding 

neurodegeneration and cognitive impairment (7, 9) (Fig 1).

As an indicator of early NVU dysfunction in AD, it has been demonstrated that cerebral 

hypometabolism exists years before clinical symptoms of dementia and in animal models of 

AD, decreased cerebral glucose metabolism ensues even preceding Aβ deposition (21, 22). 

Since vascular insufficiency with underlyigng tissue hypoxia can accelerate amyloid 

production, the above findings suggest a vicious cycle involving amyloid-induced damage to 

already compromized NVU integrity and hence reduced CBF (23). Several studies have 

recorded specific pathological changes in the cellular and molecular components of the glio-

vascular network that are in strong support of a vascular dysfunction hypothesis of AD (24). 

Structural and morphological abnormalities observed in both AD and aging including 

endothelial atrophy, thickened and irregular basement membranes, microvessel thinning 

(string vessels), their increased tortuosity and fragmentation would have adverse functional 

consequences of hypoperfusion and increased BBB leakage (6, 22, 24), especially when 

associated with cerebral amyloid angiopathy (CAA, below). Capillary rarefaction (decreased 

microvascular density) and degeneration are a common feature of AD brain (24, 25), most 

severe changes marking the zones of overt neuronal loss. Other observed cellular/structural 

changes of NVU in AD include pathological changes in astrocytes and loss of pericytes (26, 

27) - both critical players in the maintenance of BBB integrity and function. Studies with 

mouse models of AD demonstrate astrocyte end-feet disruption (28, 29) that may adversely 

afftect vasodilation, BBB regulation and capillary blood flow. Age-dependent loss of brain 

pericytes in a mouse model results in BBB breakdown and reduced cerebral 

microcirculation preceding neurodegeneration and cognitive impairment (30) while pericyte 

deficiency in a transgenic AD model (APP Tg) leads to accelerated Aβ and CAA formation 
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and the development of tau pathology along with cognitive decline (31). A recent study 

provides further evidence for age-dependent BBB breakdown in the human hippocampus 

correlated with pericyte injury that potentially contributes to observed mild cognitve 

impairment (32). Compromised barrier is thought to allow infiltration of blood-borne 

neurotoxins while perturbing the regulated entry of essential nutrients and trophic factors. 

Thus, recent studies have uncovered dual functions of a BBB endothelium-expressed protein 

i.e., major facilitator superfamily domain containing 2a (mfsd2a) in the formation and 

maintenance of BBB integrity (33) and the transport into the brain of docosahexaenoic acid 

(DHA) (34), an omega-3 fatty acid that, besides being vasculoprotective (35), has essential 

functions in brain growth and cognition. A loss of this protein in AD due to pericyte 

deficiency can result in reduced brain DHA content (36). Another recent report shows that 

deficiency of glucose transporter (GLUT1) in endothelium exacerbates AD-associated 

‘vasculo-neuronal’ dysfunction and neurodegeneration in a mouse model (37). The transport 

of other trophic factors i.e., IGF-I and insulin also depends on specific transporters. These 

transporters are subject to down-regulation under conditions of BBB dysfunction, especially 

in metabolic disorders such as type 2 diabetes (38, 39) that are known to increase AD risk 

(below).

There is now strong evidence for increased AD risk in subjects with vascular conditions 

including hypertension, hypercholesterolemia and type-2 diabetes (T2DM) (8–11). In fact, 

the term, ‘Type 3 diabetes’ has been used to describe AD and there is evidence for altered 

metabolic changes indicative of ‘insulin resistant brain state’ (IRBS) in human AD and 

animal models (40, 41). While increased risk of dementia in T2DM can be attributed to 

cerebrovascular disease (CVD) (42–44) involving vascular injury, it has been suggested that 

