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Near-Complete Genome Sequence of the Cellulolytic Bacterium
Bacteroides (Pseudobacteroides) cellulosolvens ATCC 35603
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We report the single-contig genome sequence of the anaerobic, mesophilic, cellulolytic bacterium, Bacteroides cellulosolvens.
The bacterium produces a particularly elaborate cellulosome system, wherein the types of cohesin-dockerin interactions are op-
posite of other known cellulosome systems: cell-surface attachment is thus mediated via type-I interactions, whereas enzymes

are integrated via type-II interactions.
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he cellulosome is one of the most efficient systems known to

biodegrade plant cell-wall polysaccharides and cellulosic
wastes. This multi-enzyme extracellular complex incorporates
multiple hydrolytic enzymes onto the bacterial cell-surface
through dockerin modules that tightly bind to scaffoldin pro-
teins via complementary cohesin modules (1-3). Additional
carbohydrate-binding modules (CBM) attach the entire enzy-
matic complex to the cellulosic substrate (4). The biodegrading
activity of cellulosomes has been studied extensively in related
cellulolytic bacteria, such as Clostridium (Ruminiclostridium)
thermocellum, Acetivibrio cellulolyticus, Clostridium (Ruminiclos-
tridium) clariflavum, Clostridium (Ruminiclostridium) cellulolyti-
cum, Clostridium cellulovorans, Clostridium (Ruminiclostridium)
papyrosolvens, and Ruminococcus flavefaciens (5).

Bacteroides cellulosolvens ATCC 35603 (DSM 2933) is a cellu-
lolytic bacterium, originally isolated from sewage sludge (6, 7) in
co-culture with Clostridium saccharolyticum. Initially classified as
a Gram-negative bacterium, analysis of the 16S RNA indicated
that B. cellulosolvens, like A. cellulolyticus, is a member of the phy-
logenetically diverse clostridial assemblage (8, 9). Recently, B. cel-
lulosolvens was renamed Pseudobacteroides cellulosolvens (10).

B. cellulosolvens was selected for its ability to grow under meso-
philic, anaerobic conditions, and the bacterium was able to bind
and degrade crystalline cellulose to cellobiose and glucose (11—
13). Its cellulose-degrading activity was shown to be cell-
associated (14), and elaborate cellulolytic cell-surface structures
were subsequently demonstrated (15, 16). Cellulosome-like com-
plexes were further identified in the bacterium (17), supported by
the recognition of the major scaffoldin protein (CipBc, later re-
named ScaA) (18, 19), which includes eleven type-II cohesin do-
mains, a family-3a CBM, and a C-terminal dockerin domain. Its
scaffoldin was shown to interact with a family-48 glycoside hydro-
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lase (18), and the crystal structure of its type-II cohesin was deter-
mined (20).

The genome is reported as a large contig of 6,878,816 bp, trans-
lated into 5,897 predicted proteins. Sequencing was performed
using PacBio RS-II technology and data from four SMRT cells was
assembled using SMRTanalysis v2.2 (HGAP3 protocol). The ini-
tial assembly generated three contigs at ~65X raw read coverage,
which were joined using Geneious R8 (21) and then validated by
PCR and Sanger sequencing (22). Illumina reads (at ~200X cov-
erage) also confirmed contiguity. The ends of the single contig
were unable to be joined experimentally or in silico, possibly as a
result of a misassembly or active mobile genetic element. Active
transposase systems have been shown to interfere with closure
previously (23). Therefore, the genome is reported as near-
complete assembly. Gene prediction and annotation were per-
formed as described previously (24, 25).

Intriguingly, the types of cohesin-dockerin interaction in
B. cellulosolvens are reversed from those of all other known cellu-
losome systems, whereby cell-surface attachment of noncatalytic
scaffoldins in B. cellulosolvens is mediated via type-I interactions,
whereas the enzymes are integrated via type II-interactions (19,
26,27). The genome codes for 75 cohesin modules (mostly type-II
cohesins), packaged in more than two-dozen scaffoldins, and over
200 dockerin-containing proteins, including glycoside hydrolases,
carbohydrate esterases, and polysaccharide lyases. Thus, B. cellu-
losolvens scaffoldins represent the largest noncatalytic cellulo-
somal subunits known to date, indicating the presence of a partic-
ularly elaborate cellulosome system.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number LGTC00000000. The version described
in this paper is version LGTC01000000.
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