AD and CVD may work synergistically to cause cognitive decline since for many patients 

markers of vascular injury co-exist with traditional AD hallmarks (44, 45). The frequent 

vascular (-arteries, arterioles and capillaries) amyloid deposition seen in AD termed cerebral 

amyloid angiopathy (CAA) (46–48) is associated with vascular injury (48). It is likely that 

the presence of CVDs such as T2DM would exacerbate the pathological changes in NVU 

described above via endothelial cell damage due to hyperlipidemia, hyperglycemia, 

oxidative stress and inflammation (7). Since pericyte-endothelial cross-talk and trophic 

interactions maintain each-other’s health and integrity (49), it is likely that endothelial 

dysfunction due to vascular factors (i.e., T2DM) could lead to increased pericyte injury/loss 

as well. Both cell types are highly vulnerable to oxidative stress and inflammatory 

mediators. With their expressed innate immune cell characteristics (50), these cells can also 

elicit inflammatory response thereby contributing to accelerated vascualr damage.

An intact NVU is also important for regulated amyloid clearance. It is becoming evident that 

ineffective clearance of brain amyloid rather than its increased production is the major cause 

of amyloid accumulation, especially in sporadic AD. Components of NVU are critically 

involved in multiple mechanisms of amyloid clearance including transport through the 

barrier (51, 52) and perivascular drainage (53, 54). Enzymatic/phagocytic degradation of Aβ 

represents the third mechanism, which engages the activity of several proteases and 

phagocytic glia/macrophages (55–57). Even here, it is thought that infiltrating blood-borne 

monocytes or perivascular macrophages are better able to engulf amyloid than resident 

microglia, which are incapacitated by senescene and phenotypic heterogeneity. The 
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transcytotic delivery system has been extensively studied including the LRP-1/RAGE 

tandem at the BBB. Thus, while LRP-1 transports Aβ out of the CNS into the blood stream, 

RAGE acts in the opposite way. A specific inhibitor has been shown to block RAGE-

mediated Aβ import thereby reducing amyloid pathology in a mouse model of AD (58). The 

transport and perivascular drainage systems are regulated by Apo E in an isoform-specific 

manner so that the pathogenic Apo E4 isoform may interfere with Aβ clearance across the 

BBB and via the drainage pathway (59). A proposed mechanism for the toxicity of Apo E4 

on the cerebrovascular system involves activation of a proinflammaory cyclophyllin A-

mediated pathway in pericytes leading to BBB breakdown (60). The cerebrovascular 

abnormalities can further interfere with the drainage system, which comprises the newly 

defined ‘glymphatic pathway’ –a CNS equivalent to peripheral lymphatic system. In this 

brain-wide paravascular pathway, subarachnoid CSF recirculates through the brain 

parenchyma. The CSF-interstitial fluid (ISF) exchange ensures an efficient clearance of the 

solutes and other waste products including beta-amyloid (61). The convective flow process 

is dependent on water transport via astrocytic aquaporin-4 (Aqp-4) water channels localized 

to their endfeet. A recent study by Kress et al demonstrates an age-dependent impairment of 

this pathway that correlated with the loss of Aqp-4 polarization (62). It is thought that 

arterial pulsatility drives perivascular CSF-ISF exchange (63) thereby suggesting the 

potential utility of vasoactive drugs to facilitate amyloid clearance. In fact, in a mouse model 

of cerebrovascular β-amyloidosis (i.e., Tg-SwDI), administration of cilostazol, an inhibitor 

of phosphodiesterase III with vasodilator activity was found to restore vasoreactivity and 

facilitate perivascular drainage of Aβ while preventing cognitive decline (64). Notably, 

cilostazol despite being BBB impermeable, was able to attenuate degradation of vascular 

walls with Aβ deposit and preserve NVU integrity.

It is important to note however, that improvement in vascular function in mouse models of 

AD in certain other cases has been reported to occur independently from Aβ reduction or 

improved memory deficits (below).

NVU AS A CONVERGENT, MULTIFUNCTIONAL TARGET FOR DISEASE 

MODIFICATION IN AD

From the above discussion it is clear that an intact NVU with its multifaceted roles, is 

critical for the maintenance of brain health and homeostasis -metabolic and ionic. Hence, the 

loss of its structural and functional integrity represents a key target of intervention in AD as 

well as in a variety of other cerebrovascular disorders and conditions. It is important to note 

that most, if not all of the alternative pathogenic processes (-amyloid related or otherwise) 

thought to contribute to AD and hence considered the targets of treatment, commonly and 

adversely affect the cerebrovasculature as well. These include oxidative, metabolic and 

endoplasmic reticulum (ER) stress, mitochondrial dysfunction, inflammation, insulin 

resistance etc. Hence, one can argue that the effectiveness of several of the preclinically 

tested anti-AD candidates may to a large extent draw from their vasculoprotective activities 

potentially targeting NVU-associated multiple mechanisms (specific examples to follow). 

Along this line, shared risk factors and mechanisms between AD and CVDs have prompted 

repurposing of approved drugs that may find NVU as the primary target. Drug repositioning 
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approach usually takes advantage of the multiple beneficial properties of the drug related to 

common cellular processes that are either compromised or exacerbated. An alternative is to 

identify novel targets for the approved drugs. The current drug repositioning approach in 

AD mostly focuses on co-morbidities and common risk factors including diabetes, 

atherosclerosis and hypertension (65). Below, we will discuss with specific examples, how 

observed effectiveness of such re-purposed drugs and other multifunctional agents can be 

viewed in the context of vasculoprotection. The discussion is restricted to preclinical models 

only since for most candidates, clinical trials are either incomplete or have indicated 

questionable benefit and/or adverse side effects (longer term). Another caveat pertains to the 

shortcomings of the animal models per se as noted by Cavanaugh et al. (66) since a number 

of candidate therapeutics, despite showing great promise in such studies, have rarely 

translated into clinical benefits for patients.

Anti-diabetic and anti-hypertensive drugs

Some of the priority candidates that are being tested under drug repositioning strategy 

include anti-diabetics based on the link between diabetes and AD and the evidence for AD-

associated insulin resistance, as noted above. Although the mechanistic link(s) between 

peripheral and brain insulin resistance in AD remains unclear, studies suggest that T2DM is 

associated with reduced brain insulin signaling (8, 41). Insulin and IGF-I have multiple 

physiological roles in the brain including trophic support, energy metabolism and synaptic 

activity (38, 67) thereby underscoring the importance of insulin-based therapies. In fact, 

promising clinical trials have been implemented involving intranasal administration of 

insulin in AD patients [reviewed in (68)]. A related insulin-targeted approach involves the 

use of insulin sensitizers or agents that stimulate insulin release, most commonly glucagon-

like peptide-1 (GLP-1) analogues i.e., exendin-4 and liraglutide. In preclinical studies, 

different GLP-1 receptor agonists have shown neuro- and synaptic protection and in some 

cases, to reduce plaque burden (41, 68, 69). Multiple ‘neurocentric’ mechanisms have been 

proposed for their effectiveness including improved axonal transport and synaptic plasticity. 

However, a review of the literature suggests that GLP-1 analogues also elicit 

vasculoprotective effects. Thus, for example, GLP-1 enhances endothelial function in 

hypertension (70) and promotes endothelial barrier activity (71). GLP-1 analogs can also 

protect against ischemia/reperfusion injury as shown in a rat model of T2DM (72). With 

respect to AD, while the GLP-1 analog, liraglutide could reduce memory impairment, 

synaptic loss and plaque load in aged APP-PS1 Tg mice (73), a recent follow-up study 

indicates that the compound can restore cerebral and peripheral microvascular architecture 

in these mice while reducing the incidence of cerebral microaneurysms and leakage (74). 

The prediction is that other analogs of this class of drugs will have similar vasculoprotective 

effects (75).

Members of a class of nuclear receptors i.e., peroxisome proliferator-activated receptors 

(PPARs) that regulates glucose and lipid metabolism, represent another target of treatment 

in AD as well as in T2DM. In particular, PPARγ is known to play neuroprotective roles in 

models of neurodegeneration and agonists of PPARγ such as rosiglitazone and pioglitazone 

used in the treatment of T2DM, have been shown to improve memory while reducing AD-

like pathology in animal models (76). The mechanisms targeted could be multifaceted 
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including oxidative stress, mitochondrial dysfunction and inflammation. With respect to 

their potential vasculoprotective effects, in old AD Tg mice, a thiazolidine (TZD) agonist of 

PPAR-gamma i.e., pioglitazone improved cerebrovascular function without any benefit on 

the amyloid pathology (77). The vasculoprotective effects were attributed to the recovery of 

dilatory function through antioxidant and antiinflammatory mechanisms. A literature survey 

would reveal that similar to PPARγ, other members i.e., α and δ also have vasculoprotective 

roles and hence, may benefit cerebrovascular dysfunction.

Hamel et al. have also tested the effects of several other ‘repurposed’ compounds including 

statins and anti-hypertensive drugs in the AD Tg mice. Thus, the statin, simvastatin restored 

vascular reactivity, dilatory function, neurovascular coupling and memory in adult AD Tg 

mice, without reducing the amyloid pathology (78). The cerebrovascular benefits were 

associated with anti oxidant effects and activation of eNOS. Recovery of memory did not 

occur in aged AD Tg mice, suggesting a therapeutic window as is likely to be the case in 

man. Of note, statins have been extensively studied preclinically and in AD subjects but 

without clear clinical benefit. Nonetheless, the primary target of their pleiotropic activity in 

most metabolic disorders seems to involve the vascular system, activation of endothelial 

nitric oxide (eNOS) being a key mechanism as also seen in a model of cerebrovascualr 

disease i.e., the double Tg AD mice expressing active form of TGFβ (79). Midlife 

hypertension is another co-morbid vascular condition associated with AD development and 

there have been studies using approved anti-hypertensive drugs. Thus, the AT1 receptor 

blocker, losartan was able to reduce cerebrovascular and neuropathological changes and 

cognitive deficit in the APP Tg mice without an effect on soluble Aβ or plaque load (80).

Another class of anti-hypertensives with vasodilatory effects but capable of eliciting direct 

neuroprotection, is calcium channel blockers (CCBs). Specific CCBs have shown beneficial 

effects in animal models and in clinical/epidemiological studies; one of these (i.e., 

dihydropyridine CCB) seems to reduce or delay the development of AD [reviewed in (65)]

Other nuclear receptor agonists

Similar to PPARs discussed above, other nuclear receptors including liver x receptor (LXR) 

(81) and retinoic acid receptor (RXR) have been investigated as potential targets of 

treatment in AD. Of particular interest, Cramer et al. (82) reported that an RXR agonist, 

bexarotene (Bex), an approved skin cancer drug, showed remarkable effects on cognition 

and soluble amyloid clearance in the APP-PS1 Tg mice. However, this study was followed 

by a flurry of reports with disparate results some supporting and many others disputing the 

findings [discussed in (83)], although all of them confirmed target engagement i.e., 

increased expression of Apo E and ABCA1. In their report, Cramer et al suggested that the 

benefit observed was the result of lipidated Apo E-mediated rapid clearance of Aβ. It is 

possible that ABCA1-mediated lipidation of human Apo E4 isoform, a primary risk factor 

for sporadic AD, would have additional beneficial effects including reversal of Apo E4-

mediated cerebrovascular toxicity.

The mechanism by which RXR agonists induce transcription involves the formation of 

heterodimers of the transcription factor with other nuclear receptors i.e., PPAR and LXR 

that are known to act in a coordinated manner to induce genes such as Apo E and ABCA1. 
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In this regard, several studies have been published demonstrating the efficacy of LXR 

agonists as well as PPAR activators in AD models as noted above. However, much needs to 

be clarified with respect to the mechanisms by which nuclear receptor activation can be 

beneficial (or harmful i.e., Bex, a case in point) in AD. Within the cerebrovasculature, 

besides ABCA1, other transporters (including that for Aβ i.e., ABCB1 and ABCG2) and 

regulators of antioxidant defense and energy metabolism could be under the control of 

nuclear receptors (76). Alternatively, the nuclear receptors can also have non-genomic, acute 

actions. It is interesting that a recent mouse BBB transcriptome analysis has revealed that 

RxRα cascade is specifically enriched at the BBB (84). Hence, there is justification in 

considering cerebrovasculature as an alternative target of RxR (and other nuclear receptor) 

activation.

Modulators of LXR-ABCA1-Apo AI axis

It is now well established that a number of genes (e.g., cyp46, ABCA1) coding for proteins 

of cholesterol metabolism show disease-associated polymorphisms (85). Further, besides 

Apo E, alterations in several other mediators of cholesterol homeostasis including ABC 

transporters, Apo-AI as well as nuclear receptors (i.e., LXR, PPARs) that regulate their 

synthesis also influence cognitive function in AD models (86–89). These findings are in 

general agreement with the clinical observations that elevated levels of LDL cholesterol and 

reduced/dysfunctional HDL and Apo-AI seen in both atherosclerosis and T2DM (90–93), 

correlate well with AD incidence compared to asymptomatic cases (94, 95). In contrast, high 

HDL-C and Apo-AI correlate with better cognitive function in advanced age (96). The 

beneficial effect of the ‘good cholesterol’ in the form of HDL in cardiovascular diseases is 

well accepted and there have been intense efforts at boosting its circulating levels/functions 

as an atheroprotective therapeutic approach. In addition to its known role in lipid transport 

(RCT), HDL regulates vascular health via its antiinflammatory and anti-oxidant properties. 

The major constituent of HDL i.e., Apo AI determines the beneficial properties of HDL. 

Small Apo AI mimetic synthetic peptides have shown activity in models of atherosclerosis 

and T2DM via their anti-inflammatory, anti-oxidant and anti-atherogenic effects (90, 97, 

98). Although not produced in the CNS, high levels of Apo AI are found in the CSF (99). 

Interestingly, genetic manipulation of Apo AI levels in a mouse model of AD, selectively 

affects vascular amyloid load and cognitive function i.e., its deletion exacerbates CAA and 

cognitive deficit (88) while its overexpression has the opposite effects (89). In support of the 

potential HDL/Apo AI-based vasculoprotective therapy, an Apo AI mimetic peptide, 4-DF 

administered to mice with genetic (LDL receptor-deficient) hypercholesterolemia mice 

reduced cerbebrovascular inflammation and improved cognitive performance (100) and, 

when administered with a statin, it was able to reduce amyloid burden and improve 

cognitive function in an AD model (101). Certainly, there is much value in the development 

of ABCA1 agonists and small molecule Apo AI modulators such as RVX208 (102), which 

may find use in AD as well as across a spectrum of cardio- and cerbrovascular diseases.

Finally, one can assign vasculoprotective function to several other compounds with known 

antioxidant, anti-inflammatory and ER stress reducing properties that have been and are 

being tested in AD models. Since the vasculoprotective actions of statins and PPAR-gamma 

agonists mostly derive from their ‘pleiotropic’ actions rather than anti-cholesterol and anti-
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diabetic effects, the list could be expanded to include additional pleiotropic compounds such 

as polyphenols, resveratrol (- SIRT1 activation) (103) and rapamycin. While rapamycin has 

multiple targets, in a recent study, chronic administration of this target-of-rapamycin (TOR) 

inhibitor was able to restore brain cerebrovascular integrity and function involving an 

activation of eNOS and improve memory in an AD model (104). It may not be out of place 

here to mention recent exciting findings of cerebrovascular and neurogenic rejuvenation of 

the aging brain by young systemic factors (105) perhaps, representing the ‘ultimate’ 

pleiotropic approach to treat age-related neurodegenerative and neurovascular diseases.

CONCLUDING REMARKS

AD is a complex disease often involving vascular pathologies and hence requires a 

multitargeted treatment strategy. The shared risk factors between AD and vascular disorders 

along with a multifactorial etiology of the disease point to potential utility of drug 

repositioning and multi-target or polypharmacology approaches. Pertinent to this, 

vasculoprotection represents a major target for existing drugs while promising to be a 

critical and active area of AD research to identify novel compounds. While adaptation to 

life-style modifications i.e., diet and exercise (106) with established benefits on vascular 

health in general is obvious both preventively and therapeutically, there is a need for 

developing novel strategies addressing neurovascular dysfunction and BBB integrity in AD. 

As discussed in this review, failed clinical trials focusing on pathological markers or 

indicators of AD, highlight the need for clearer understanding of the alternative disease 

mechanisms. Based on accumulating evidence, a key mechanism seems to involve a 

dysfunctional NVU. In fact, NVU represents a common and most effective target of 

treatment for AD as well as other cerebrovascular diseases, in particular stroke. The critical 

and multifaceted roles that NVU plays in maintaining the metabolic and ionic homeostasis 

are compromised in these conditions. As we discussed here with specific examples, many 

disease modifying therapeutics being tested in AD models –repurposed or novel- would 

have NVU dysfunction as the potential multi-targeted mechanism. This also means that 

future chemical scaffold-based design of synthetic multi-target directed drugs (MLTDs) 

should incorporate components of NVU as mechanistic targets. The outcome or target 

engagement measures should accordingly include neurovascular structure-function-based 

analyses, in addition to the measurement of classic AD markers i.e., Aβ and phospho-

tau/NFT and, importantly their clearance, in relation to cognitive changes in preclinical 

studies. Some of the common vascular-based outcome measures/markers include: cerebral/

microvascular blood flow, dilatory response, functional hyperemia/neurovascular coupling, 

cerebrovascular oxidative stress - the primary mechanism through which Aβ peptide impairs 

the function of the brain vasculature, vascular inflammatory markers, brain glucose/energy 

metabolism, markers/measures of glymphatic pathway of toxic solute (Aβ, tau etc) removal, 

astrocyte end feet and cerebrovascular basement membrane changes as well as pericyte loss/

degeneration and measures of BBB leakage. Some of these analyses require advanced and 

live imaging techniques for functional measurements and structural analysis at the 

ultrastructure level. There is also the need for the development of novel and appropriate 

models incorporating co-morbid factors for proof-of-concept and proof-of-mechanism 

studies and preclinical testing. In this regard, the cerebrovascular disease model described 
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by Papadopoulos et al (79) i.e., APP Tg mice expressing constitutively active form of TGFβ 

represents an innovative attempt at incorporating co-morbid factors. However, in this model, 

the therapeutic efficacy of some compounds did not survive as shown for simvastatin and 

the TZD pioglitazone (107). Obviously, there is need for developing more complex models 

incorporating vascular co-morbidities and metabolic disorders i.e., hypertension, 

microinfarcts/stroke, prediabetes, type-2 diabetes (genetic vs. non-genetic) etc.
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Fig 1. 
Proposed mechanisms and mediators of cerebrovascular dysfunction including 

neurovascular uncoupling in AD. Cerebrovascular dysfunction in AD is associated with 

compromised NVU integrity characterized by structural and functional abnormalities (a). 

Such changes include endothelial and smooth muscle cell damage, pericyte fall out, loss of 

astrocyte polarization, BBB breakdown, loss of vascular dilatory function and altered blood 

flow. While blood-borne toxins extravasating through broken BBB can be neurotoxic either 

directly or through inflammation (not shown), compromised function of uncoupled NVU 

can lead to neuronal and synaptic degeneration due to hypoperfusion and reduced energy 

supply (b). A state of hypoxia can result in increased amyloid processing thereby 

exacerbating amyloid pathology (c) and contributing to a vicious cycle at the 

cerebrovasculature of vascular damage and CAA formation (d). The oligomeric Aβ can 

elicit a direct neuro/synaptotoxicity (e). BBB dysfunction may have dual pathological 

consequences i.e., loss of amyloid transport out of the brain (f) and compromised transport 

into the CNS of nutrient and trophic factors. The loss of vascular integrity can also impede 

peri/paravascular drainage of excess amyloid (g). The scheme also depicts an interaction 

between AD and metabolic/vascular factors at the level of cerebrovasculature (h). A list of 

anti-AD treatments and interventions discussed in the review in the context of their 

vasculoprotective roles is shown on the right (i).
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